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DIFFUSION EVOLUTION OF A PORE IN BOUNDED PARTICLE
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The problem of the diffusion evolution of a pore filled with molecular hydrogen in a spherical granule in a
hydrogen medium is solved. The initial position of the pore is displaced relative to the center of the granule. A
nonlinear system of equations is obtained, which describes the behavior of the size of the gas-filled pore, the amount
of gas in it and its position relative to the center of the bounded particle with time. Numerical calculations have
shown the existence of two stages of evolution. The first (fast) stage is associated with the equalization of pressure
in the pore with the external. The second is the slow diffusion “healing” of the pore, when the amount of gas adjusts
to its size and the gas pressure is approximately equal to the external.

PACS: 61.46+w, 61.72-y

INTRODUCTION

The creation of new materials used in nuclear
technology, metallurgy, microelectronics, power
engineering, instrumentation, space and aviation
technology, electrochemical production, solar energy
and many other areas is to some extent associated with
the problem of porosity, which has a significant impact
on the service characteristics of materials. In the general
case, pores have an arbitrary form and size and can be
localized both within the elements of the structure of a
solid body (for example, inside crystallites, fragments,
blocks, cells, or granules) and along their boundaries
depending on the prehistory of the substance, its energy
balance, and structure [1].

Historically, theoretical calculations were initially
associated with the so-called diffusion porosity in an
unbounded homogeneous medium. According to
classical concepts, the diffusion porosity arises in a
solid phase supersaturated with point defects due to the
migration of excess vacancies and solute gas atoms and
includes the stage of pore nucleation and the stage of
their growth. As a rule, a phenomenological approach
is used for studying the Kinetics of nucleation in
multicomponent systems, which is based on the

expression for the work A®({x})of formation of a

new phase nucleus and the Fokker-Planck kinetic
equation for the distribution function in the space of

variables {x }. This approach is an extension of the

one-dimensional theory of Zeldovich and Frenkel to the
multidimensional case [2, 3]. As a result, the stationary
nucleation rate in the space of two or more variables is
calculated [4-9]. The general idea of all works is the
reduction of a multidimensional problem to a one-
dimensional. In this case, the methods of one-
dimensionalization are different, therefore, the pre-
exponential factors in the expression for the nucleation
rate also are different. As for the growth stage, here the
most complete theory has been developed for the so-
called coalescence stage. The main contribution to this
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theory was made by V.V. Slezov and his students [10—
17].

However, the development of nanotechnologies
requires new theoretical researches of defect structures
in bounded particles of nano- and meso-scales. The
most widespread threedimensional defects in such
meso- and nanoparticles are vacancy pores, gas-filled
pores as well as new phase inclusions. The regularities
of diffusion growth, healing and motion of such defects
in nanoparticles is an important problem. Such defect
structure plays an important role for the possibility of
further compactification of nanoparticles and creating
new materials [18]. Establishing regularities of defect
structure evolution will enable one to control it as well
as to change properties of corresponding meso- and
nanoparticles. The creation of the theory of the diffusive
evolution of pores in bounded medias, for example, in
spherical nanoparticles, is a rather complicated task.
This problem is close to that of diffusion interaction of
pores in unbounded matrix [19]. Indeed, the role of
second object the pore interacts with in bounded
particles is played by matrix particle boundary.
Interaction with boundaries leads to principally different
pore behaviour as compared to that in unbounded
materials. The formation of pores in spherical
nanopaparticles was discovered experimentally in the
work [20]. In the review [21] the results are presented of
theoretical and numerical investigations related to
formation and disappearing of pores in spherical and
cylindrical nanoparticles. In [21], great attention is paid
to the problem of hole nanoshell stability, i. e. to the
case when in the nanoparticle center large vacancy
pores are situated. Analytical theory of diffusive
interaction of the nanoshell and the pore situated at
arbitrary distance from particle center was considered in
the works [22-24]. With the supposition of
quasiequilibrium of diffusive fluxes, the equations have
been obtained nonlinear equations for the change of the
radii of pore and spherical granule as well as of center-
to-center distance between the pore and the granule. It
was shown the absence of critical pore size unlike the
case of pores in an unbounded matrix [1]. In the case of
a general position, pore in such particles dissolves
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diffusively, while diminishing in size and shifting
towards granule center.

As is known, hydrogen almost always negatively
affects the service properties of metals and alloys.
Having high diffusion mobility, hydrogen penetrates
into metals to great thicknesses and a macroscale almost
evenly over the entire volume of the metal is distributed.
The harmful effect of hydrogen extends to the entire
volume of the metal. Although the destruction starts
from the most structurally dangerous places (stress
concentrators, the most stress parts of the product, etc.).

Hydrogen leads to many undesirable changes in the
mechanical properties of metals, which hydrogen
embrittlement of metals is called. If there is a
discontinuity in the material (for example, in the form of
a pore), hydrogen actively fills its volume creating high
pressure and facilitating the development of cracks.

Naturally, we can consider the problem of the
diffusion evolution of a pore filled with molecular
hydrogen in a spherical granule in a hydrogen medium.

STATEMENT OF THE PROBLEM
Let us consider the spherical granule of the radius
Ry containing the gas-filled pore of the radius R < Rj.

Granule and pore centers are separated from each other
by the distance | (Fig. 1). The surface of the granule is
surrounded by a one component molecular gas (for
example, hydrogen) with a constant pressure
P, = const, which fills the pore. Let us assume that the
mechanism of pore filling with gas is as follows. The
hydrogen molecule H, breaks up into atoms H on the

surface of granule, which penetrate into the matrix
forming a solid solution. There are exist various
mechanisms of gas atoms diffusion in the crystal lattice
of a bounded matrix. The examples of such mechanisms
are hopping of matrix atoms, as well as of complexes
formed by dopant atoms with vacancies or by other
ways. It is assumed that the solution is dilute enough to
ignore the interaction of dissolved atoms with each
other. Further, hydrogen atoms again collect into gas

molecules H, on the surface of the pore, which fills the

pore. In this case, we assume that at the surface of pore
and outer boundary of granule in the matrix has been
maintained the local thermodynamic equilibrium
between the solid solution and molecular gas in the pore
and outside granule.

(N

Fig. 1. On the left, the filling of a vacancy pore with molecular hydrogen is shown. There is a one atomic gas
(hydrogen) with partial pressure P, at the granule boundary. On the right, a gas-filled pore in a bispherical

coordinate system is shown. The surface of pore and granule in this coordinate system are coordinate planes
n =const

As can be seen from Fig. 1, the geometry of pore
and granule boundaries dictates the use of bispherical
coordinate system [25], as the most convenient one. In
bispherical coordinate system each point A of the
space is matched to three numbers (77,&, @), where

| AG, |
| AG, |

Let us cite relations connecting bispherical coordinates
with Cartesian ones:

n=In( )., £=Z0,A0,,p is polar angle.

X_a-sing-cow _a-sing-sing
cosh77—cos &’ cosh77—cos &’
a-sinh
Sl UL/ (1)
coshn —cosé&

where a is the parameter, that at fixed values of pore
and granule radii as well as of their center-to-center
distance is determined by the relation

o 2 A[0-R)° —RE][(1+R)* ~R7]
2-1 '
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Pore and granule surfaces in such coordinate system
are given by relations

n= arsinh(%); n, = arsinh[Ri]. )

These relations determine values of 7, and 77, from

pore and granule radii, while includes additionally
center-to center distance | between the pore and the
granule.

Thus, the description of diffusion evolution of a gas-
filled pore in a bounded particle implies the existence of
equations for the rate of pore and granule volume
change, the distance between their centers, and the
number of gas molecules in the pore with time.

The equations describing the rate of pore and
granule volume change have the form [1, 26]:

: w I
R= <]5n-jv|n:nld5,

 47R?
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The rate of changing center-to-center distance between
the pore and the granule is determined by relation

= 30 ., =
v_—mﬁ2¢nm¢0hmds. @)
The integration is carried out over the surface of

pore and granule with the outer normal i to them; @

are the flux

is the volume per lattice node; 1 - TV |,7:,71 )

densities of vacancies per pore and granule. The pore
filling rate with hydrogen has a form similar to (3):

. 1. -
N :—Eq} n-Jy |,F,71 ds, (5)

where fi-J,, | is the flux density of atomic

=
hydrogen per pore. These fluxes comply Fick's first law

D
v, H VCV’ 9y
@

.Tv,H =

and are determined from the solution of the diffusion
problem in the quasi-stationary approximation:

wdiv j, , =0 (6)
Cv,H -

concentration of vacancies and atomic

hydrogen in the granule matrix; DV’H are diffusion

coefficients.

The approximation (6) is valid when the
characteristic time for establishing the concentration
profile is much shorter than characteristic times for
changing the pore size and the volume of gas in it. We
note an important consequence (6): the total flow of
vacancies through any closed surface is conserved. It
means that

G-l dS =i, |, dS
and the rates of change in the pore and granule volumes
are related by R?R = RSZRS or:

Ry(t)* =V +R(t)’, %

where V is initial volume of granule material
(multiplier 47t/ 3 is omitted for convenience). The
existence of conservation law (7) enables us to reduce
the number of unknown quantities to three R, |, and
N

The expression (6) takes the form in bispherical
coordinates

né v, H

A C _0 1 oC, 4 N 1 8 siné&
on\ coshn—cosé on sin& o0&\ coshny—cosé o0&

oC
v,H j =0. (8)

Here we take into account that due to symmetry of the problem, vacancy concentration does not depend on variable

@ . The boundary conditions for vacancies are:
C,(1.9)1,=C:

C.(7.9)1,=Cx.

C;,C;S are equilibrium concentrations of vacancies near the spherical surface of pore and granule (see, for

example, [1, 26]):
2y0 Po
KTR kT

Cr=C, exp(———j, Ce, =Gy exp[——

where C, is equilibrium vacancy concentration near
the plane surface, y is surface energy, T is granule

temperature, o is the volume per lattice site, P is gas
pressure inside the pore. For the simplicity we use state
equation of ideal gas:

4
The boundary conditions for atomic hydrogen are
determined by the law of mass action:

Pa) 1/2 PC{) 1/2

Cl=|—0¢6| ,Cl=|-2=6] , (11)
KT ° KT

where O is a constant characterizing the thermal

equilibrium at the surface of pore and granule of gas

molecules with respect to the chemical reaction of
dissociation into constituent atoms.
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2y0 Ry
kT )’

KTR,

2 h2 3/2 g -1 l//

T

S=| =2 _ %k . _7H |
(ma)kaj (Zk:eXp( kTD eXp( ij

Here m is the mass of a gas molecule; h — Planck's
constant; &, are the energy levels of the resting

molecule; the constant y/,, characterizes the chemical
potential of hydrogen atoms for a dilute solid solution
U, =y, +KTInC,,.

Thus, the diffusion problem (8) is solved once for a
“faceless” concentration C with the same “faceless”

boundary conditions C,, Cp and then the

corresponding rates of change of the sought values are
written out taking into account specific expressions for
equilibrium concentrations (9)—(11).
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SYSTEM OF EQUATIONS
General solution of the equation (8) with account of boundary conditions is determined as [25]

=, sinh(k +1/ 2)(57 - 17,)

C(n,&) = \J2(coshn —cos &) {CR >

exp(—(k+1/2)n,)P (cos&) -

k=0 Sinh(k +1/ 2)(771 - 772)

= sinh(k+1/2)(n—n,)
—C exp(—(k +1/2)n,)R, (cos &) |, 19
Gt 1 20—y SR KA 2R (005 ) (12)
where P, (X) are the Legendre functions. As a result, for the equations (3)—(5) we get:
: 2D a a a
R= Cr, (R, R) —Cr(R, N : 13
[C(Re.R)-Ch(R,N) | (R st 13)
. _47Daa [ oy o a a) o g
N = a)H [CRS (Po) _CR (R, N)ilq)(ﬁ’ R_S], D= ; D y) 1, (14)
- _ 6D, a R2 (2k +1)e ~(2k+1)n,
| = [Cv (R, R)—Cr(R, N)] “/1+a__ O Z T ] (15)

Here it is taken into account that displacement
velocity rate along “z” coincides with dl / dt. The
details of the calculations are quite cumbersome and
included in the Appendix. The equations (9)—(11), (13)-
(15), and (7) with the appropriate initial conditions
completely determine the evolution of granule and gas-
filled pore with time. In the limiting case when the gas

[22]. The numerical analysis shows that the function @
and the expression in braces (15) are positive over the

entire physically reasonable (Ry > R+1 pore inside
the granule) range of Ry, R, |

Therefore, from (13) and (15) immediately follow that
the dissolving pore is displaced towards the center of

is absent and there is no external pressure P, =0, g_ranule_ ?”d V-i°§| \;ersa. Next, we introduce
equations (9), (13), (15) coincide with the results of IMENSIoniess vartables for convenience:
R R | a N 2ym 3oN Pw
r=—: f=—%: L=—; o=—; N=-——; A=— =—=2 Pp=-2;
R, R, R, R, N, kTR 4nR; KT
(o R Ny =t g2t
""DC! ° 4D ROJ_ t, t,

Here R, =R|_,; N

o =N |_, are the radius of pore and the number of gas molecules in at the initial moment

of time; t, and tg are the characteristic times of change in the size of pore and gas in it. The complete system of

equations (9)—(11), (13)-(15), (7) with initial conditions take the form in new variables:

2 A A
£= z [exp[———poj—exp(———BH (a,gj; M= (16)
dr qr? s r ror
S
dL _ 6a’ A A r
—= exp| ——-— —exp| ———=B|{D-,1+— —D}; L|_=L,;
i qr{ p( . poj p(r , ]H 1/ " le-0= Lo
2
B 3 3 1/3. B rSZ L2 r2 L2 r2
rS—(I’SO +r —1) X r |TO SO’ a_Z\/l-'-(r_SZ_E -2 E'Fr—sz .
Taking into account the equation of state of gas  k=1.38.10"erg/k is Boltzmann  constant,
p =£SB . we also havep|_,=B. For futther Y=10%erg/om® is surface energy  density,
r 123 a3 _an-4 .
numerical calculations, we will take: T =1450K, @=10""em", R, =10"cm, which corresponds to
A=10"°. We take the external gas pressure
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P, =10" dyn/cm? or in dimensionless p, =5-107".
We set the dimensionless parameter g =1. The values
lso, Lo, B will vary.

RESULTS
Let consider the case of a “small” pore (I5, > 1I)
with initial gas pressure P |T=0>> p,. setting
1.5 . . .
1.4r .
1.3 .
) 1.2 .
11 .
1 ! ! !
0 5 10 15 20
T
a

r,, =100, B=2.5> p,. We assume L, =10 (pore
far from granule center) for definiteness. Fig. 2 shows
the dependence of pore radius r(t) on time (see
Fig. 2,a) and the change of hydrogen molecules number
Nn(t) in the pore on time (see Fig. 2,b) according to the

system of equations (16).

0.9 .
0.8 .
0.7 .
0.6 =

05 | | |

Fig. 2. Plots of the dependence of pore radius r (a) and the number of hydrogen molecules n (b) in the pore on
time T at B=2.5>p,, r,, =100, L, =10

It can be seen that in a quite short period of time
(T =8) the pore radius grows and the amount of gas
decreases in it reaching some quasi-stationary values
r|,.,=1.432 and n|_;=0.588. In this case, the gas

pressure in the pore equal to outer pressure P |T:8: P, -
And then there is a very slow dissolution of the pore but
with the condition p(t) =P, . It follows from system

(16) at p=p,,N=0. However, the pore radius

decreases a little ¥ <O causing an increase of pressure
in it and, as a result, a decrease the amount of gas.

There is a gas adjustment to the pore size for
maintaining the above condition.

In the other case p|_,<< p, (B=25-10"?), the

process at the initial stage is reversed. The pore radius
rapidly decreases in front of increasing the amount of

gas and pressure in the pore. The dependences r(t)
and n(t) on t are shown in Fig. 3. The process
l T T T

0.8 .

= 0.6 .

0.4

0.2 | | |

stabilizes at reaching pressure p,, and we have a slow

dissolution of the pore. The amount of gas is controlled
size of pore.

It is clear that in the case p| _,= P, (B=0.5) we

observe immediately regime of slow dissolution of the
pore. We note that this behavior of a “small” pore does
not depend on its location relative to the center of

granule. Similar results were obtained for L,=0.1
(pore near the granule center) and L, =60 (pore near

the granule boundary).
The same result is for the “large” pore

(o =2 >1y). We must take into account the physical

condition (L +r) <rg (pore inside granule), so we set
L, =0.15.

1.3 T T T

1.2 ,

11 ,

Fig. 3. Plots of the dependence of pore radius I (a) and the number of hydrogen molecules N (b) in the pore on
timeat B=25-10" < p,, I, =100, L, =10
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Fig. 4. Plots of the dependence of pore radius I (a) and the number of hydrogen molecules n (b) in the pore on
time and the position of pore L (c) relative to the center of granule at B=2.5-107 < p,, =2, L,=0.15

Fig. 4 shows the dependence of pore radius r(t)
(see Fig. 4,a), the amount of gas N(t) in pore (see

Fig. 4,b) on time T as well as the position L(t) of pore
relative to center of granule (see Fig.4,c) at
B=25>p,.

As expected, the pore quickly equalizes the pressure
( p(r) = [, ) and enters the stage of slow “healing”.

The exit time (T = 3) is shorter than for the analogous
case of a “small” pore, although the situation is the
same. We note that the pore is displacement from
granule center (see Fig. 4,c) at the stage of intensive
growth of the pore. However, the above inequality is not
violated.

CONCLUSIONS

1. The problem of the diffusion evolution of a pore
filled with molecular hydrogen in a spherical granule in
a hydrogen medium is solved exactly. Initially, the pore
is displaced relative to the center of granule (see Fig. 1).

2. A nonlinear system of equations (16) is obtained,
wich describing the time behavior of the size of a gas-
filled pore, the amount of gas in pore, and the position
of pore relative to the center of a bounded particle.

3. The system (16) was solved numerically. The
calculations showed the presence of two stages of pore
evolution. The first (fast) stage is associated with the
equalization of pressure in the pore with the external
one. The second stage is the slow diffusion “healing” of
pore, when the amount of gas adjusts to its size, and the
gas pressure is approximately equal to the external one.
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APPENDIX
1. Auxiliary expressions:

f R(dt _2.er

a7
.fcoshn t k+1/2
Via differentiating the relation (17) over parameter 77, one consequently finds
Il RMdt  _ 242V P (t)dt _ 42 - 27 (cosh i + (k +1/ 2)sinh ) (18)
-1(coshzn —t)*? sinhp " J(coshry—t)*? 3-sinh*y '
2. Dynamic growth equations:
o D coshn, —cosé oc a’-sinédé&d
n-j |]7:’71 = _771—5 |’7 - : = # (19)
0] a on (coshz, —cos &)
nGC singdé =0C sinédé&
; j —>55 - N=-2r a— (L B
2R on b coshz, —cosé 0 9n "™ coshnp, —cosé
3. Substitute (19) in solution (12)
& =p| Cesinhm zp (cos &) exp(—ry (k +1/2)) + Jcosh7, —cosE -
on "1 joosh n, —COs (20)

Z (k+1/2)-P, (cos&)
k=0 Sinh(k +1/ 2)(771 _772)
After replacing the signs of summation and integration, as well as using relations (17), (18), we obtain growth
rates (13), (14).
4. The rate of displacement of pore relative to the center of granule is determined by the relation
\7=é~3'DV'aJ'”§ ] COShnl'COSé:_]Z.-Singdﬁf . 1)
° 9n "™ (coshn, —cos¢&)

[CR cosh(k+1/ 2)(, —n)e 6D _¢ ea(kHV2) }

* 2.R?
After substituting relation (20) into (21) and corresponding calculations, we get (15).
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JTU®Y3IIHA EBOJIIONISI NOPU B OBMEJKEHII YACTHHIII
B ATMOC®EPI BOJHIO

M.I. Konn, II.M. Ocmanuyk, B.B. Auosecvkuii

Bupimmeno 3amady npo nudysiifHy €BOIIOIII0 MOpH, HATIOBHEHO! MOJIEKYJIIPHAM BOJAHEM B CEpUUHIN TpaHyi,
10 3HaXOIUTHCS Y BOAHEBOMY cepenoBuiii. [loyaTkoBe MONOXEHHS TOPU 3MILIEHE BiTHOCHO LIEHTPY IpaHyJIH.
OTprMaHO HeJNiHIHHY CHCTEMY PiBHSHB, SIKa OMUCYE MOBEIHKY PO3MIpIB 3aIIOBHEHOI I'a30M IOPH, KUTBKOCTI Ta3y B
Hii Ta 1 TONOKEHHS BITHOCHO IIEHTPY OOMEXEHOT YaCTHHKHU 3 4acoM. YucenbHi po3paxyHKH IOKa3all iCHyBaHHS
JBOX craniid eBomromii. [lepiia (1BKAKa) cTazis MOB'sI3aHa 3 BUPIBHIOBAHHIM THCKY B MOpi 13 30BHImHIM. Jpyra —
noBijbHE Ju(y3iiiHe «3aroloBaHHS» TMOPHU, KOJIM KUIBKICTh Ta3dy MiJUIalITOBYEThCS IiJ ii po3Mip, a THUCK rasy
TIPUOJIM3HO JOPIBHIOE 30BHITHEOMY.

JTA®®Y3UOHHAS IBOJIOIUA IMTOPHI B OTPAHUYEHHON YACTHUIIE
B ATMOC®EPE BOJIOPOJA

M.U. Konn, I1.H. Ocmanuyk, B.B. Anoseckuii

Pemrena 3anaua o nuddy3roHHON SBOIIOIMH MTOPHI, HAMOJHEHHOH MOJIEKYIISIPHBIM BOJIOPOAOM B c(hepHUUECKOM
rpaHyje, HaxoJsleidcs B BOAOpoaHOH cpeae. IIpu 3ToM mopa H3HAYaIBHO CMELIEHA OTHOCUTEIBHO LEHTpa
rpanynsl. Ilomydena HenuHeHHas cHCTEMa YpaBHEHWI, ONHUCHIBAIOIIAs IOBEACHHE CO BPEMEHEM pa3Mepa
ra30HANOIHEHHOU MOPBI, KOJIMYECTBA ra3a B HEH U €€ MOJIOKEHHUs OTHOCUTENIBHO LIEHTPa OrpaHUMYEHHON YacTHULIBL.
UucneHHble pacdeThl IIOKa3ajdd HaIWYME JBYX craauili sBomonmu. IlepBast (OblcTpas) cramust cBs3aHa C
BBIPABHMBAHMEM JIaBJICHUS B TIOpe ¢ BHEIIHUM. Bropas — MeuieHHOe 1 Qy3noHHOE «3aeunBaHne) MOPHI, KOTia
KOJIMYECTBO I'a3a MOACTPaNBACTCS MO/ €€ Pa3Mep, a IABJICHHE Tra3a MPUOIH3UTEIFHO PAaBHO BHEITHEMY.
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