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     Langmuir oscillations of a large amplitude in a cold collisionless plasma are considered in this work. We passed 

to the conclusion that multiple streams is an inevitable feature of the Langmuir oscillations in the cold collisionless 

inhomogeneous plasma with resonant point even in the low-signal limit. By extending the equation of the cold 

plasma oscillations on the multi-stream regimes, we find two-stream modes in the homogeneous plasma, which are 

stationary solutions of this equation.  
     PACS:  52.35.-g 

 

INTRODUCTION 

     An interest to the large-amplitude waves and 

oscillations in a cold plasma was aroused by the pioneer 

work [1] and has not faded to this day. The fine result of 

[1] is the nonlinear Langmuir oscillations are harmonic 

with stable frequency. It turned out that various factors, 

such as plasma inhomogeneity, ion movement, thermal 

and relativistic effects, etc., disturb this feature. 

Partially, the plasma oscillations driven in the 

inhomogeneous plasma with the resonance point are 

accompanied by “bursts” of electrons from the 

resonance region [2, 3], which turn the one-stream 

electron flow to multi-stream. The development of muti-

stream flow, generally, breaks the one-stream 

resonance. It would be interesting to construct the 

simple example of a multi-stream resonance flow in an 

inhomogeneous plasma. In the paper, we present the 

two-stream flow in the homogeneous plasma. 

1. FORCED OSCILLATIONS 

     Following [4], let us consider the situation, when the 

plasma electrons moves only along the spatial 

coordinate x, and the ions are stable but the ion density 

n0 varies with x. First, we must separate the electric 

field E of the plasma electric charges and the electric 

field E0 of the outer source, which drives the 

oscillations. Newton’s second law for the electron 

movement is 
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where m is the electron mass and e is the elementary 

charge. Let us consider Ampere’s circuital law, 
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where H is the magnetic field strength and j is the 

current density of the particles of the plasma. As the 

ions are stable, j = –env, where n is the electron density. 

In 1D geometry equation (2) allows only the following 

separation: 
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(rot H)x = c-1tE0. Because of E0 in is considered away 

from the outer charges, it follows, that div E0=0, and E0 

doesn’t depend on x. Next, we find the equation of 

movement of the electron. Excluding E from Newton’s 

law (1), equation (3) and Gauss’s law gives:  
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where n0 is the ion density. After differentiating (1) by t 

once again, we obtain the dE/dt in the right part. Let us 

expand it through substantial derivation:  
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Inserting into (5) the expressions of partial 

derivatives E/t from (3), and E/x from (4), we 

obtain, that dtE = –4πen0 and (1) passes to 
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where ω0 is the electron plasma frequency: 
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Just due to one-streaming, n0 in (7) is the ion density 

[5]. It follows from the (6), that free oscillations of the 

homogeneous plasma are harmonic for any velocity 

value, and the frequency of the oscillations does not 

depend on the magnitude [1].  

2. MULTI-STREAM REGIMES 

The model described above has in mind that the 

electron velocity is a one-valued function of the 

coordinate, and its applicability strongly depends on the 

magnitude of the oscillations. The one-valued 

dependence breaks when two electrons with different 

velocities pass through the certain point. Following this, 

one can find the condition, when the solution is single-
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streamed. Under the assumption that all the electrons 

oscillates in phase, the magnitude of the oscillation 

xm(x) should be smooth enough [5]: 
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On the other hand, the spatial variation of the phase 

shift φ(x) of the oscillations of the same magnitude and 

frequency must obey the condition 
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Expressions (8), (9) can serve as a requirement that 

the solution is single-streamed for the monochromatic 

oscillations.  

It is worth noting, that single-stream solutions do not 

exist infinitely long in the case of free Langmuir 

oscillations of the collisionless inhomogeneous plasma, 

when, roughly, the oscillation frequency varies from 

point to point. Indeed, for a frequency difference δω as 

small as desired, there is the time t, when the phase shift 

φ = δωt will not satisfy condition (9). Therefore, the 

homogeneous equation (6) cannot have single-stream 

solutions if ω0(x) ≠ const. Otherwise, the forced 

oscillations can be single streaming, if any dissipation 

mechanism is provided, which reduces the general 

solution of the homogeneous equation.  

The expression of the steady state value of the 

magnitude xm of the linear oscillator with the main 

frequency ω0 driven by the force of magnitude Fm and 

frequency ω reads as: 
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     Extending of (10) to the case of a plasma with the 

density profile smooth enough, we come to the 

conclusion, that the forced oscillations are 

counterphased on the different sides of resonant point 

x1, ω0(x1) = ω. Then, the forced Langmuir oscillations, 

even of small magnitude, are not single-stream near the 

resonant point x1. Accounting for dissipation modifies 

this result. 

Let us evaluate the distance x1  Δx, where single-

streaming is breaking. Making the use of (8), (10), one 

can find that (SI) 
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For example, in a plasma column of several 

centimeters in diameter, with n~108 cm-3 and 

Em~10 V/cm, the size of Δx is about of 1 mm. 

When there are N flows in the same point, 

characterized by the densities nk and velocities vk, the 

velocity of the j-th flow obeys to the equation: 
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and ωk
2
 = 4πe2nk/m. To be thorough, the ambipolar 

electric field Ea is included in the ω’0 (13). The physical 

sense of the equation (12) is illustrated by the Fig. 1. 
 

 
 

Fig. 1. Streams of ions (0) and electrons (k), passed by 

the electron of j-th stream in its rest frame. In the rest 

frame of ions its velocity is directed to the right and 

equals to vj 

 

     The first term is the velocity of the changing of the 

acceleration of the electron. Second term is the velocity 

of changing of electrostatic force between the electron 

and the ion background. As the last is defined by the 

ions charge spaced, say, to the left of the electron, it 

changing is proportional to the ion flow n0vj passed in 

the rest frame of the electron. 

Following the case of the opposite streams under the 

Langmuir oscillations, let us consider the simpler 

example of two colliding electron beams with the equal 

densities n0 and velocities v0. Let the beams initially are 

ion-compensated. If the beams meet in x=0, then, from 

the symmetry,  

 

v2(t,x) = –v1(t, –x);                           (14) 

ω2(t,x) = ω1(t, –x).                           (15) 

 

In the dimensionless variables τ = ω0t, ξ = xω0/v0,  

υk = vk/v0, Ωk = (ωk/ω0)2, with regard of the symmetry 

conditions, and dropping out the index in υ1, Ω1, the 

governing equation set (12), (14), (15) reads: 
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     The equation (17) is the continuity equation for the 

beam electron density, and P(ξ) is the Heaviside step 

function. In the Fig. 2 the footage of two periods of the 

simulation of the initial problem (16)-(19) is shown. 

After that, the number of streams doubles because of 

overturn of wave of velocity. The simulation shows that 

the beams quickly fly away from the point when the 

collision starts, and the region where the streams 

overlap is extending over a much greater distance, then 

the estimate (11). This fact is easy to understand 

because of the increasing negative charge in the overlap 

region. The direct simulation of the Langmuir resonance 

under the conditions of the linear inhomogeneity and the 

harmonic driving field E0, performed by the PIC 

method, gives greatly complicated picture. 
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Fig. 2. The colliding beams velocity distributions. 

The time step is one-half of the plasma oscillation 

period 

 
Fig. 3. The phase space of the large particles in the PIC 

simulation of the Langmuir resonance 
 

     An example is shown in the Fig. 3. It is seen the 

consequence of the beams scattering near the resonance 

x/xE=0 (points in the interval v/vE ~ –210-3…–710-3). 

Apparently, these particles bursts were found at first 

numerically in [2]. 
 

3. STATIONARY FLOWS 

     Nevertheless, it turns out that there are simple two-

stream solutions, which are, in fact, special cases of 

Langmuir oscillations. Let us consider two stationary 

opposite streams in the homogenous plasma, with 

densities n1(x) = n2(x) and velocities v1(x) = –v2(x) > 0. 

Taking into account, that by the continuity equation  

n1v1 = –n2v2 = const, it follows from (12) that 
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Then, the dependence v1(x) is determined 

parametrically from the solutions of the equation (20): 
 

)tcos(vvv 00m01 ++= ,                     (21) 

)tsin(xtvx 00m0 ++= ,                     (22) 
 

where v0 = j/ω0
2 and xm = vm/ω0. It follows from 

(21), (22) that the curve v1(x) is the positive part of the 

trochoid:  
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From the (23) one can obtain the spatial period Λ 

and the temporal period T of the flow. Let us introduce 

the parameter η as follows: 
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If η≤1, then 
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     If η=1, phase curve of the stream pass to cycloid 

with Λ=2πxm, Τ=2π/ω0. The meaning of T is the time 

for the electron to pass the distance Λ in the positive 

direction. If η>1, the streams have not any turning 

points. Fig. 4 shows the imaging of the flow in phase 

space for different values of the parameter η. If η1, the 

stream v1 can be interpreted as short-circuited with the 

contrary stream v2 at the turning points x0, where 

v(x0)=0. These two streams form the closed stationary 

flow located in space segment with size Λ. In the 

framework of the model, there are not reasons against 

solely existence of such formation in the unbounded 

plasma. Because of the nonzero dispersion Δv of the 

beams in a velocity space, the formations should to 

decay on the time scale ~Δv/(v0ω0). The period of 

localized electron oscillations rises from 2π/ω0 to 4π/ω0, 

and their size Λ raises from 2vm/ω0 to 2πvm/ω0 as η 

changes from 0 to 1. When η>1, the electron velocity 

does not vanish in any point, what corresponds to two 

distinct flows. 

The parameter η is also connected with the quotient 

of the number of electrons N=jΤ involved in the flow 

and the number of ions N0=n0Λ, contained in the 

segment Λ. If η<1 this quotient is equal to 

2
0 1))arccos((
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else              = .                                           (28) 

     Due to the quasineutrality of plasma and the 

expression (28), ν must be equal to unity, so, only the 

cycloidal mode of oscillations, characterized by η=1, 

survives (see Fig. 4). Nevertheless, let us consider the 

situation when the plasma within the layer occupied by 

the flow has some unbalanced charge. In accordance 

with (27), the curves for η<1 in the Fig. 4 imply a 

positive charge. A negative charge corresponds to the 

unbounded streams (ν=η>1). If η→0, the movement of 

electrons occurs in the layer of size Λ→2xm and tends to 

the sinusoidal with the frequency ω0. Because of the 

number of the electrons is sufficiently less than number 

of ions in the layer, the movement of the electrons is 

mainly due to the ions electric field. As the density 

n0=const, the field is linear and the oscillations are 

harmonic.  
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Fig. 4. Stationary flows in the phase space for different 

values of η (24) 

     The self-consistent potential does n ot tends to the 

infinity in the turning points whereas the beam 

densitydoes. The Fig. 5 illustrates spatial distributions 

of the dimensionless self-consistent potential 

ψ = 2e/(mvm
2) and dimensionless electron density 

Ω2 = 2(ω1/ω0)2. The reference point of the potential is at 

the point where the volume charge density vanishes.  

 

 

Fig. 5. Dependencies of ψ (----) and Ω2 (–––) on 

normalized coordinate for different values of η. 

Turning points are marked by solid vertical lines 

 

 

 

As the ions also move in the same potential as 

electrons, the formations cannot be stable and tend to 

expand. The lifetime is less than the period of the 

electron motion by the electron to the ion mass ratio. 
 

CONCLUSIONS 

     The considered examples shows, that multiple 

streams is the inevitable feature of the Langmuir 

oscillations in the cold collisionless inhomogeneous 

plasma with resonant point, even if the magnitude is 

small. By extending the equation of the cold plasma 

oscillations on the multi-stream regime, the two-stream 

modes in the homogeneous plasma were found. Their 

periods do not depend on the magnitude, as in the case 

of one-stream Langmuir oscillations, but the electron 

movement is not sinusoidal. 

     The dipole momentum of the layer containing the 

flow does not oscillate because of charge distribution is 

symmetric, in contrast to the one-stream Langmuir 

oscillations. Generally, the modes imply an 

uncompensated average plasma charge, and even if this 

is not the case, they tend to diffuse due to the 

acceleration of ions in the self-consistent potential. 
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ДВОПОТОЧНІ НЕЛІНІЙНІ ЛЕНГМЮРІВСЬКІ КОЛИВАННЯ 

 

М.О. Азарєнков, О.В. Гапон 

     Розглядаються ленгмюрівські коливання великої амплітуди в холодній беззіткнівній плазмі. Ми дійшли 

висновку, що множинні потоки є неминучою особливістю ленгмюрівських коливань у холодній 

беззіткнівній неоднорідній плазмі з резонансною точкою навіть за низьких амплітуд. Поширюючи рівняння 

коливань холодної плазми на багатопотокові режими, ми знаходимо двопотокові моди в однорідній плазмі, 

які є стаціонарними розв’язками цього рівняння. 


