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Kinetic models of magnetized current-carrying plasma have been developed to study the influence of magnetic 

drift effects on the wave-particle interactions in tokamaks and cylindrical plasma columns. The drift-kinetic equa-
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axisymmetric toroidal plasma, taking into account their bounce oscillations and the finite orbit-widths of their  

banana trajectories. 
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INTRODUCTION  

To study the influence of finite Larmor radius ef-

fects on the resonant wave-particle interactions in mag-

netized plasmas one should use the kinetic dielectric 

tensor accounting for the particle drifts from the mag-

netic surfaces under their moving along the magnetic 

field lines. Corresponding kinetic wave theory [1, 2] 

should be based on the solution of the linearized Vlasov 

equations or the drift-kinetic equations [3 - 6] for the 

perturbed distribution functions of ions and electrons. 

Usually, the response of a collisionless plasma to 

global electromagnetic perturbations of an axisymmetric 

toroidal equilibrium is described by the perturbed distri-

bution functions of charged particles expressed in terms 

of their linearized guiding center Littlejohn Lagrangian 

[4, 5], adopting a variational formulation for the guiding 

center motion and drift effects. 

In this work, the drift-kinetic equation is derived di-

rectly from the Vlasov equation using the Fourier ex-

pansion of the perturbed distribution functions of plas-

ma particles over the polar angle (gyration angle) in 

velocity space for low-frequency wave processes in 

axisymmetric tokamaks with circular magnetic surfaces 

and large aspect ratio, up to first-order corrections in the 

magnetization parameters. 

1. PLASMA MODEL  

To describe the stationary magnetic field 0H  in an 

axisymmetric tokamak with a circular cross-section, we 

use the system of quasi-toroidal coordinates ( , , )r   , 

associated with cylindrical ( , , )z  as follows: 

0 cosR r   ,       ,     sinz r   ,       (1) 

where 0R  is the large radius of the torus, Fig. 1, deter-

mined by the radius of the magnetic axis; r  is the radius 

of a magnetic surface (magnetic surface equation: 

r const , 0 r а  , a is the small plasma radius);   

is the poloidal angle, measured by small azimuth in the 

cross-section of the torus, 0 2   ;   is the toroidal 

angle measured along the major azimuth in the horizon-

tal section of the torus, 0 2   . 

In an axisymmetric 2D tokamak, the plasma config-

uration is homogeneous in  . As a result, the equilibri-

um field 0H  and other steady-state plasma-field param-

eters do not depend on  . Moreover, for this reason, 

the single-mode harmonic approximation is valid for the 

perturbations, ~ exp( )in , where integer n is the toroi-

dal mode number. In contrast to the usual notation, the 

angle   is measured from the outer side of the torus, 

shorting the formulas related to trapped particles. The 

components of the equilibrium magnetic field 

 0 0 0 0, ,rH H H H  for the considered plasma model 

are determined from the conditions of the absence of 

magnetic charges 0 0 H , and have the form: 

0 0rH  ,  0
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where 
0/r R   is the inverse aspect ratio of a consid-

ered toroidal magnetic surface r const ; and 
0 ( )H r , 

0 ( )H r  are the amplitude values of poloidal and toroi-

dal magnetic fields there (at / 2  ).  

 

Fig. 1. Cylindrical ( , , )z  and quasi-toroidal ( , , )r    

coordinates, describing an axisymmetric tokamak  

with circular magnetic surfaces 

In this case, the unit vector along the 0H  field does 

not depend on the poloidal angle and has projections: 
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When describing the plasma particle distribution 

functions in velocity space ( , , )F t r v , it is convenient 

to use the orthogonal normal, binormal, and parallel 

velocity components: 
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1 2 3 ||cos sin             v n b h n b h ,  (4) 

where n is the unit vector normal (radial) to a magnetic 

surface, b h×n  is the binormal to n and h, Fig. 1;  

||  and 
 are the parallel and perpendicular velocity 

components, respectively;  is the gyration angle (or the 

polar angle in velocity space). 

Using the small perturbation method, the plasma 

particle distribution functions can be found as 

( , , ) ( , ) ( , , )F t F f t   r v r v r v ,             (5) 

where ( , )F r v  and ( , , )f t r v  are the steady-state and 

the perturbed distribution functions of ions and/or elec-

trons (i,e), respectively, under the condition: 

( , , ) ( , )f t F r v r v . The steady-state functions ( , )F r v  

must take into account the presence of a stationary equi-

librium current in tokamaks, 0 0 0j j    j e e , dia-

magnetic currents and be self-consistent with the con-

fining magnetic field, 0 0 0H H    H e e . In the gen-

eral case, ( , )F r v  can be defined in the velocity space 

||( , , )  
 by the Fourier expansion 

i

|| ||( , ) ( , , , , , ) ( , , , , )F F r F r e 
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
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  r v .(6) 

The harmonics 
0 ||( , , , , )F r    

 allow us to define 

the main contribution of plasma particles to the field-

aligned stationary current (parallel to 0H ),  

,

0|| 0 || 0 || ||
0

2 ( . )
e i

j q d F d 
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Whereas the harmonics 1 ||( , , , , )F r       are neces-

sary to describe the diamagnetic currents, connected 

with the Larmor radius gyration of plasma particles 

along the helical magnetic field lines and the gradients 

of their density and temperature.  

Further, we consider the simplest pressureless plas-

ma model of a 2D tokamak, where the equilibrium  

current must be force-free, i.e., the current density must 

be parallel to the magnetic field: 
0 0j H  or 

0 0 0 j H . 

Describing such plasma models, it is assumed that the 

steady-state current is created by electrons having the 

velocity 
0 0e  , whereas 

0 0i   for heavy ions. In 

this case, according to Ampere’s law, 

 0 0|| 0 0

4 4
ej n e

c c

 
    H h ,          (8) 

where  

        2 0
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H c

n e
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
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Here 
0en  is the electron density, e is the elementary 

charge, and the magnetic field parameter 2  is equal to  

2
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h  and h  are the poloidal and toroidal projections of 

unit vector h along a helical H0-field line, Eq. (3).  

The steady-state distribution functions for such 2D 

current-carrying toroidal plasma can be done by the 

following harmonics, satisfying the Vlasov equation: 
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where 
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are the cyclotron (Larmor) frequency and the squared 

thermal velocity of species i,e plasma particles with 

the mass M , charge q , and temperature 
0T  . Further, 

we assume that the drift-current velocity is much less 

than the thermal velocity, 
0 T   . 

2. DRIFT-KINETIC EQUATION 
The linearized Vlasov equation [7, 8] for the per-

turbed plasma particle distribution functions 

||( , , , , , , )f t r       in the considered tokamak plasma 

model can be rewritten in the explicit form as 
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Here the differential operator  

||
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 
                          (15) 

has been used in velocity space to shorten the kinetic 

equations; the index i,e of particle species is omitted 

in Eqs. (14), (15). The connection between the projec-

tions of vector values  , , ,A E H v j  in the quasi-

toroidal coordinates ( , ,rA A A  ) and their projections 

( 1 nA A , 2 bA A ,
3 hA A ) on the orts of an orthogo-

nal trihedron generated by a magnetic field 0H , i.e. into 

the unit vectors n, b, h (see Fig. 1), is given by the for-
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mulas 

1 rA A  A n ,       
2A h A h A      A b , 

    
3A h A h A      A h .                    (16) 

The linearized Vlasov equation, Eq. (14), is suitable 

for studying a wide class of electrodynamic problems in 

2D tokamaks with circular magnetic surfaces, provided 

that the particle Larmor radius /T    is the smallest 

among all the characteristic dimensions-scales of the 

problem in the direction perpendicular to the equilibri-

um magnetic field, using the periodicity of distribution 

functions on the polar angle  in velocity space. In this 

case, as for other axisymmetric plasma models in the 

cylindrical current-carrying plasmas [9 - 11] or elongat-

ed tokamaks [12, 13], the perturbed distribution func-

tions can be expanded into the Fourier series in  : 

|| , ||( , , , , , , ) ( , , , )exp( )f t r v v f r v v i t in i       


     .  

As a result, Eq. (14) can be reduced to the set of 

coupled equations for harmonics 
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As is well known, by the plasma particle distribution 

functions one can estimate, in the scope of kinetic wave 

theory, the perturbations of particle densities and current 

density components involved in Maxwell’s equations 

for the perturbed electromagnetic fields ( , )E H  in a 

considered plasma model. However, we have no exact 

solution for Eq. (17) in the general case. It is necessary 

to apply the approximation methods using the small 

parameters (e.g., the smallness of the Larmor radius of 

plasma particles or magnetization parameters) and the 

restrictions on the wave frequencies .  

As for the magnetization parameters, all of them, as 

usual, are inversely proportional to the cyclotron fre-

quency, ,|| / 1X     , where X  characterize the 

spatial scales of the inhomogeneity of particle density 

0ln( ) /n n r     , temperature 0ln( ) /T T r     , 

wave numbers kr, /k m r  , 0/k n R  , where m and 

n are the poloidal and toroidal eigenmode numbers,  

respectively. It should be noted that, in contrast to the 

case of a straight equilibrium magnetic field (H0=H0ez, 

where ||0x y zk k  k e e e ) in a current-carrying 

plasma confined by a helical magnetic field, the wave 

vector ||r bk k k  k n b h  always has three compo-

nents, where the parallel ||k  and binormal bk  projections 

of k are defined as 

 ||

0

h nh m
k

r R

       and      
0

b

h m h n
k

r R

   .       (18) 

Moreover, evaluating the main contribution of plas-

ma particles to the perturbed longitudinal (
3j ) and 

transverse 
1( j ,

2 )j  current density components, there is 

enough to find the harmonics 
0,f   and 

1,f 
: 

      
1 (1) ( 1)nj j j j     j n , 

2 ( 1) (1)[ ]bj j i j j    j b .                     (19) 

           
1 2, , ,..

3 || || 0,

0

2
e i i

hj j q d f d 


    
 

 



      j h , 

      
1 2, , ,..

2

( ) || ,

0

e i i

j q d f d 


   
 

 



    ,   1  .  

In our previous papers [9 - 12] we have solved the 

Vlasov equations for harmonics 
0,f   and 

1,f 
 in the 

simplest case, i.e., in the zeroth-order over the magneti-

zation parameters, neglecting the drift effects propor-

tional to Larmor radius /T   . In this case, the har-

monics 
0,f   and 

1,f 
 become independent of each oth-

er, satisfying first-order differential equations with three 

partial derivates with respect to   and || : 

|| 4 cos

1 cos 2 1 cos
c

h hf nq
i f i f i

r

   


    

   
        

   

0

sin ˆ
2 (1 cos )

hr q
f Vf Q

q r R

 

 


 
  

  

,  0, 1  ,   (20) 

where q is the tokamak safety factor, see Eq. (22), 

0/r R  , and Q  terms for the equilibrium (Maxwel-

lian) distribution functions are equal to  
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0 3 ||

0

M

q
Q E F

T
 ,      1 1 2

0

M

q
Q E iE F

T
   ,     (21) 

2 2

||0

2 1.5 2
exp

( )
M

T T

n
F

 

 


 

  
 
 

,       
0

rh
q

R h





 .     (22) 

Eqs. (20)-(22) are suitable to study the wave-particle  

interaction accounting for the Cherenkov, cyclotron, and 

bounce resonances for both the trapped and untrapped 

particles in 2D axisymmetric tokamaks. 

In this paper, we derive the drift-kinetic equation for 

0,f   in the first order over the magnetization parameters 

for the low-frequency perturbations, 
i   . 

After substituting 0  in Eq. (17), the equation for 

f0 can be rewritten in the form 

|| || 00
0 0

0 0

sin ˆ
cos 2( cos )

h ih nff h
i f Vf

r R r R r

  
   


  


    

  
  

 
   1 1 1 1

02 2( cos )

h f f h n f f
i

r R r

 
 

 

     
  

 
                  (23) 

2 2 2 2 2 2
|| ||

1 1

0 0

cos1 cos
( )

2 ( cos ) cos

h h h h
f f

r r R r R r

   
     

   

 


 

 
         

   

||

1 1

0

sin
ˆ( )

2( cos )

ih
V f f

R r

 


 



2

||1 1
1 1

( ) ˆ( )
2 2

hf f
V f f

r r

 


 
   


                   

2 2

|| ||

1 1 1 1

0 0

cos sin
ˆ( ) ( )

2( cos ) 2 ( cos )

h ih
V f f f f

R r R r

    

  
 



    
 

||

2 2

0

sin ˆ( )
4( cos ) 2

hh h
V f f i h

R r r h

 




 






  
     

    

||0
2 2 2 2

0 0

sin
( ) ( )

( cos ) 2( cos )

hh R
f f f f

r R r R r


 

 
 


    

 

0
2 2

0

ˆ( )
4 ( cos )

h h h R
i h V f f

r h r R r

  












  
     

     

    

 
 

 
 

   

1 10 1 2
3 1 1

||

|| 1 12
1 2 1 1

||1
1 1 2 1 1 1

ˆ
2 2

1

2 2

ˆ .
2 2

F Fq F E H
E V F F

M c

F FE
E H F F i

c

H i
i V F F E H F F

c c

 



 















 

 



  
     

 

  
     

 

  
      

  

       

The influence of drift effects on the plasma particle 

distribution functions is described by the harmonics 

1 ||( , , , )f r v v 
 and 

2 ||( , , , )f r v v 
, connected with 

0 ||( , , , )f r v v   in first-order magnetization parameters as 

    

2 2

|| ||0

1 1 0 0

0 0

0 2 01

02

ˆ ˆcos

2 ,
T

h hf
f f i i Vf i Vf

r r R

F qHqE
i i F
M Mc

  


 

 










    

   


 

  

        

  

||0

1 1 0 0

0 0 0 0

0 1 02

02

ˆsin

2 ,
T

h hf h n
f f i f Vf

r R R

F qHqE
F

M Mc

 
 




 

 

 








     

   


 

  

 

2 2 0

0 0

sin ˆ
4

h
f f i Vf

R

 

 


,                    (24) 

0

2 2 0

0

ˆ
4 ( cos )

h h h R
f f i h Vf

r h r R r

  












  
           

. 

As one can see the exact drift-kinetic equation for 

0f , after substituting Eqs. (24) into Eq. (23), is compli-

cated, having four partial derivatives in 
||, , ,r v v 

: 

0 0 0 0
0 0 ||

||

f r f V f f
i f i nf

t t t r t

 
  

  




        
       

         

 

1 2 3( , , )Q E E E ,                            (25) 

where    

         
2

|| 2 2 2 2

|| ||2

0 0 0

cos
2 2

2 2

h h h h

t r r rR

    
    


    

  
,  

 2 2 2 22
||||

0 0 0 0 0

2

cos 2 2 ( cos )

h h hh h

t R r R r r R r

   
  

 


 

   
     

 

 2 2

||

0 0 0

cos 2

2 ( cos )

h

R R r

   






 
, 

 2 2

||

0 0

sin
2

2

hr

t R

 
 


 

 
,                (26) 

2

||

0 0 0

sinsin

2( cos ) 2 ( cos )

h hV h

t R r r R r

 
   

 


 

   
, 

2 2

|| 0 ||

32 2

( ) 3
2

2

M
M n T

T T

q qF
Q F E

M M

   
 

 


   

           

 

 2 2 2 2

||||

2 1 22

2
M

T

q h h
E H F E

c Mr

  



 
    

 
       (27) 

         
2

2 2 2 2 2 2
|| 22 2

0 0

cos
2M M

T T

q F q F E
h h E

MR M r
 

 
  

 


 


    

  
 

 
2

2 2 1 1
|| 12 2

0 0 0

sin
2

cos

M
M

T T

qh hq F E ih nE
F E

MR M r R r

  
 

 
   




 
    

    
. 

It should be noted that the right-hand side of 

Eq. (25) is written in Eq. (27) for the case when the in-

fluence of the equilibrium current on the magnetic drift 

effects (proportional to 


) can be neglected. In con-

trast with initial Vlasov equations, where the plasma 

particle distribution functions depend on the three ve-

locity variables (
|| , ,  

), the drift-kinetic equations 

are written for the particle distribution functions aver-

aged over the gyrophase angle   in velocity space, 

depending only the 
||  and  

 velocities relative to H0. 

As a result, the drift-kinetic equations are simpler and 

more convenient for solutions in the low-frequency 

range. 

3. TRAJECTORIES OF UNTRAPPED  

AND TRAPPED PARTICLES 

The number of partial derivatives in Eq. (25) can be 

reduced after introducing the new conventional varia-

bles associated with the corresponding invariants of 

motion of charged particles in a considered plasma 

model. As usual, the conservation integrals (the motion 

invariants) should be connected with the particle energy 

(
2 2

|| const   ), magnetic moment ( 2

0/ H const  ), 

and, so-called, longitudinal invariant. 

According to Eqs. (26), in the zeroth approximation 

in Larmor radius corrections, we can introduce the new 
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variables   and   (nondimensional magnetic moment) 

instead of 
||  and 

 as 

2 2

||    ,     
2

2 2

||

1 cos


  
 





 


,    (28) 

where 
0/r R   is the inverse aspect ratio of a torus.  

Since the tokamak magnetic field H0 is nonuniform 

and has a minimum, all plasma particles should be sepa-

rated into two groups of, so-called, untrapped and 

trapped particles. Such a separation [8, 12, 13] can be 

done by the inequalities for and  : 

0 1    ,          untrapped particles, 

1 1      ,     tt     trapped particles, 

analyzing the condition 
||, 1- (1 cos ) 0s s       , 

where 1s  distinguishing the positive and negative 

parallel velocity relative to H0. Here the stop (reflection, 

turning) points of trapped particles are defined as  

1
arccost






 
    

 
.                   (29) 

However, in the first approximation in the Larmor ra-

dius corrections, we should take into account that the 

toroidal drift of charged particles leads to the deflection 

of their trajectories from magnetic surfaces. By the char-

acteristical equations for / t   and /r t   in Eqs. (26) 

we can define the radial coordinate of untrapped and 

trapped particles, moving along the H0-field lines, respec-

tively, as , , ( , )u s u sr r r r    and , . ( , )t s t sr r r r   . Here r is 

the radius of the considered magnetic surface,  
2 2

||,

,

0 ||,

( , ) 0,5 ( , )( )
( , ) sin

( ) ( , )

s

u s

s

r rq r
r r d

r r





   
  

 






 

  , (30) 

2 2

||,

,

0 ||,

( , ) 0,5 ( , )( )
( , ) sin

( ) ( , )
t

s

t s

s

r rq r
r r d

r r





   
  

 






 

  , (31) 

where, under 1  , 

||,

0

( , ) 1- 1 coss

r
r s

R
    

 
  

 
,            (32) 

2 2

0

( , ) 1 cos
r

r
R

   

 
  

 
.                   (33) 

Projections of the typical guiding-center trajectories 

of untrapped and trapped particles on the transverse 

cross-section of the moderate magnetic surfaces in  

tokamaks, r=const (dashed circle lines, r = 0.7a), are 

plotted in Figs. 2 and 3, respectively. 

    

Fig. 2. The trajectories of the untrapped particles in an 

axisymmetric tokamak with circular magnetic surfaces 

As for positively charged untrapped particles (ions), 

moving along the H0-field lines, with s=+1, due to mag-

netic drift they are shifted (red line) to a region of a 

weaker magnetic field (i.e., outward from the magnetic 

surface). While ions moving against a H0-field, with  

s=-1, drift to a region of a stronger magnetic field (i.e., 

inside the magnetic surface, green line). Both trajecto-

ries in Fig. 2 are plotted for untrapped ions, starting at 

the inner part of the magnetic surface, r=const, under 

0.18  , 0.5   and Larmor radius 0/ 0.04   cm.  

The main feature of the drift deflections of both the 

untrapped and trapped particles is that they are deter-

mined by the particle Larmor rotation in the poloidal 

magnetic field 
0H  (r), since 0 0/ q   , where 

0 0 / ( )qH Mc    is the Larmor (cyclotron) frequency 

of charged particles in the 
0H  -field, that depends sig-

nificantly on r. After integration in Eq. (30): 

,

0 0 0

4
( , ) 1 cos 1 1 cos

3
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s r r
r r

R R


   



   
        
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0 0

4
1 1 1

r r

R R




   
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   

.      (34) 

As a result, the maximal deflection of untrapped par-

ticles should take place, in our notation, at the external 

part of the considered magnetic surface, i.e., at 0  : 

max

, ,

0 0 0

4
( ) ( ,0) 1 1 1

3
u s u s

s r r
r r r r

R R





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         
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0 0

4
1 1 1

r r

R R




   
       
   

.      (35) 

It should be noted that the features of the drift trajec-

tories of negatively charged untrapped electrons are 

opposite with respect to ions, i.e., the field-aligned elec-

trons, with s=+1, drift into the inner part of the magnetic 

surfaces and vice versa. 

     

Fig. 3. The trajectories of the trapped particles in an 

axisymmetric tokamak with circular magnetic surfaces 

In contrast to untrapped particles, the trajectories of 

the trapped particles have the ‘banana’-forms. Oscillat-

ing between the stop-points, both the positively and 

negatively charged trapped particles change the sign of 

parallel velocity, 1s   , during one bounce period. As a 

result, the banana-orbit widths of the trapped ions and 

electrons are doubled due to their drift both inward from 
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the surface for s=+1 and outward for s=-1.  

The deflection of trapped particles from the magnet-

ic surface can be determined by a simple expression 

after integration in Eq. (31):  

,

0 0 0

4
( , ) 1 cos 1 1

3
t s

s r r
r r

R R


  



   
       

    
.  (36) 

Thus, the maximal deflection of the trapped particles 
max

, ,( ) ( ,0)t s t sr r r r  (i.e., half of their maximum orbit-

width in the equatorial plane of the torus, at 0  ) is 

estimated by 

max

,

0 0 0

4
( ) 1 1 1

3
t s

s r r
r r

R R






   
       

    
.    (37) 

The banana trajectories of trapped particles in Fig. 3 

are plotted at different levels of the nondimensional 

magnetic moment   for particles starting at stop-points 

on the magnetic surface, shown as a dashed line. The 

banana sizes and the values of the stop-points of trapped 

particles depend substantially on  , according to  

Eq. (29). As can be seen, strongly trapped particles (un-

der large  ) have smaller sizes and orbit-widths. 

CONCLUSIONS 

The pressureless 2D toroidal current-carrying plas-

ma model has been described to develop the kinetic 

theory of low-frequency oscillations in axisymmetric 

tokamaks with circular magnetic surfaces and large  

aspect ratios. The steady-state distribution function of 

plasma electrons and equilibrium magnetic field are 

self-consistent, satisfying Maxwell’s equations.  

If the toroidal magnetic field is changed to longitu-

dinal cylindrical z-projection, 0 0zH H  , zh h  , 

and 0R  , our 2D toroidal model is transformed 

into a cylindrical magnetized current-carrying plasma 

model in the helical magnetic field. 

The drift-kinetic equations for the perturbed distri-

bution functions of the trapped and untrapped (passing, 

circulating) particles are derived accounting for the 

magnetic drift effects in the first-order over the magnet-

ization parameters, proportional to the Larmor radius 

gyration of ions and electrons moving along the equilib-

rium magnetic field lines.  

The characteristical equations in the drift-kinetic 

equations allow us to estimate the finite orbit-widths of 

the ‘banana’-trajectories of both the trapped and  

untrapped particles. Analytical expressions are derived 

for the particle deflections from the magnetic surfaces. 

Since the toroidal drift deflections of untrapped and 

trapped particles are defined by the poloidal magnetic 

field, the corresponding orbit-widths are much larger 

than their Larmor radius in H0-field. 
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ДРЕЙФОВО-КІНЕТИЧНІ РІВНЯННЯ У ЗАМАГНІЧЕНІЙ ПЛАЗМІ ЗІ СТРУМОМ 

М.І. Гришанов, М.О. Азарєнков 

Кінетичні моделі замагніченої плазми зі струмом розроблені для вивчення впливу ефектів магнітного 

дрейфу на взаємодію хвиля-частинка у токамаках та циліндричних плазмових системах із гвинтовим магні-

тним полем. Отримано дрейфово-кінетичні рівняння для збурених функцій розподілу захоплених і проліт-

них частинок у двовимірній осесиметричній тороїдальній плазмі з урахуванням їх баунс-коливань і кінцевої 

ширини орбіт їхніх бананових траєкторій. 
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