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In the paper, relativistic equations of local hydrodynamics for the laboratory fusion plasmas are obtained.
Relativistic effects in the physics of electron transport appear primarily because of macroscopic features of relativistic
thermodynamic equilibrium given by the Maxwell-Jiittner distribution function, and the characteristic velocity of
plasma flow is significantly small: V « v,, < c. We propose an approach in which the plasma electrons are treated
as fully relativistic and the hydrodynamic flow is treated in the weakly relativistic approximation. For convenience,
the obtained relativistic effects are divided between ‘“quasi-relativistic” terms, which in the nonrelativistic limit
coincide with well-known expressions, and fully relativistic terms, which disappear atc — . The considered mixed
approach can be useful for construction of transport models for numerical studies of both astrophysical objects and

hot fusion plasma.
PACS: 52.55.Dy, 52.25.Fi, 52.27.Ny

INTRODUCTION

Relativistic effects in astrophysical objects and fusion
plasmas do not necessarily require extremely high
temperatures and energies. They appear to be non-
negligible even for electronic temperatures T, of the
order of tens keV, i.e. when T, < m,c?. Relativistic
effects in kinetics, hydrodynamics and transport physics
in collisional plasmas appear due to a macroscopic
features of relativistic thermodynamic equilibrium given
by the Maxwell-Jittner distribution function (or
relativistic Maxwellian) [1]. In fusion devices such as
ITER [2, 3] and DEMO [4], where electron temperatures
must reach several tens of keV, relativistic effects for
electron transport become noticeable. The same is true
for aneutronic fusion reactors, where the expected
electron temperature should be about 50...70 keV and
above [5-9].

It has recently been shown [10, 11] that relativistic
effects can modify electron transport, making the fluxes
noticeably different from those calculated in the
nonrelativistic limit for both tokamaks and stellarators.
At the same time, virtually all transport codes developed
to date for modeling fusion reactor scenarios are based
on a nonrelativistic approach.

Usually, in the literature devoted to relativistic
kinetics and MHD of plasmas the covariant formalism
with the 4-vectors is applied [12, 13]. This is the most
general and straightforward way to obtain the transport
and MHD equations with conservation of Lorentz
invariance [14, 15]. Usually, this formalism is applied to
describe astrophysical objects. However, for the
problems, where the Lorentz invariance is of low
importance, the kinetics is considered in the same way as
in the non-relativistic limit [10, 11, 16-20].

The present work is focused on description of
transport processes in a hot collisional plasmas with
relativistic electrons and macroscopic flows with
characteristic velocities V « v;,. The main goal is to
derive the equations of local hydrodynamics in the

weakly relativistic approach with respect to the mean
flow, i.e. neglecting the terms of the order V3 /(c%u,.),
V*/(c?u?) and above, while the thermal effects
involving plasma electrons are described as fully
relativistic. The final equations are mathematically
similar to the non-relativistic ones and have a transparent
physical interpretation.

FIRST MOMENTS IN THE REST FRAME

First, it is convenient to write a relativistic kinetic
equation for the electron distribution functionf, in
divergent form and without 4-vectors,

%4_667)((1;,(];) + :Tk(llkfe) = Ce(fe) ) (1)

where X}, = vy, is the velocity with k = 1,2,3, u, = v,y
is the momentum per unit mass withy = /1 + u?/c? as
the relativistic factor, and mi, = eEy + S [vX B] is

the force with electric field E and magnetic field B,
respectively. Here and below, the standard rule of
summation over the repetitive indexes is supposed. The
operator C,(f,) describes the collisions of electrons with
themselves and ions, i.e. C.(f,) = Cee(fe) + Coi(f2),
where ions are considered non-relativistic.

In order to derive the equations for such values as the
mean flow velocity, density and temperature of plasma
electrons, it is natural to assume that plasma is very close
to the thermodynamical equilibrium given by the
“drifting” Maxwell-Jiittner distribution function,

foo = CM]n;Teu?eexp (—Ml’o [V - % - %D' )

where n, is the density of electrons measured in the rest
frame which moves with mean flow velocity V, y, =

1/{/1—=V?/c? is the relativistic dilation factor, u,, =
Dre/Me = +/ 2T, /m, is the thermal momentum per unit
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mass (formally, u,, coincides with the thermal velocity
in non-relativistic limit, but is not limited by speed of

mec? o 4
T,

e
(typically, p > 10 for fusion plasmas). The normalizing
coefficient equals

T e H 15 345
Cuy = \/Z:#Kz(u) =1- ou ! Tzez T ©)

with K, (u) as the modified Bessel function of second
kind of the n-th order.

While T, is assumed here to be arbitrary high (with only
natural limitation T, < m,c?, just to exclude a generation of
the electron-positrons pairs), the mean velocity satisfies the
conditions V /u,, < 1 and V?/c? « 1. The last condition
makes possible to apply the weakly relativistic approach
with respect to flow,

Yo=1/{J1—=V2/c2 =1+4V?/2c?, 4)

and reduce f,, to

light), T, is the electron temperature and u =

2
fro = Cuy3-exp [ (v = 1-554) - 557] 9
The form of representations of f,, in Egs. (2) and (5) with
coefficient given by Eq. (3) is chosen in such a way that
the limit of f,, (which is the classical drifting
Maxwellian) when ¢ — cowould be the most obvious.

Now we will adapt to our notations the definitions
given by other authors; see [12, 13, 16]. In order to obtain
the equations for density, momentum and energy, one
needs to integrate kinetic equation Eqg. (1) with the
corresponding weight functions: 1, m,u; and m.c?(y —
1), respectively. For that, following to the algorithm of
Braginskii [21], the Lorentz transformation from the
local coordinate system to the rest frame is required,
whereV = 0 and y, = 1. The variables that correspond
to the rest frame are labeled by prime. For compactness,
let us introduce the notations: (F) = (1/n,) [ Ff,d®u
and(F’) = (1/n,) [ F'f,d>u'. Evidently, that in the rest
frame (1) = land(v;) = 0.

For Maxwell-Jittner distribution function, the
relation between the total relativistic energy and
temperature is well known [12],

' K3 (1)
Etotal = nemecz<y ) =n, (mecz % - Te)- (6)

Alternatively, the internal thermal energy Eqg. (6) can be
represented in different form [10],

W=nm.c*y' —1) = G + .'R) neTe,  (7)

which reminds the classical expression, where R is the
relativistic correction term,

5 15 15 135
1) T e Test  ®

— (Ks (O
Ka2(w)

Here, Eqgs. (7) and (8) give a quasi-classical form for
energy. Similarly, also the heat flux can be defined,
which, however, is equal in the rest frame to the energy
flux,

dx = nemecz((y, - 1)Ullc)r )

which is also related to the averaged momentum as
follows,

, 1
neme(up) = = gy (10)
It is useful to mention that the moment in Eq. (10)
represents a purely relativistic effect and is equal to zero in
the classical limit, while the heat flux Eq. (9) is  “quasi-
classical” in the above sense. Indeed, for
c - om,c?(y — 1) - v?/v, and the values uj, and
vy, become indistinguishable, while (v;) =0.
The next required moment is the momentum flux,
neme(vllcu}"> = peé‘kj + T j, (11)
which, similarly to the non-relativistic representation,
decomposes into hydrostatic scalar pressurep,,

2

1
Pe = gneme (v}—,_,> =neT,, (12)
and (traceless) viscous stress tensorrm,;,
My = neme<vllcu]"> - pegkj- (13)

The moments related to the collisional operator are
also required. Since the conservation laws of momentum
and energy in Coulomb collisions of electrons with
themselves are satisfied automatically, only the
contribution from electron-ion collisions survives in
integration. Then, by definition, electron-ion collisional
friction force is the following:

Rlii = fmeul’(Cei(fe,) d*u’ (14)
Similarly, the stress tensor generated by the electron-ion
collisions can be defined as
Fgh = [ mevu Coy (£ dPu. (15)
The collisional rate of the heat-flux generation is,
respectively,
GE' = [mec?(y' — DvipCe(£)d%w. (16)
The rate of collisional energy exchange between
relativistic electrons and classical ions is:
Pe = [m,c*(y' — DCu(f)d*w'. (17
In this case, only the dominant part of the energy
exchange is taken into account for the calculation, i.e. in
Eq. (17) both electrons and ions distribution functions are

assumed to be equilibrium (Maxwellian for ions and
Maxwell-Jittner for electrons, but with their own
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temperatures). Then, the result of integration can be
presented as follows [22],

el .
Pel = P Cuy (1424 5), (18)

where P(ecil) is the classical (non-relativistic) electron-ion
energy exchange rate [23],

Te—T;
-

(19)

i 4 m
PGy = — = Veo iniZiZ(Te —T) x——=
TZ

In somewhat different form Eq. (18) was obtained also in
[14, 16].

HYDRODYNAMIC EQUATIONS IN
LABORATORY FRAME

For integration in the local coordinate system, a
Lorentz invariance of 4-momentum volume has to be
taken into account, that can be written in our notations as
d3u/y = d3u’/y'. The Lorentz transformation of the
momentum and energy from the local coordinate system
into the rest frame [24] can be reformulated in our
notations as following,

) , ViV
e = YoV Vi +up + (vo — 1)Wuj,

I
V]-u]-
c2 )

Relations in Eq. (20) are precise. However, below we
will apply a weakly relativistic approach with respect to
V; see Eqg. (4). In the local frame, whereV =+ 0, the
moments get an additional contributions related to the
mean flow, which are accounted in the weakly relativistic
approach, neglecting the terms of order V3/(c?u,,),

V*/(c*u?,) and above.

It is convenient to represent all moments as a sum of
two parts: “quasi-classical” contribution and the term of
purely relativistic correction that completely disappear in
a non-relativistic limit ¢ — co. Thus, it was found more
appropriate to group the relativistic correction terms with
the formal factor 1/u.

Direct integration of Eq. (1) requires two lowest
moments for the local coordinate system,
ne(1) = Yon and ne(vy) = yone Vi = voli, which
correspond to density and particles flux, respectively.
Here we accounted that (v;)=0. From that, the
continuity equation can be obtained,

Y =%Yo (V’ + (20)

2 (Yone) + 5= (voT) = 0. (21)

Xk

Note that formally this equation has exactly the same
form as in a fully relativistic approach. The weakly
relativistic expansion Eq. (4) is supposed, but not applied
directly here for compactness.

The next equation is the momentum balance that has
to be obtained integrating Eq. (1) weighed by m,uy.
Here, both the momentum and the momentum flux are
required. It can be shown that the momentum Eq. (10) in
the rest frame can be represented as

nemg(ug) = nemg (Vi + U, (22)
where the additional term, which has the meaning of
relativistic correction for momentum per particle of unit
mass, is

1

U = | GHR) Vit = (mgy + )| @3

Here, the hydrostatic pressure p, and viscous stress
tensor ;; are given by Egs. (12) and (13), and the terms
of order V3/(c?u,.) and above are neglected.

Similarly, the flux of momentum Eq. (11) in the rest
frame can be represented as

neme(viu;) = Iy; + 61'[,(5), (24)

with the lowest “quasi-classical” term formally
coinciding with the non-relativistic definition [23],

My = pebyj + myj + nem ViV, (25)

while and the correction term is

) =% [anV; + qVie + S+ R) peVied; +
%(Tl’lej + T[]'le)Vl:I' (26)

Using Eq. (23), it may be convenient to rewrite the
relativistic correction term Eqg. (26) as following,

1 1
8117) = % [pe8USV; + qVi + 5 (maV + maVi)vi]
(27)

The collisional friction that required for momentum
balance can also be represented in the similar form:
J mew CE(f,) dPu = R + 6RE'™, (28)

with zero-order term equal to that defined in Eq. (14),
while the relativistic correction is

i(r 3V2 ViV 1 ei 1 i ei
SRy =2 (B4 16, ) RE + 5 (VP + FED). (29)

Taking into account the terms, given by Egs. (22-29),
the momentum balance equation can be written as
follows,

a T a r
a [neme(Vk + SUIE ))] + a_xj(nk}' + SHI(CJ')) =

= enoEy + 1) x Bl + R + 6R, . (30)
Here, J = en,V = en,(V, — V;) is the electron electric
current that corresponds to the mean flow.

The lastshould be the energy balance equation, which
should be obtained by integrating kinetic equation
weighted by kinetic energy m,c?(y — 1). Processing as
above and taking into account Eq. (7), we obtain

nemyc?(y — 1) = G + R) De + 7 m"zvz +6EM, (31)
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with, respectively,

6‘8(7‘) __( +R) z(nkj +qk)Vk (32)
Additionally, comparing Eq. (32) and Eqg. (23), one can
find a useful relation,
1 T
sEM = C—Zpesu,ﬁ V.. (33)
Here, the standard rule of summation over the repetitive
indexes is supposed.
In the same way, the energy flux can be obtained,

nemecz((y - 1)”}{) Qk + SQ(r)

where “quasi-classical” part formally coincides with the
classical definition,

5 eV?
Qr = qi + (E + R) PeVi + my iV + n, 22—V, (34)

while the term of pure relativistic correction is

5 1 (VEVi
8Q(r) (E + R) per + E(% + 6]”) T[lel +
3(VkVj 1
257 +§‘5k1 9 (35)

Note that the terms proportional to m,V?/2 in Eq.
(31) and Eq. (34), which are related to the mean flow
kinetic energy, can be excluded from the energy balance
by simple manipulation and using the continuity equation
Eq. (21). After that, the energy balance equation would
describe only the balance of internal thermal energy.

The last term to be considered is the collisional
energy exchange, which can also be written as follows,

mec?(y = DCC(S,) du = P! + RE'V, + 5P€I™, (36)
whereP® is given by Eq. (18) with classical part given

by Eq. (19), R¢is given by Eq. (14), and the correction-
term to relativistic flow is

5pei) = 2 [pel 4 REW, + G, + 5L FE]. (37)

Here, G¢' and Fy} are given by Egs. (15) and (16),
correspondingly.

Finally, taking into account the terms, given by Eqgs.

(31)-(37), the equation for the balance of thermal energy
can be written in the following form:

3 1/3
= [( +R)p, + 55@] + —(Qk +8Q") =

= JEx + P°* + REV, + 6P‘”(r). (38)
The equations Egs. (21), (30), and (38) describe the
collisional relativistic hydrodynamics, derived in the
mixed approach, fully relativistic for the thermal
electrons and weakly relativistic for the mean flow.

FURTHER STEPS

Since the final transport equations require, as in the
classical treatment, a knowledge of only the few first
moments and only in the rest frame, it is necessary to
make a closure of the model. Here we will draw only the
preliminary sketch of such closure, which itself is beyond
the scope of the present paper.

The first step is to formulate and solve a linearized
kinetic equation with thermodynamic forces on the right-
hand side (gradients of plasma parameters and electric
field). As it was shown in [25], where the relativistic
effects in radial neoclassical fluxes for the toroidal
systems were considered, the most adequate method for
solving the linearized relativistic kinetic equation is to
represent the solution in the form of a series of the
generalized Laguerre polynomials of order ¢ = 3/2 +
R. For the low temperature limit, T,/mc? — 0, this
representation comes to the classical form with the
Sonine polynomials.

As a final step, we need to calculate the necessary
moments of the distribution function using the obtained
solution. To make the results most transparent, the
obtained moments can be expanded into a 1/u series,
retaining only the first relativistic correction term.

CONCLUSIONS

In this paper, the relativistic hydrodynamics of
collisional hot plasmas is considered. Equations for first
moments are obtained, which allow us to create a
numerical transport model for the study of astrophysical
and fusion hot plasmas.

The main point of the model is the use of “mixed”
approach, when plasma electrons are described in fully
relativistic approach and mean plasma flow is considered
in weakly relativistic approach.

The equations obtained in the paper have been written
in a form convenient enough for implementation of the
relativistic approach into the transport codes which so far
are based only on the classical approach. Such
modification is necessary for the development and
predictive investigation of the fusion reactor scenarios
with hot plasmas and relativistic electrons.
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PEJIATUBICTCHKI PIBHAHHSA JJOKAJBHOI T'IPOJJUHAMIKH 3 HOBLJIbHUMH
IHOTOKAMH

1. Mapywenko, M.O. Azapenkog

OTpuMaHO pPENATHBICTCHKI PIBHSHHS JIOKAaJIbHOI TiPOAWHAMIKN AT TIa3MHU JIAOOPAaTOPHOTO TEPMOSIEPHOTO
cuHTe3y. PensTuBicTchKi eexTr y (hi3uIll TpaHCHIOPTY €IEKTPOHIB MPOSBISIOTHCA HACAMIIEpe]] Yepe3 MaKPOCKOIIIUH1
0COOJIMBOCTI PENATHBICTCHKOI TEPMOJIMHAMIUHOI PIBHOBArW, sKa 3aJa€Tbesl (YHKIIE po3nofiny Makcsemna-
IOTHepa, a xapakTepHa IBUAKICTh TeUil IJIa3MU € CYTTEBO Mayow: V K v, < . 3anponoHOBaHO MiAXil, Y SKOMY
EIEKTPOHU IUIa3MH BBAKAIOTHCS TIOBHICTIO PEJATHBICTCBKUMHE, a TigpOJWHAMIYHA Tedis PO3TIAJAEThCI Yy
CI1a0KOPeNATHBICTCHKOMY HaOmmkeHHI. Jns 3py4HOCTI OTpUMAaHi pENSTUBICTCHKI €(EeKTH PpO3IIICHO MiX
«KBa3iIpeSTUBICTCHKUMM) YIICHAMH, SIKI B HEPENSATHBICTCHKINH MEXi 301ratoThesl 3 BiJOMUMHU BUPa3aMU, Ta IOBHICTIO
PENSTHBICTCHKUMH WIEHAMH, SIKi 3HUKAIOTh TIPH ¢ — 0. PO3MIIHYTHI 3MiITaHUH MiaXix Moke OyTH KOPUCHUM TIPH
MoOYZ0BI TPAHCHOPTHUX MOAENEH JJIsl YUCEIBHUX JOCIHIIKEHb K acTpo(i3ndHUX 00'€KTIiB, TaK 1 IJIa3MHU rapsuoro
TEPMOSAEPHOTO CHHTE3Y .
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