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The computer simulation of a plasma filter with fast electrons shows that the main source of droplet heating is 

thermal electrons, while the role of fast electrons is reduced mainly to transferring energy to slow electrons. The 

processes of drop charging in the presence of an electron beam and the effective emission of electrons due are also 

considered. 
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INTRODUCTION  

The growing demand for nanoscale manufacturing 
in modern industries like integrated circuit production 
and surface layer modification necessitates efficient and 
reliable means of production. MEVVA-type ion plasma 
sources, utilizing vacuum-arc discharge, have proven 
effective for creating high-current heavy metal ion 
beams [1], which are widely used in applying protective 
and functional coatings and modifying surface proper-
ties. A significant limitation, however, is the presence of 
cathode material microdroplets in the ion-vapor flow, 
which hinder the creation of high-quality, nano-level 
uniform coatings. 

Current filters and elimination methods for these mi-
crodroplets are based on various forms of selection, 
primarily mechanical and electrophysical filters [2]. 
While they can effectively remove microdroplets larger 
than 1 µm, using these filters for smaller droplets reduc-
es the density of the metal plasma on the products con-
siderably. This limitation restricts the full utilization of 
the high generation rate of the ion vapor flow of the 
erosion plasma source. 

The Institute of Physics of the National Academy of 
Sciences of Ukraine has been developing axisymmetric 
cylindrical plasma-dynamic systems grounded on the 
principles of mean energy plasma optics [3]. This innova-
tion opens up new possibilities for controlling a low-
energy ion-plasma beam in MEVVA-type sources. A 
new approach using plasma-dynamic systems like elec-
trostatic plasma lens (PL) and hollow cathode discharge 
systems (PC) has been proposed and investigated to elim-
inate microdroplets from dense metal plasma flow [4, 5]. 
These systems generate an energetic electron beam that 
can effectively vaporize and remove microdroplets. 

Nonetheless, to fully harness the potential of these 
systems, there's an urgent need to understand the fun-
damental physical mechanisms affecting micro-
inclusions in dense dust plasma during their passage 
through plasma-dynamic systems with fast electrons. 

1. EQUAITONS OF DROP EVAPORATION 

A device with a hollow cathode was taken as a proto-
type for our model of droplet evaporation. A detailed 
description of the setup and its parameters can be found 
in [6]. 

The rate of evaporation of a drop is determined by 

its temperature, therefore, to determine how quickly the 

evaporation process will occur, it is necessary to know 

the temperature of the drop, which changes during the 

stay of the droplet in the discharge. On the other hand, 

the temperature of the droplet is determined from the 

balance of energy absorbed and lost by the droplet. As 

our preliminary calculations show, one of the most im-

portant channels of energy loss in a droplet is precisely 

the evaporation process. Thus, to find the change in 

temperature and mass of a drop during its stay in a dis-

charge, it is necessary to solve a system of two mutually 

related differential equations: the energy balance equa-

tion and the evaporation rate equation. 

The general energy balance equation for a drop can 

be written as: 

 in out

i i
i i

dr dr f f
dT
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 
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where c is the specific heat capacity of the drop materi-

al, mdr, Adr, and Tdr are the mass, surface area, and tem-

perature of the drop, and fi
in

 and fi
out

 are the energy flow 

densities to and from the drop, respectively. In this 

equation, all three parameters characterizing the drop 

depend on time t, and are closely connected to each oth-

er. We will consider the relationship between mass and 

temperature later, and the surface area of a drop is de-

termined by its radius rdr, which, in turn, is determined 

by the mass of the drop 4/3 π rdr
3
 ρdr = mdr. Here ρdr is 

the density of the drop, which is the as the heat capacity, 

is considered constant in our approximation. 

From our previous studies, it was established that the 

main sources of droplet heating in the discharge are the 

flow of fast and slow (“thermal”) electrons and ions on 

the droplets. On the other hand, the main processes 

through which drops lose energy are droplet evapora-

tion, thermal radiation from the droplet surface, and 

thermoelectron emission. 

All droplet heating sources are related to the flow of 

charged particles per droplet, so to find their values we 

need to know the current densities of electrons and ions 

per droplet. Since with the plasma parameters we use in 

the calculations (plasma density n0 = 5∙10
16

 m
-3

, electron 

temperature Te = 5…20 eV), the Debye length D is 

much greater than droplet radius rdr, we can use the the-
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ory of L.O.M. (Low Orbital Motion). According to this 

theory [7], the current density on a spherical body of 

repulsive particles, which in our case are electrons, is 

given by the formula 

 0 exp
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where kb is the Boltzmann constant, q is the elementary 

charge, me is the electron mass, and dr is the drop poten-

tial. The current density of ions, which in our case are 

particles attracted to the drop, according to L.O.M. is 
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where mi and Ti are the ion mass and temperature, re-

spectively. 

As for fast electrons, due to the fact that their energy 

is much greater than the absolute value of the drop po-

tential, in the first approximation it can be assumed that 

their current density per drop is equal to the current den-

sity in the discharge volume jb. 

To obtain the energy flow density, we simply re-

place the particle charge in the previous expressions 

with the average energy carried by this particle. Thus, 

for the energy flux density of slow electrons fe, ions fi, 

and fast electrons fb, we have: 
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Now consider the energy flows from the drop. As al-

ready mentioned, this is the evaporation of the droplet 

material, fev, the thermal radiation frad, and the energy 

carried by the thermal emission electrons, fth. Evapora-

tion energy losses are calculated based on the evapora-

tion rate of the drop drd m

d t
, and can be written as: 

 
1 dr

ev ev

dr

d m
f r

A d t
 , (7) 

where rev is the specific heat of vaporization of the drop 

material. It should be noted that the expressions for all 

energy flows are given without taking into account the 

direction of one or another flow. That is, all values have 

a positive value, and their influence on the total energy 

of the droplet is taken into account by the sign in equa-

tion (1). 

The flow of radiation energy from a droplet is calcu-

lated by the Stefan-Boltzmann formula: 

 
4

rad drf T , (8) 

where  is the emissivity of the drop material, and  is 

the Stefan-Boltzmann’s constant. 

The last energy flow from the drop, which we take 

into account in our calculations, is determined by the 

flow of thermoemission electrons from the surface of 

the drop. The current density of such electrons is deter-

mined by the formula 

 
2
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w
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where A0 is the universal thermoemission constant, and 

w is the work of electron release from the droplet mate-

rial. Since each electron flying out of the surface of the 

droplet spends energy w, the total density of the energy 

flow carried by thermoelectrons is 

 
20 expth dr

b dr

A w
f w T

q k T

 
 

   
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. (10) 

Let us now consider the equation for the evaporation 

of a drop. Since the concentration of metal atoms in the 

discharge volume is negligible, we can use the Hertz-

Knudsen equation [8] for evaporation into a vacuum: 

 ( )
2

dr

dr s dr

b dr

d m
A P T

d t k T




  , (11) 

where  is the mass of evaporating molecules or atoms, 

and Ps(T) is the saturated vapor pressure. The pressure 

of saturated vapors depends not only on the temperature 

but also on the radius of curvature of the surface over 

which they are formed, but in the first approximation, 

we can ignore such discrepancies and use the experi-

mental pressure data obtained for a flat surface. 

One of the main parameters included in the formulas 

that determine energy flows to/from the drop is the val-

ue of the potential of the drop. This value can vary over 

a wide range, depending on the discharge conditions, 

and greatly influences energy flows. Therefore, it is 

advisable to obtain an agreed value of this parameter 

from the calculations. To do this, let's write another 

equation, which is determined by zero current per drop 

equality. The value of all these currents was found by us 

when finding energy flows. It is only necessary to take 

into account that fast electrons have sufficient energy to 

form secondary electron emission from the droplet, and 

thus their contribution to the total charge will be less by 

the amount  jb, where  is the coefficient of secondary 

emission. Thus, we have a mixed system of two differ-

ential and one algebraic equation: 

( )

( )
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(12) 

where individual terms are determined by formulas (2)-

(10). 

The system of equations (12) is an explicit differen-

tial-algebraic system with three dependent variables mdr, 

Tdr, and φdr. A distinctive feature of the system is its 

stiffness. That is, this system is poorly solved by tradi-

tional methods such as the Runge-Kutta method. There-

fore, for the numerical solution of the system (12), an 

algorithm with a variable step and a variable order 

based on the inverse differentiation formulas of the first 

to the fifth order was chosen. The Jacobi matrix, which 

the algorithm needs for its work, was calculated by nu-

merical differentiation. As research [9] shows, this algo-

, 

, 

, 
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rithm effectively finds the solution of stiffness systems 

of equations and has good accuracy. 

As initial conditions for solving the system of equa-

tions, the melting temperature of the metal of the drop-

let, the mass corresponding to the applied radius of the 

droplet, and the negative potential of the droplet whose 

absolute value was equal to the temperature of the 

plasma electrons were taken as initial conditions. 

2. EVAPORATION OF A COPPER DROP 

Fig. 1 displays the change in temperature of a 1 μm 

copper droplet over time spent in the discharge, consid-

ering various values of electron temperature. It is appar-

ent that as time passes, the droplet's temperature eventu-

ally stabilizes. As electron temperature increases, so 

does the droplet's temperature. The time it takes for the 

droplet to reach a stable temperature decreases signifi-

cantly with an increase in electron temperature. 

Fig. 2 presents the change in droplet temperature 

over time for different values of another crucial dis-

charge parameter, the current density of fast electrons. 

An increase in this parameter results in a greater flow of 

fast electrons per droplet, leading to more rapid and 

substantial droplet heating. 

A comparison of these figures indicates that the 

electron temperature has a much stronger impact on 

droplet temperature than the current of fast electrons, 

meaning “thermal” electrons transfer more energy to the 

droplets than fast ones. This conclusion is corroborated 

by Fig. 3, which shows calculated energy flow densities 

per droplet from the three mentioned sources and the 

main channels of energy loss by the droplet for three 

sets of plasma parameters. 

It's evident from Fig. 3 that an increase in plasma 

electron temperature leads to a concurrent rise in the 

heating contributions of slow electrons and ions to the 

droplet. At the same time, the heating power of fast 

electrons remains independent of this temperature, in-

creasing only with the growth of fast electron current 

density. Conversely, an increase in the current of fast 

electrons results in only minor changes in the energy 

flow densities of slow electrons and ions. Worth noting 

is that these changes have opposite effects  increasing 

the energy of thermal electrons while decreasing the 

energy of ions. These shifts are attributable to the fact 

that as the droplet's temperature increases, its electrical 

potential decreases, consequently affecting the flow of 

electrons and ions. 

3. EVAPORATION OF A TITANIUM DROP 

Titanium distinguishes itself from copper in several 

parameters. Foremost, titanium has a significantly lower 

saturated vapor pressure value than copper at the same 

temperature, implying that to achieve considerable 

evaporation of titanium, it must be heated to higher 

temperatures. 

The second distinguishing parameter for titanium in 

our model is the work of electron extraction from the 

metal. Titanium has a significantly lower value for this 

parameter, causing the effect of thermal emission on the 

temperature and potential of a titanium droplet to occur 

at lower energy flow values. Fig. 4, which is analogous 

to Fig. 1, illustrates these discrepancies. 

 
Fig. 1. Dependence of the temperature of a copper 

droplet with a diameter of 1 μm on the time  

it is in the discharge, for several values  

of the electron temperature 

 
Fig. 2. Dependence of the temperature of a copper drop 

with a diameter of 1 μm on the time of its stay 

in the discharge, for several values of the current  

density of fast electrons 

 
Fig. 3. Density ratio of energy fluxes to/from the drop, 

for some sets of plasma parameters. A drop of copper 

with a radius of 1 μm 

From these figures, it's clear that a titanium droplet's 

temperature rises faster with an increasing power ap-

plied to the discharge than that of a copper droplet. 

Moreover, the primary cooling mechanism for the drop-

let is radiation. At temperatures below 2400 K, evapora-

tion makes a minimal contribution to the droplet's ener-

gy loss. The share of thermal electron emission was also 

minor, but its contribution increased slightly compared 

to copper. However, as mentioned above, thermal emis-

sion primarily affects the droplet's potential value. 

ms 

ms 
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Fig. 4. Dependence of the drop temperature of titanium 

with a diameter of 1 μm on the time it is in the dis-

charge, for several values of the electron temperature 

As titanium droplet power increases, we observe a 

phenomenon not seen in our copper calculations. When 

the droplet reaches a certain critical temperature, there 

is a sudden further increase in its temperature, evident in 

Fig. 5 for an electron temperature Te = 30 eV. Further-

more, the droplet's temperature rises to levels where our 

model stops functioning, i.e., the system of equations 

(12) no longer has solutions for such parameters. This 

phenomenon is tied to the fact that once the droplet 

reaches a certain temperature, the thermal emission cur-

rent from the droplet begins to increase significantly. 

This increase in turn leads to a rise in the droplet's po-

tential, and thus an increase in the energy flow density 

of plasma electrons. 

Detailed examination of Fig. 5 shows the jump in 

temperature occurs when the droplet reaches a tempera-

ture of about 2483 K. It's possible to calculate the drop-

let's energy loss at this temperature. Calculations show 

the droplet loses approximately 20.8 kW per square 

meter of its surface to evaporation, 215.5 kW/m
2
 to ra-

diation, and 16.2 kW/m
2
 to thermal emission. Therefore, 

the total energy loss of a droplet at the critical tempera-

ture Tcr = 2483 K is 252.5 kW/m
2
. 

 
Fig. 5. Dependence of the temperature on the plasma 

temperature 

Since slow plasma electrons are not the only heating 

source for the droplet, achieving this “explosive” drop-

let heating effect through other energy sources is feasi-

ble. Figs. 6 and 7 present calculations of droplet tem-

perature and potential using fast electrons of varying 

energies. To minimize the energy supply to the droplet 

from other sources, particularly slow electrons, a low 

plasma temperature is required. However, the plasma 

temperature should not be too low that an increase in the 

flow of slow electrons caused by the increase in the 

droplet's potential fails to bring sufficient energy to 

compensate for its loss due to the increase in thermal 

emission current. In our calculations, we used a plasma 

temperature value of 5 eV, which is significantly lower 

than values measured in real devices. 

Figs. 6 and 7 validate our assumption. As the energy 

of fast electrons increases, and hence the energy density 

they transmit to the droplet, both the droplet's tempera-

ture and potential increase. And at a fast electron energy 

of about 25 kV (which corresponds to an energy density 

per drop of 25 kW/m
2
 at a fast electron current density 

of 1 mA/cm
2
), the droplet's potential becomes zero, and 

our system loses its solution. The slightly higher droplet 

temperatures in this case are due to the fact that at low 

plasma temperatures, the droplet has a smaller (by abso-

lute value) potential, therefore, the current of slow elec-

trons is greater. As a result, the droplet must heat up 

more so that the thermoemission current begins to com-

pensate for this larger current of slow electrons. 

 
Fig. 6. Dependence of the temperature of a drop  

of titanium with a diameter of 1 μm on the time  

it is in the discharge, for several values of the energy  

of fast electrons 

 

Fig. 7. Dependence of the potential of a drop of titanium 

with a diameter of 1 μm on the time  

it is in the discharge, for several values of the energy  

of fast electrons 

ms 

ms 

ms 
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4. DROP CHARGING 

The fundamental characteristic of micro-droplets is 

the charge that the particle acquires in the plasma medi-

um, and which depends on the plasma parameters. It is 

the charge that determines the movement of the droplet 

in the plasma and the possibility of its destruction and 

disappearance from the plasma flow [10]. In the absence 

of an electron beam, the main process of droplet charg-

ing is the absorption of electrons and plasma ions by the 

surface of the microdroplet; due to the high mobility of 

electrons compared to ions, they reach the droplet sur-

face faster than ions, so the droplet absorbs more elec-

trons than ions. As a result, the drop acquires a negative 

charge and has a negative floating potential φdr <0. The 

dynamics of droplet charging can be determined by the 

equation: 

 
  

  
 ∑   (   ) . (13) 

In the absence of an electron beam, this sum in-

cludes only the current of plasma electrons Ie and ions Ii 

per drop: 

   (   )       
          ( 

    

   
)  

   (   )      
        (  

    

   
) (14) 

in this case, the secondary emission of electrons from 

the surface of the droplet can be neglected, since the 

electron emission caused by plasma electrons and ions 

is much smaller than the current arriving at the droplet. 

But if an electron beam is present in the system, it sig-

nificantly affects the charging of the droplet in the 

plasma. The electron beam in plasma systems also caus-

es additional emission processes from the surface of the 

drop. The secondary electron emission is directly caused 

by the bombardment of the microdroplet surface with an 

electron beam. Thermoelectronic and autoelectronic 

emissions are the consequences of the bombardment of 

the droplet surface with an electron beam due to the 

increase, respectively, of the temperature and electric 

field of the droplet. That is, the presence of an electron 

beam, on the one hand, contributes to a high negative 

charge of the droplet, and on the other hand, additional 

emission processes lead to a decrease in the absolute 

value of the droplet's negative potential, and can even 

lead to its positive charge [7]. Thus, in the presence of 

an electron beam, taking into account the secondary 

electron emission, we have to add current of electron 

beam Ieb and emission current Iee: 

    (   )      
       (  

    

   
)  

    (   )     (   ), (15) 

where δ is the coefficient of secondary electron-electron 

emission, that has the form [11]: 

        
   

  
   (  √

   

  
), (16) 

where δm is the maximum value of δ; εeb is the energy of 

electron beam; εm is the energy of the electron beam, for 

which δ = δm. Thus, the dynamics of droplet charging 

can be determined by the equation: 
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If the charging time can be neglected, this equation 

can be rewritten in the form: 
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The numerical solution of this equation depending 

on the energy of the electron beam for cases when the 

beam density is comparable to and less than the plasma 

density is presented in Fig. 8.  

 
Fig. 8. Dependence of the droplet potential  

on the energy of the electron beam for different ratios  

of the electron beam density and plasma density:  

neb~n0 (blue line); neb=0.1n0 (red); neb=0.01n0 (green) 

It can be seen that if the plasma density is signifi-

cantly higher than the density of the electron beam, the 

potential of the drop has a weak dependence on the en-

ergy of the electron beam. The potential of the drop 

gradually decreases to -20 V at an electron beam energy 

of -3 kV. In the case when the density of the beam be-

comes comparable to the density of the plasma, the po-

tential of the drop drops rapidly, and it acquires a high 

negative potential when the energy of the electron beam 

increases. 

If we know the potential of the drop, we can also 

find the charge of the drop depending on the energy of 

the electron beam. The relationship between the floating 

potential of a drop and its charge, as shown in [7] can be 

written as: 

              (  
   

  
) (19) 

thus, it is directly proportional to the potential. But, as 

can be seen from the formula, it is also dependent on the 

radius of the microdroplet. Fig. 9 shows the dependence 

of the charge of the droplet on the energy of the electron 

beam for different radius of the droplet and the beam 

density relative to the plasma density. 

If we now consider the dynamics of the droplet 

charging in the presence and absence of an electron 

beam, we will see that in the presence of an electron 

beam the droplet is charged faster than in its absence. 

Fig. 10 shows the change in charge of the drop over 

time, where the time step is τ0 = 
  

      
. 
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Fig. 9. Dependence of the charge on the droplet  

on the energy of the electron beam for different radius 

and density ratios of the electron beam and plasma: 

neb~n0 (blue lines); neb=0.1n0 (red); neb=0.01n0 (green), 

1 – rdr=2 μm; 2 – rdr=1 μm; 3 – rdr=0.5 μm 

 
Fig. 10. Droplet charging dynamics in the presence  

of an electron beam with εeb=2 keV (red line)  

and in its absence (blue) 

CONCLUSIONS 

By solving the system of equations for the balance 

of energy and current per droplet, it is shown that in 

plasmodynamic devices with hollow cathodes, there 

may be favorable conditions for the evaporation of mi-

crodroplets. It also follows from these calculations that 

the main sources of energy on the drop in such dis-

charges are the flow of slow electrons and ions. 

It is shown that heating a microdroplet to a certain 

temperature leads to a rapid increase in the potential of 

the droplet due to the thermal emission current, which in 

turn causes its further “explosive” heating due to an 

increase in the electron current from the plasma to the 

droplet. 

It is shown that in the presence of fast electrons in 

the system, the drop is charged faster, while the charge 

that the drop accumulates depends not only on its radi-

us, but also on the ratio of the beam and plasma densi-

ties. If the concentration of fast electrons is comparable 

to the plasma density, the drop is capable of accumulat-

ing a large charge, and then the Rayleigh decay mecha-

nism of the drop is possible. 

We also note that when the droplet is heated to high 

temperatures, the kinetic energy of the thermal motion 

of electrons increases and, at a certain temperature, 

thermionic emission from the droplet surface begins; 

therefore, it is necessary to consider a self-consistent 

solution of the system of equations for the droplet tem-

perature and charge. 
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ТЕМПЕРАТУРНА ДИНАМІКА МІКРОКРАПЕЛЬНОЇ ФРАКЦІЇ МЕТАЛЕВОЇ ПЛАЗМИ  

У ПЛАЗМООПТИЧНИХ ПРИЛАДАХ ЗІ ШВИДКИМИ ЕЛЕКТРОНАМИ 

О.A. Гончаров, І.В. Літовко, А.В. Рябцев 

Комп’ютерне моделювання плазмового фільтра зі швидкими електронами показує, що основним джере-

лом нагріву краплі є теплові електрони, тоді як роль швидких електронів зводиться, в основному, до переда-

чі енергії повільним електронам. Розглянуто також процеси заряджання краплі в присутності електронного 

пучка та ефективну емісію електронів за рахунок цього. 


