С.И.Семыкин, В. Ф.Поляков, Е.В.Семыкина, С.А.Дудченко, Т.С.Семыкина

АНАЛИЗ МАТЕРИАЛЬНОГО И ТЕПЛОВОГО БАЛАНСОВ КОНВЕРТЕРНОЙ ПЛАВКИ ПРИ ИСПОЛЬЗОВАНИИ НИЗКОВОЛЬТНЫХ ПОТЕНЦИАЛОВ.

Приведен анализ особенностей материального и теплового балансов конвертерных плавок, проводимых по технологии с применением электрических воздействий малой мощности в сопоставлении с обычными технологиями, действующими на двух металлургических предприятиях Украины при выплавке стали в конвертерах емкостью 60 и 160т.

В Институте черной металлургии НАН Украины разрабатывается перспективная технология выплавки металла с применением низковольтных потенциалов. Результаты лабораторных и промышленных исследований показали возможность увеличения температуры металла к концу плавки, позволяющую изменять ее шихтовку, сокращая расход жидкого чугуна и улучшая технико—экономические показатели работы конвертеров. В связи с этим выполнены расчеты материального и теплового балансов опытных и сравнительных плавок, проведенных на конвертерах двух предприятий Украины емкостью 60 т и 160 т.

Для оперативного расчета и сопоставления опытных вариантов разработан алгоритм материального и теплового балансов конвертерной плавки для конкретных условий работы промышленных агрегатов.

В алгоритме использованы физико-химические методы моделирования, закономерности и эмпирические зависимости, заимствованные из известных литературных источников [1–6].

Алгоритм осуществляет прогнозирование состава продуктов плавки при изменяющихся шихтовых и технологических параметрах на основе материального распределения элементов, что позволяет адаптироваться к реальным условиям конкретного предприятия.

Выполнены расчеты выделения тепла при протекании реакций окисления углерода, кремния, марганца, серы и фосфора в сталеплавильной ванне при проведении стандартной выплавки металла. Полученные расчетные величины приняты за базу при определении влияния доли электрических воздействий на тепловой баланс конвертерной плавки.

При расчете материального и теплового балансов использованы следующие параметры:

— исходные: количество, температура и химический состав используемой металлошихты (жидкий чугун, металлический лом и его загрязнение), количество и состав шлакообразующих добавок (тип и химический состав применяемой извести, плавикового шпата, углеродсодержащих

материалов), расход и чистота продуваемого технического кислорода, состав и износ рабочего слоя огнеупорной футеровки конвертера, количество и состав ферросплавов и их усвоение.

— получаемые по окончанию плавки: количество, температура и состав конвертерного шлака и стали на первой повалке конвертера, а также на выпуске плавки, расходные коэффициенты основных материалов (чугуна, металлолома, извести, кислорода).

Расчет выполнен в программе IBM Microsoft Excel. Исследованы следующие варианты реализации технологии:

- плавки без использования электрических воздействий;
- 2 плавки с подведением положительной полярности потенциала;
- 3 плавки с подведением отрицательной полярности потенциала;
- 4 плавки с чередованием полярности потенциала.

По каждому опытному варианту составлен паспорт материального и теплового балансов плавок. В табл.1,2 приводятся итоговые значения и долевое влияния исходных параметров в общем объеме сверстки на получаемые по окончанию плавки показатели (расчет выполнен на тонну металлошихты).

Из табл.1 видно, что по сравнению с обычными плавками при использовании электрического потенциала прослеживается снижение количества жидкого чугуна в металлозавалке на 9,1 кг/т и 12,72кг/т при подведении отрицательного и чередующегося потенциала с увеличением присадки металлолома, а также повышение выхода стали на 7,68 кг/т и 10,48кг/т. Применение положительной полярности потенциала при незначительном увеличении расхода жидкого чугуна (0,32 кг/т) позволило повысить выход стали на 4,81 кг/т. Увеличение выхода годной стали произошло за счет снижения потерь металла, особенно в виде корольков и снижения количества оксидов в шлаке (см. табл.1).

Из табл.2 видно, что при подведении отрицательной и чередующейся полярностей потенциала наблюдается освобождение скрытых источников тепла конвертерной ванны. При незначительном расходе Джоулева тепла (17кДж) удовлетворяется потребность в тепловых затратах, превышающих приход тепла с фактическими, принимаемыми в существующих методиках расчета источниками тепла, на 6417,1 кДж и 8006,7 кДж соответственно для отрицательной и чередующейся полярностей потенциала. Кроме того прослеживается перераспределение расхода тепла в сторону увеличения тепловых затрат на нагрев металлолома, извести и снижения на диссоциацию окислов железа.

Таблица 1 – Результаты расчета материального баланса при различных вариантах воздействия на плавку в 60 –т конвертере

	Вид потенциала на фурме												
Показатели	Без		Положительная		Отрицательная		Чередующаяся						
	Воздействий		Полярность		полярность		Полярность						
	Кг/т	%	Кг/т	%	Кг/т	%	Кг/т	%					
Исходное поступление:													
Чугун	903,68	76,39	904,0	76,73	894,58	75,69	890,96	75,78					
Металлолом	96,32	8,14	90,55	7,75	105,42	8,92	109,04	9,27					
Известь	83,38	7,00	83,39	7,08	83,99	7,11	80,68	6,87					
Плавиковый шпат	2,31	0,20	2,51	0,22	1,55	0,13	2,36	0,19					
Миксерный шлак	7,62	0,65	7,62	0,65	7,67	0,65	7,76	0,66					
Материалы из	4,57	0,39	5,40	0,45	4,29	0,36	2,81	0,24					
футеровки	4,37	0,39	5,40	0,43	4,43	0,50	2,01	0,24					
Кислород	78,28	6,62	76,50	6,50	77,13	6,53	74,91	6,37					
Ферросплавы	7,2	0,61	7,2	0,62	7,20	0,61	7,20	0,61					
Всего:	1183,36	100,00	1177,17	100,00	1181,83	100,00	1175,72	100,00					
Получено:													
Жидкая сталь	901,69	76,20	906,50	76,9	909,37	76,95	912,17	77,58					
Оксиды шлака	147,71	12,48	142,25	12,09	146,32	12,38	140,42	11,94					
Дымовые газы	103,69	8,76	102,11	8,67	102,62	8,69	101,66	8,66					
Корольки в шлаке	14,02	1,18	10,55	1,0	9,59	0,81	7,89	0,67					
Потери (в т.ч. пыль)	16,24	1,37	15,76	1,34	13,90	1,18	13,57	1,15					
Всего:	1183,36	100,00	1177,17	100,00	1181,83	100,00	1175,72	100,00					

Таблица 2. – Результаты теплового баланса при различных вариантах электрического воздействия на плавку в 60 –

т конвертере

	Вид потенциала на фурме									
Показатели	Без воздействий		Положительная полярность		Отрицательная полярность		Чередующаяся по- лярность			
Приход тепла от:	кДж	%	КДж	%	кДж	%	кДж	%		
– чугуна	71743	39,0	72150	39,2	70217	39,1	68979	39,4		
– миксерного шлака	379	0,2	379	0,2	370	0,2	375	0,2		
 окисления примесей 	107919	58,7	108154	58,8	105300	58,7	102225	58,3		
– шлакообразования	3773	2,0	3246	1,8	3634	2,0	3611	2,1		
 – за счет электричества 	0	0	17	0,009	17	0,009	17	0,009		
Всего:	183813	100,0	183946	100,0	179538	100,0	175207	100,0		
Расход тепла:	кДж	%	КДж	%	кДж	%	кДж	%		
сталь уносит	95149,3	51,8	95299,5	51,8	95299,2	51,2	94557,1	51,7		
шлак уносит	19944,4	10,8	18754,4	10,2	19614,4	10,5	18636,9	10,2		
газы уносят	17047,2	9,3	17712,9	9,6	16740,1	9,0	16261,4	8,9		
Диссоциация окислов желе- за	6392,2	3,3	6431,1	3,4	6313,5	3,4	5999,7	3,2		
Уносится с пылью	342,0	0,2	342,0	0,2	342,0	0,2	342,0	0,2		
Уносится с выбросами	5,7	0,01	5,7	0,01	5,7	0,01	5,7	0,01		
Нагрев извести	26821,2	14,6	27552,2	15,1	28739,7	15,5	28283,1	15,5		
Нагрев лома	9120,2	5,0	8956,6	4,9	9907,9	5,3	10143,8	5,5		
Потери тепла	8990,6	4,8	8990,6	4,8	8990,6	4,8	8990,6	4,8		
Всего:	183813	100	183946	100,0	185953,1	100,0	183213,7	100,0		
Отклонение по вариантам:	0		0		+6415,1		+8006,7			

На рис.1 и 2 показано влияние различных режимов подводимых электрических воздействий на выход годной стали, выявленное при проведении исследований на конвертерах емкостью 60 и 160-т. Прослеживается четкая тенденция на увеличение фактического выхода годной стали при подведении электрического потенциала по сравнению с расчетным, ожидаемым при осуществляемых исходных засыпках металлошихты и шлакообразующих материалов, и с выходом годной стали на стандартных плавках без воздействий.

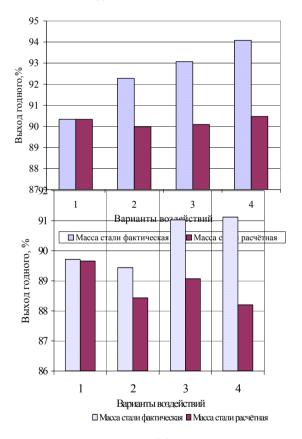
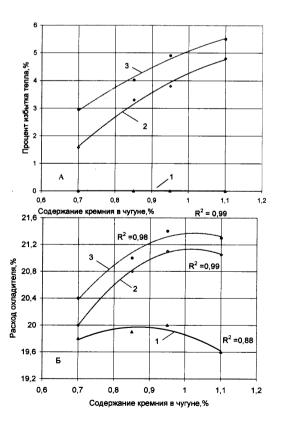



Рис.1 – Влияние режимов электрических воздействий на фактический выхол голной стали (60 -т конвертер): 1 плавки без воздействий, 2 - положительная полярность подводимого потенциала, 3 – отрицательная полярность, 4 чередование полярности потенциала. Рис.2 – Влияние режимов электр. воздействий на фактический выход годной стали (160 -т конвертер): 1 -без электрических возлействий. 2 -положительная полярность подводимого потенциала, 3 отрицательная полярность, 4 чередование полярности.

Для углубленного анализа опытные и сравнитель-

ные плавки были продифференцированы по составу чугуна. Предварительные результаты проведенного исследования указывают на существлияние содержания кремния чугуне большинство В на технологических показателей опытных и обычных конвертерных плавок, определяя пропорции в шихтовке плавки. Кроме того, исходя из результатов анализа, можно сделать заключение, что увеличение содержания кремния в чугуне, особенно выше 1%, приводит к заметному ухудшению таких основных показателей процесса, как выход жидкой ных показателей процесса, как выход жидкой стали, количество и качество конечного шлака (его основность и содержание в нем окислов железа). При этом снижение расхода чугуна не компенсирует перечисленные нелостатки.

Во всех опытных вариантах с использованием электрического потенциала при сохранении тенденций, установленных на сравнительных плавках по глобальному влиянию содержания кремния в чугуне на выходные параметры плавки, прослеживается влияние электрических воздействий, особенно в вариантах с чередованием полярности подводимого потенциала. Как показывает анализ, увеличение теплосодержания ванны, вызванное ростом содержания кремния в чугуне на сравнительных промышленных плавках практически полностью скомпенсировано количеством вводимого на плавку металлического лома и расходом извести (рис.ЗА линия 1), в то же время электрический потенциал вносит существенный вклад в развитие экзотермических реакций, сопровождающих процесс конверти-

рования, повышая избыток тепла на плавку (рис. 3А линии 2 и 3), содержание углерода на повалке, а также снижая долю окислов железа в конечном конвертерном шлаке, позволяя увеличивать расход охладителя плавки, в частности металлолома, (рис.3Б).

Рис.3 — Изменение избытка тепла на плавку (A) и доли охладителя в шихте (Б) в зависимости от содержания кремния в чугуне при различных режимах электрического воздействия: 1 — сравнительные плавки, 2 — отрицательная полярность потенциала, 3 — чередование полярности потенциала

<u>Выводы.</u> Как показывает анализ теплового баланса конвертерной плавки, выполненного для плавок, проведенных на конвертерах различной емкости (60 и 160т), на практике увеличение теплосодержания ванны, вызванное ростом содержания кремния в чугуне на сравнительных промышленных плавках почти полностью скомпенсировано количеством вводимого на плавку охладителя. В то же время электрический потенциал оказывает существенное влияние на развитие экзотермических реакций, сопровождающих процесс конвертирования. Проявляется это либо в виде заметного перегрева сталеплавильной ванны к концу плавки либо в виде скрытого вложения тепла за счет повышения содержания углерода на повалке или снижения доли окислов железа в конечном конвертерном шлаке.

Результаты материального баланса показали, что при использовании электрической энергии достигается более высокий коэффициент выхода годного металла в основном за счет снижения потерь металла в виде окислов железа и корольков в шлаке, особенно при чередовании полярности потенциала в период продувки плавки.

Выполненные с помощью разработанного алгоритма конвертерной плавки на базе Microsoft Excel как поплавочный, так и сопоставительный анализы материальных и тепловых балансов при различных вариантах электрических воздействий позволят более детально изучить механизмы влияния электрической энергии на протекание и термодинамику сталеплавильного процесса.

- 1. *Ойкс Г.Н., Иоффе Х.М.* Производство стали. М.: Металлургия, 1969. –520с.
- 2. *Производство* стали. / В.И. Явойский, С.Л. Левин, В.И. Баптизманский, П.В. Умрихин, М.Я. Меджибожский, Д.Я. Поволоцкий, Г.Н. Ойкс, М.А.Черненко, Е.В. Абросимов М.: Металлургия, 1976. 816 с.
- 3. *Справочник* по расчетам металлургических реакций. / А.Н.Крестовников, Л.П. Владимиров, Б.С. Гуляницкий, А.Я. Фишер. М.: Металлургиздат, 1963. 416с.
- 4. Тепловые работы кислородных конвертеров / В.И. Баптизманский, Б.М.Бойченко, В.П. Черевко М.: Металлургия, 1988. 176 с.
- Разработка элементов сквозной технико –экономической модели производства конвертерной стали и определение с ее помощью рациональных схем производства металла в различных условиях. С –353 –90: Отчет о НИР (заключительный) / ИЧМ; инв. № 847. Днепропетровск, 1991. 49с.
- 6. *Технология* производства стали в современных конвертерных цехах / С.В.Колпаков, Р.В. Старов, В.В. Смоктий, В.И. Лебедев , В.В. Рябов М.: Машиностроение, 1991. 464с.