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The results of studying the features of the dynamics of a system of charged particles (electrons) in an external 

magnetic field are described. The considered model practically coincides with the model of an ideal plasma. The 

electrons of such a plasma rotate at the cyclotron frequency. The rotation of charged particles leads to the emission 

of electromagnetic waves. The field strength of these radiated waves is very low. Therefore, usually these fields are 

neglected. In this work, these fields are taken into account. It is shown that with an increase in the oscillator density, 

oscillatory instability can develop. The dynamics of phase synchronization of these oscillators is traced. The condi-

tions are found under which the oscillatory instability can be suppressed. Key words: oscillators, phase synchroniza-

tion, plasma, instability. 
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INTRODUCTION 

The question of the dynamics of a system of a large 

number of charged particles arises in many branches of 

physics. First of all, this is in plasma physics. It is 

known that if charged particles are in a certain potential, 

then they become oscillators. Moreover, the frequency 

of these oscillators and the relationship between them 

are determined by the type of potential in which they are 

located. An analysis of the dynamics of such a system 

of oscillators is presented, for example, in [1] and [2]. In 

this case, it turns out that the dynamics of such a system 

is always oscillatory and does not depend on the number 

of charged particles. However, if the connection be-

tween the oscillators has a different physical nature, 

then the dynamics can radically change. In particular, it 

can be unstable. 

Thus, in [3–6], under the assumption that the con-

nection between identical oscillators has some other 

physical nature, it was shown that the collective fre-

quency of a system of such oscillators depends signifi-

cantly on the number of oscillators. Moreover, the dy-

namics of such a system can become unstable. This in-

stability was called oscillatory instability. In this paper, 

we consider the dynamics of a system of charged parti-

cles that are in an external constant magnetic field. In 

practice, we are talking about the dynamics of particles 

in the ideal plasma model. Particles (electrons) rotate in 

a magnetic field. Moreover, the frequency of these rota-

tions does not depend (in the nonrelativistic case) on the 

electron distribution function and is equal to the cyclo-

tron frequency ( H eH / mc  , H  – is the strength of 

the external magnetic field). The rotation of electrons in 

a magnetic field leads to their emission. This radiation 

acts on neighboring particles and is a specific physical 

mechanism of communication between oscillators. In 

the usual, accepted physical picture, the phases of these 

fields are random; therefore it is believed that these 

fields compensate each other. However, as shown in this 

work, the presence of such fields, such a connection 

between the oscillators can lead to their phase synchro-

nization. All oscillators start to move in the same phase. 

The presence of such phased particle dynamics leads to 

the fact that the frequency of collective dynamics begins 

to decrease with an increase in the number of particles 

(oscillators). After reaching a certain critical number of 

oscillators, such a system becomes unstable. We will 

consider the possibility of such dynamics in this work. 

The next (second) section describes the dynamics of 

a system of charged oscillators under the assumption 

that their phases are synchronized. The connection be-

tween the oscillators is the radiation field of each of the 

oscillators. It is shown that with an increase in the num-

ber of oscillators, the frequency of collective oscilla-

tions decreases. When a certain critical number of oscil-

lators is reached, the system becomes unstable. In the 

third section, it is shown that the presence of coupling 

for a sufficiently large number of oscillators actually 

leads to their phase synchronization. Section four shows 

that sufficiently intense random fields can suppress the 

synchronization process. 
 

1. DINAMICS OF PHASED OSCILLATORS 

Consider the motion of particles with a charge in an 

external magnetic field directed along the axis z: 

 0 0 0H , ,H . In such a field, the particles rotate 

around the lines of force of the magnetic field. They 

move with acceleration and radiate. This radiation acts 

on neighboring particles. As a result, such particles in-

teract with each other. For definiteness, we will assume 

that the considered ensemble of particles simulates ideal 

plasma. In this case, the Coulomb interaction of parti-

cles can be neglected. We will assume that the interac-

tion is carried out only with the help of the fields that 

the particles emit during rotation. Moreover, the radia-

tion frequencies of all particles are equal to the cyclo-

tron rotation frequency of particles in an external mag-

netic field. Note that this frequency does not depend (in 

the nonrelativistic case) on the particle velocities. In this 

section, we will also assume that the radiation fields 

coincide not only the frequencies, but also the phases. 

Phase synchronization conditions are discussed in the 

next section. The electric field strength of the radiation 
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of one particle in the vicinity of another particle is de-

termined by the formula: 

 
2

e v
E

c R


   .  (1) 

Here e – is the charge of the particle; v  – is the acceler-

ation of the particle during its rotation; c – is the speed 

of light; R – is the distance between the particles. 

Consider first the interaction of two particles. We 

will consider only the motion of particles transverse to 

the magnetic field. The dynamics of one of the particles 

can be described by the following equation:  
2

0 2
;

e e v
mr rH

c c R
     

2

0 2
.

e e v
r rH

mc mc R
      (2)  

It is convenient to write this vector equation in the 

form of a system of equations for the transverse compo-

nents of the velocities of one of the particles (for exam-

ple, the first): 

1 1 2x H y x     , 1 1 2y H x y     ,  (3) 

where /H eH mc  – is the circular frequency of rota-

tion of a particle in a magnetic field, 2 2/e Rmc  – the 

effect of the second particle on the dynamics of the first 

particle (the coupling coefficient between particles). 

 Similar systems of equations can be written for the 

dynamics of the second particle. If there are many parti-

cles, then the equations that describe the dynamics of 

the velocity components can be represented as (differen-

tiating the system of equations (3) and taking into ac-

count the system (3) itself), one can obtain the following 

system of equations:  

  2k k j j

j k

v v v


   .  (4)  

In equation (4), the dependent variable kv  deter-

mines either the x or the y velocity component of the  

k-th (any) particle. In addition, a new time has been 

introduced H t   . Coupling coefficients, which are 

on the right side of equation (4) under the sign of the 

sum, differ from each other only in the distance between 

the particles Rj. Note that with a large number of oscilla-

tors (N >>1) and small coupling coefficients (j << 1), 

the right-hand side of equations (4) is the same for all 

oscillators. In this case, equations (4) can be significant-

ly simplified: 

  
1

1 2 0
N

k j k

j

v v


 
     
 
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The instability condition takes the form: 

  
1

2 1
N

j

j

  .  (6) 

Condition (6) can be rewritten for the particle densi-

ty. Indeed, the total number of interacting particles is 

equal to the particle density multiplied by the volume 

occupied by the interacting particles (N = nV). The vol-

ume of the spherical layer of radius r and thickness dr is 

equal to 
24V r dr  . Using these data, the left side of 

inequality (6) can be rewritten:  
2 2 2

2

2 2
1 0

2 8 4
maxRN

j max

j

r dr e e
n nR N.

r mc mc

          (7)  

And condition (6) takes the form:
 

11 2

max3 10 /n R   .                                 (8) 

2. PHASE SYNCHRONIZATION  

OF CHARGED OSCILLATOR 

The results obtained above (for particles) are valid 

when the phases of the oscillators are synchronized. 

This synchronization can be done with an external field. 

For example, with electron-cyclotron heating of plasma. 

Synchronization can be implemented and self-

consistent. This is exactly the process we will consider. 

The equations of motion of two interacting particles are 

written out above (system of equations (4)). If there are 

many particles, then the equations can be written in the 

form 

  
1

N

xk H yk kj j

j

v v cos


       ,  (9)  

 
1

N

yk H xk kj j

j

v v sin


       .  (10)  

Here kj kj j HA    ; 
2 2

j kje / R mc  ; j H jt    . 

In equations (9) and (10), the phase shift between 

the components of the particle velocity is taken into 

account. The second terms on the right-hand side of 

these equations appeared as a result of taking into ac-

count the radiation of particles that move in a circle. For 

what follows, it is convenient to go over to dimension-

less time. The system of equations (9), (10) will be re-

written: 

 
1
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j H
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
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1

N
kj

yk xk j

j H
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


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
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If the radiation fields are neglected ( 0j  ), then 

the solutions of this system have the form: 

 sinxv A    ;  yv Acos  ; 

 A, const  .  (11а) 

Taking into account the radiation fields ( 0j  ) 

leads to:  

  A, const   ;  (12)

    

   

1x,k k k k k

k k j j

j k

v A cos Asin

A cos sin .


     

    
  (13) 

The expression (13) multiplies by  kcos   and 

average. As a result, one can obtain equations that de-

scribe the dynamics of the phases: 

   
1 kj

k j k

j kk H

sin
A 


   


  .  (14) 

Here kj kj j HA    . Taken into account that 

   
1 N

j

j k

exp i exp i
N 

   . Then the equations for 

determining the phases of two arbitrary particles can be 

obtained from the equations: 
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,
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Equations defining the distances between the phases 

of arbitrary particles will be useful: 
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 (16) 

Here kl = k – l. Analytical conclusions: 

1. If the phases are (initially) evenly spaced in the 

range from 0 to 2π, then all average values are equal to 

zero. This means that such a configuration (such a dis-

tribution) of the phases does not lead to a change in the 

distance between the phases. Synchronization is miss-

ing. 

2. Let the phases be slightly irregular. In addition, 

we will assume that the synchronization process has 

started ( k l j k;    ). In this case, to determine 

the dynamics of the change in the position of the phases 

in the right-hand side of equation (16), only the second 

term can be saved:  

 2kl N klsin     .  (17) 

Equation (17) has singular points with coordinates 

kl n   , n – an arbitrary integer. Moreover, only those 

for which n is even (n = 2m) will be stable. This means 

that in the presence of a non-uniform arrangement of 

phases, their synchronization will always be observed. 

All phases will tend to a certain stable position. Moreo-

ver, the speed of movement to a steady state is de-

scribed by the function:  

(0) ( 2 )kl kl Nexp      .                   (18) 

The upper sign determines the phase divergence 

from unstable stationary points, the lower sign deter-

mines the rate of decrease in the distance between the 

phases.  

3. RESULTS OF NUMERICAL  

RESEARCH 

The dynamics of the phases can be traced in more 

detail by numerical methods. For this, the system of 

equations (14) was solved numerically. We note right 

away that all the features described above were clearly 

observed in numerical studies. Moreover, to see the 

analytical conclusions formulated above, it was enough 

to consider 10 oscillators. 

 

 
Fig. 1. All phases were initially evenly distributed 

in the phase range from 0 to 2. During the entire 

counting time, the value of the phases of each os-

cillator did not change 

 

 

 

 

 

 

 

Fig. 2. The phases of all particles tend to one 

stable phase 

 
Fig. 3. Synchronizing the phases of the oscil-

lators. The case when the phase of one of the 

oscillators violated the uniform distribution. 

The phases of the oscillators are presented, 

which are located on the lower half  

of the circle (see Fig. 2) 

 
Fig. 4. Synchronizing the phases of the oscil-

lators. The case when the phase of one of the 

oscillators violated the uniform distribution. 

The phases of the oscillators are shown, which 

are located on the upper half of the circle 

 (see Fig. 2) 
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4. SUPPRESSION OF PHASE  

SINCHRONIZATION 

Thus, in the general case, within the framework of 

the considered model, the system of charged particles 

becomes unstable when the number of oscillators 

exceeds the critical one. The question arises about the 

mechanisms of suppression of this instability. The first 

thought that comes up is that the presence of a sufficient 

level of fluctuations will not allow the 

phase  synchronization process to take place. In general, 

this is a rather difficult problem to solve. However, 

estimates for the required value of fluctuations are easy 

to obtain. To do this, add to the right-hand side of the 

equation for the phase a term that describes the presence 

of random forces (additive random forces): 

  

  

 

1

( )
l k

l lN

j k

j l ,k

exp i
NIm

exp i i


 
    

      
    
  


.       (19) 

Here 
1 N

lN lj j

j k ,ll

A
A 

   ; 
2 2/lj lje R mc  . 

For simplicity, we will assume that the addition on 

the right-hand side of the system of equations (19) is a 

delta-correlated random function: 

 1 10( t ) ; ( t ) ( t ) D t t .          (20)  

It is possible obtain such conditions that the iffusion 

process will suppress synchronization:  

  
24D N   .  (21)  

CONCLUSION 

Above, we considered a simple model in which the 

elements of coupling between the oscillators are weak 

electromagnetic fields, which are excited by rotating 

electrons. Even in this case, at a sufficiently high 

density of oscillators, instability (oscillatory instability) 

may arise. A high probability of the occurrence of phase 

synchronization, and as a result, the occurrence of 

instability, arises when the ensemble of oscillators is 

subjected to an external synchronizing field. The 

mechanisms of such external synchronization are 

currently well studied (see, for example, [7–9]).  

A few words should be said about plasma 

diamagnetism. One charged particle in a magnetic field 

is diamagnetic. However, in a plasma, the rotation 

phases of particles are random. As a result, the currents 

of these particles cancel each other out. The fields that 

are excited by these currents are also compensated. The 

intensity of the radiation field of one particle is very 

small. Therefore, at low plasma densities, the effect of 

these fields is insignificant. Plasma diamagnetism 

disappears within the framework of the model 

considered above. Thus, the above-described feature of 

the dynamics of plasma particles will mainly manifest 

itself at high plasma densities.  
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НЕСТІЙКІСТЬ СИСТЕМИ ЗАРЯДЖЕНИХ ЧАСТИНОК У ЗОВНІШНЬОМУ ПОСТІЙНОМУ  

МАГНІТНОМУ ПОЛІ 

В.О. Буц, Д.М. Ваврів 

Описано результати дослідження особливостей динаміки системи заряджених частинок (електронів) у 

зовнішньому магнітному полі. Розглянута модель практично збігається із моделлю ідеальної плазми. Елект-

рони такої плазми обертаються із циклотронною частотою. Обертання заряджених частинок призводить до 

випромінювання електромагнітних хвиль. Напруженість поля цих хвиль, що випромінюються, дуже мала. 

Тому зазвичай цими полями нехтують. У цій роботі ці поля враховуються. Показано, що зі збільшенням гус-

тини осциляторів може розвиватися коливальна нестійкість. Простежена динаміка фазової синхронізації цих 

осциляторів. 
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