https://doi.org/10.46813/2023-145-108

IDENTICAL DECELERATING WAKEFIELDS FOR DRIVER-BUNCHES
AND IDENTICAL ACCELERATING WAKEFIELDS
FOR WITNESS-BUNCHES FOR THEIR PERIODIC SEQUENCE

1.V. Demydenko, V.I. Maslov
V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
E-mail: demydenko2021tyall@student.karazin.ua

Acceleration by the wakefield in the plasma can provide compact sources of relativistic electron beams of high
brightness. Free electron lasers and particle colliders, using plasma wakefield accelerators, require high efficiency
and beams with low energy spread. Achieving both conditions can be ensured by the formation of identical fields for
all accelerating bunches and identical fields for all decelerating bunches by controlled selection of bunch currents
and their spatial distribution for a given plasma wave. We demonstrate such optimal bunch currents and their spatial
distribution in the linear regime in a plasma accelerator with wakefield excited by electron bunches injected from

the RF accelerator with high quality.
PACS: 29.17.+w; 41.75.Lx

INTRODUCTION

Advanced plasma wakefield accelerators can support
accelerating gradients to 100 GV/m [1-3]. Traditional
conventional accelerators can support accelerating
gradient no more than 100 MV/m [4]. Advanced plasma
wakefield experiments [3] have demonstrated
perspective of this method of electron acceleration to
many GeV energy. This is why the plasma wakefield
are developed (see [5-37]).

But characteristics of accelerated electron beam in
plasma wakefield are not sufficiently applicable.
Therefore advanced way to essentially improve the
accelerated electron bunch quality is the usage of
electron bunches, produced by traditional well-
developed RF accelerators.

Applications (particle collider and FEL) of plasma-
wakefield accelerators require small emittance and high
efficiency. These demand plateau formation on both the
accelerating field for witness-bunch and the decelerating
fields for driver-bunches by controlled bunch loading of
the excited plasma wave with controlled current shaping
[29, 30, 38, 39]. It has been proposed to use the beam
loading effect (see [29, 30]) to compensate the energy
spread of an electron beam in plasma wakefield
accelerators.

In this paper, we report on numerical simulation of
wakefield excitation by short-train of resonant driver-
bunches and following pairs of witness-driver-bunches.
We consider the plateau formation by driver-bunches on
decelerating field and the plateau formation by witness-
bunches on accelerating field. The plateau formation is
important to improve electron bunches quality.
Combining the previous results [40] we found optimal
conditions for creation of a sequence of witness-driver-
bunches pairs after the short-train of resonant driver-
bunches with plateau on corresponding wakefield.

We present results of numerical simulation of
plasma wakefield excitation by short-train of resonant
driver-bunches and following witness-driver-bunches
pairs, the plateau formation by driver-bunches on
decelerating field and the plateau formation by witness-
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bunches on accelerating field. The numerical simulation
has performed with 2.5D code LCODE [41, 42], which
considers the electrons of the beam as ensembles of
macroparticles, and the electrons of the plasma as a cold
electron fluid. We demonstrate such optimal bunch
currents and their spatial distribution in the linear
regime in a plasma accelerator with wakefield excited
by electron bunches injected from the RF accelerator
with high quality.

We consider the bunch, where electrons are
distributed according to Gaussian in the transverse
direction along the radius. We use the cylindrical
coordinate system (r, z) and draw longitudinal electric
and azimuthal magnetic fields at some z as a function of
the dimensionless time t=w,t or E=Vyt-z, where V is
the bunch velocity. Time is normalized on electron
plasma frequency mpe'l, distance — on clwmpe, bunch
current Iy — on l,=nmc>/4e, fields — on mcwp/e. e, mare
the charge and mass of the electron, c¢ is the light
velocity.

1. PLATEAU FORMATION ON THE
DISTRIBUTION OF A DECELERATING
WAKEFIELD BY AN ELECTRON DRIVER-
BUNCH AND ON THE DISTRIBUTION OF
AN ACCELERATING WAKEFIELD BY AN
ELECTRON WITNESS-BUNCH,
ACCELERATED IN PLASMA

To begin with, we consider wakefield excitation in
plasma by short-train of resonant driver-bunches and
following witness-bunch and plateau formation by
driver-bunches on the decelerating wakefield and by
witness-bunch on the accelerating wakefield E,(€)
(Fig. 1).

As we can see, after the witness-bunch the wakefield
returns to its state before the fifth driver-bunch. This
fact opens an opportunity to create infinite sequence that
consists of driver-witness-bunches pairs with plateau on
corresponding wakefield.
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Fig. 1. The on-axis wakefield excitation E, by short-
train of resonant driver-bunches and acceleration of
following witness-bunch, and plateau formation on
E.(&) by short-train of resonant driver-bunches and
following witness-bunch. Density of plasma electrons n,
on the axis is shown by gray as a function of the
coordinate £along the plasma. The length of bunches is
equal to 0.19 of wavelength. The radius of bunches is
equal to 0.3. The maximum current of bunch-driver is
equal to 1,=1.18-70"%. The maximum current of bunch-
witness is equal to 1,=1.14-10°. The relativistic factor
of bunches is equal to 1000
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Fig. 2. The off-axis wakefield excitation E, by short-

train of resonant driver-bunches and acceleration of

following witness-bunch, and plateau formation on

E,(¢) by short-train of resonant driver-bunches and
following witness-bunch. The off-axis focusing force F,

is shown by orange. The off-axis azimuthal magnetic
field B, is shown by red as a function of the coordinate

£along the plasma.
The parameters are identical to Fig. 1

As seen on the figure (Fig. 2) all electron driver- and
witness-bunches are  fully in  focusing but
inhomogeneous fields. The greater its charge along the
bunch, both for driver-bunches and for witness-bunch,
the stronger the focusing force. Since the velocity of
bunches approximately equals to light velocity, the
azimuthal magnetic field distribution shows the spatial
distribution of bunches’ charge densities/currents. As
we can see, all electron bunches except the first one
have triangle form.
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2. INVESTIGATION OF THE PLATEAU
FORMATION IN APLASMA BY AN
ELECTRON WITNESS-BUNCHES ON THE
DISTRIBUTION OF AN ACCELERATING
WAKEFIELD AND BY AN ELECTRON
DRIVER-BUNCHES ON THE
DISTRIBUTION OF A DECELERATING
WAKEFIELD EXCITED BY INFINITE
PERIODIC TRAIN OF PAIRS DRIVER
AND WITNESS-BUNCHES

Now, we consider the wakefield excitation by short-
train of resonant driver-bunches and following sequence
of witness-driver-bunch pairs and plateau formation by
short-train of resonant driver-bunches and following
sequence of witness-driver-bunch pairs on the

corresponding wakefield E,(&) (Fig. 3).
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Fig. 3. The on-axis wakefield excitation E, by short-
train of resonant driver-bunches and following
sequence of witness-driver-bunch pairs, and plateau
formation on E,(¢) by short-train of resonant driver-
bunches and following sequence of witness- and driver-
bunches. Density of plasma electrons n, on the axis is
shown by gray as a function of the coordinate £along
the plasma. The parameters are identical to Fig. 1
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Fig. 4. The off-axis wakefield excitation E, by short-
train of resonant driver-bunches and following
sequence of witness-driver-bunch pairs, and plateau
formation on E,(¢) by short-train of resonant driver-
bunches and following sequence of witness- and driver-
bunches. The off-axis focusing force F, is shown by
orange. The off-axis azimuthal magnetic field B is
shown by red as a function of the coordinate £ along the
plasma. The parameters are identical to Fig. 1
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In this case, after the last driver-bunch field returns
to its state before the fifth driver-bunch. This fact proves
initial prediction about possibility of creation of infinite
sequence that consists of pairs of driver-witness-
bunches with plateau on corresponding wakefield.

Fig. 4 gives us the same information as a Fig. 2 in
previous section.

In Fig. 5 one can see spatial distribution of density
of this short-train of resonant driver-bunches and
following sequence of witness-driver-bunch pairs. In
Fig. 6 one can see spatial distribution of plasma electron
density, perturbed by this short-train of resonant driver-
bunches and following sequence of witness-driver-
bunch pairs.
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Fig. 5. The beam electron density as a function of the
coordinate £along the plasma and the coordinate r in
the radial direction
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Fig. 6. The plasma electron density as a function of the
coordinate £along the plasma and the coordinate r in
the radial direction

3. CONCLUSIONS

Such parameters of the infinite periodic train of
driver — witness pairs have been obtained under which
identical accelerating wakefield for accelerated bunches
is formed, and identical decelerating wakefield for all
bunches, which excite wakefield, is formed by
controlled selection for an excited plasma wave bunch
currents and their spatial distribution. We demonstrate
such optimal bunch currents and their spatial
distribution in the linear regime in a plasma accelerator
with wakefield excited by electron bunches injected
from the RF accelerator with high quality.
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OJHAKOBI I'AJIBMYIOYI KIVIBBATEPHI NOJIA J1JIA 3T'YCTKIB, IO 3BYKYIOTbD I1OJIE,
TA OJHAKOBI TIPUCKOPIOIOYI KIJIBBATEPHI ITOJIA JJIA 3T'YCTKIB,
10 MPUCKOPIOIOTHCH, JIJIA IX NEPIOJUYHOTI O JAHITIOKKA

L.B. /lemuoenxo, B.I. Macnoe

[IpuckopeHHsI KiIbBaTEpHUM MOJIEM Y IUIa3Mi MOKe 3a0e3Me4YHMTH KOMIIAKTHI JDKEpesa PesITHBICTCHKUX
eIEeKTPOHHUX IIy4KiB BHCOKOi scKpaBocTi. Jlazepn Ha BINBHMX €JEKTPOHAX Ta KOJAWAEpH YaCTHHOK, 1€
BHUKOPUCTOBYIOTHCS TIA3MOBI KiJTbBaTEpHI MPHUCKOPIOBAYH, BUMAraloTh BHCOKOI €(PEKTHBHOCTI 1 MyYKiB 3 HU3BKUM
po3kuzoM 1o eneprii. JlocaraenHs 060x yMoB Moke OyTu 3abesnedeHe (GpopMyBaHHSAM OZHAKOBUX IOJMIB IS BCiX
3TyCTKiB, IO TPHUCKOPIOIOTBCS, Ta OJHAKOBHX MOJIB JUII BCIX 3TYCTKIB, MO TalbMYIOTBCS, IIJISIXOM
KOHTPOJIBOBAHOTO MiAOOpy AN AaHOI IUIA3MOBOi XBHJII CTPYMIB 3TYCTKIB Ta IX NPOCTOPOBOTO po3momiry. Mu
JIEMOHCTPYEMO TaKi ONTUMAaJIbHI CTPYMH 3TyCTKIB Ta IX MIPOCTOPOBUM PO3NOAIN y JIHIHHOMY peXHuMi y IIa3MOBOMY
NpUCKOpIOBadi 31 30y/DKEHHSAM IIOJIB EJICKTPOHHUMH 3TYCTKaMH, SIKI 1HXeKTyloTbcs 3 BU-mpuckoproBaya npu
BHUCOKIH iX SIKOCTI.
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