
17ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2023. № 3: 17—22

C i t a t i o n: Timokha A.N. Th e Bateman-type variational formalism for an acoustically-driven drop. Dopov. Nac. 
akad. nauk Ukr. 2023. № 3. С. 17—22. https://doi.org/10.15407/dopovidi2023.03.017

© Publisher PH «Akademperiodyka» of the NAS of Ukraine, 2022. Th is is an open access article under the CC BY-
NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)

МАТЕМАТИКА
MATHEMATICS

https://doi.org/10.15407/dopovidi2023.03.017
UDC 532.595 

A.N. Timokha, https://orcid.org/0000-0002-6750-4727 
Institute of Mathematics of the NAS of Ukraine, Kyiv, Ukraine
E-mails: tim@imath.kiev.ua, atimokha@gmail.com 

Th e Bateman-type variational formalism 
for an acoustically-driven drop
By employing the Clebsch potentials, the Bateman-type variational formulation for a drop levitating in an acoustic 
fi eld is proposed when both fl uids, liquid drop and external ullage gas, are barotropic, inviscid, compressible and admit 
rotational fl ows. 
Keywords: Bateman variational principle, Clebsch potentials, acoustical levitation. 

Idea of the present paper comes from [1, 2] whose objects are two oscillating compressible ideal baro-
tropic fl uids when an acoustic vibrator is located in one of them to both generate a high-frequency 
acoustic fi eld and govern the interface motions. Physically, these two papers deal with an acoustical 
positioning of a large liquid mass (volume) in microgravity conditions and an acoustically-levitating 
drop, respectively. Irrotational fl uid fl ows are assumed that made it possible to show how to de-
rive the corresponding free-interface boundary value problem based on hydrodynamic variational 
principles of Hamilton-Ostrogradskii’ and Bateman’s types. Specifi cally, the Hamilton-Ostrogradskii 
principle requires a kinematic constraint but the Bateman’s ones derive the complete free-interface 
boundary value problem. Th e latter fact makes the Bateman-type principles of especial interest as 
being important for the multimodal modelling in the liquid sloshing dynamics and, through separa-
tion of fast and slow times directly in the action, for deriving a quasi-potential energy functional of 
the so-called vibro-equilibria, which are time-averaged interfaces between the two fl uids that diff er 
in the considered cases from capillary interface shapes governed by gravitation and surface tension.  

Assuming rotational fl ows for acoustically-levitating drops can be important due vortices in 
fl uids and/or rotation of the liquid drop itself [3, 4]. Th is assumption requires a generalization of 
the Bateman-type variational principles like it has recently been done in [5] for the liquid sloshing 
problem. Such a generalization is proposed in the present paper. 

Th roughout the forthcoming text, two compressible barotropic fl uids with, possibly, rotation-
al fl ows, external ullage gas 1 ( )Q t  and liquid drop 2 ( )Q t , are considered in the inertial Oxyz  co-
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ordinate frame as illustrated in Fig. 1. Here, Σ(t) denotes the unknown a priori interface between 
fl uids defi ned implicitly by the equality Z ( , , , ) 0x y z t   and the prescribed surface ( )S t  bounding 
the ullage gas whose vibrational motions are described by the equality ( , , , ) 0Y z y z t  , where Y  is 
the prescribed function. Th e outer normal vectors n  are determined by / | |   on Σ(t) and 

/ | |Y Y   on ( )S t , respectively. 
Th e two fl uids are compressible with densities 1 ( , , )x y z  and 2 ( , , )x y z , so that the mass 

conservation

( )

 1, 2
i

i i
Q t

dQ M i    (1)

can be treated as geometric constraints; ( , , ) – , ( , , )U x y z x y z   g r r  is responsible for the grav-
ity fi eld.

Th e velocity fi elds in ( )iQ t  are (non-uniquely [3]) governed by the Clebsch potentials 
, , , ,  ( , , , )( )i ix y z t m x y z t , and , , , , 1, 2( )i x y z t i   as follows 

 i i i im  v . (2)

Based on [6, p. 47], the following Bateman-type Lagrangian is introduced
2

2

1 ( )

 [( ( )1, , , , ) – ,
2

]
i

i i i i i t i i t i i i
i Q t

L m Z m U E dQ


               iv    (3)

where ( )i iE   is the inner energy of the barotropic fl uids for which the pressure is postulated by 
2 ' ( )i i i ip E   .  (4)

Th e Lagrangian (3) yields the action
2

1

2

1

( , , , , ) [ ( , , , , ) ]  
t

i i i i i i i i i i
t i

W m L m Z M dt


          for 1 2 ,t t   (5)

where ( )i i t    are the Lagrange multipliers caused by 
the geometric constraints (1). Th e action (5) is a func-
tion of the fl uid densities, the Clebsch potentials and the 
instant free-interface shape. Th e zero fi rst variation of 
the action (5) by , , ,i i i im   , and   should derive the 
free-interface boundary value problem, which describes 
behaviour of the two fl uids due to prescribed vibrational 
motions of ( )S t .

Remark 1. In contrast to the Bateman-type variational 
formulation for irrotational fl ows [1], the acoustical vi-
brator cannot be determined via the Neuman boundary 
condition on a fi xed gas box surface with anppropriate in-
tegral in the Lagrangian (3). One should instead introduce 
the moving surface ( )S t . 

S(t)n

n

Σ(t)

Q1(t)

Q2(t)

Fig. 1. Schematic sketch of a levitating drop 
and introduced notations
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Henceforth, we assume that the Clebsch potentials are smooth functions in 1 2( ) ( )Q t Q t . 
Th is implies in particular that these functions can be analytically continued through the smooth 
interface ∑( )t . Using the calculus of variables, specifi cally, the Reynolds transport and divergence 
theorems [7, Appendix A], makes it possible to establish the following propositions.

Lemma 1. Under the smoothness assumption above, the zero fi rst variation condition 

1 2,
0                0

i i t t
W subject to      (6)

is equivalent to the continuity equation

( ) 0             ( )t i i i iin Q t     v ,  (7)

and the normal-velocity conditions 

1      ( )         ( );               ( )             ( ). t t
i

Yon t a on S t b
Y

  
      

 
v n v n  (8)

Th e proof is based on the following derivation line with substituting the second condition of (6):

2

1 (

2

1 )

[ ( )]
i

t

i t i i i
i Q tt

dQdt


         v

2

1

2

( ) ( )1
[ ]( )  

i i

t

i i i t i i i
i Q t Q tt

d dQ dQ
dt

          


   v

1 1 1
Ó( ) ( )

Æ Y( 1)
Æ Y

i t t
i i i

t S t

n dS n dS
                        

 v v dt.

Lemma 2. Under the smoothness assumption above, the zero fi rst variation condition 

0 
im W    (9)

is equivalent to the equations

0t i t i i id       v ,  (10)

which implies that the Clebsch potentials i  remain constant values during motions of liquid parti-
cles (the vortex lines move with fl uids and always contain the same particles).

Th e proof is based on the expression for this fi rst variation

2

1 )

2

1 (

[ ]  0.
i

t

i i t i i i
i Q tt

m dQ dt


         v

Z
Z∑



20 ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2023. No 3

Timokha A.N. 

Lemma 3. Under the smoothness assumption above and the zero variational condition (6) for 
the action [equivalent to (7) and (8)], the zero fi rst variation condition 

1 2,
0                0

i i t t
W subject to      (11)

is equivalent to

0t i t i i id m m m    v ,  (12)

which has the same hydrodynamic meaning like (10) but for the Clebsch potential im .
Th e proof uses is the following derivation line
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t

m n dS
               

 v

together with the second condition of (11) and (8) to show that

( ) [ ( )]  [ ] 0 ( )t i i i i i i t i i i i t i i im m m m m               v v v

that, accounting for (7), deduces (12).
Lemma 4. Under the smoothness assumption above, the zero fi rst variation condition

0
i
W   (13)

is equivalent to the equality 

2 ' 0( ) ( ) (
2

)1
t i i t i i i i i i im U E E t            iv   in  ( )iQ t , (14)

which can be treated as the Bernoulli equation (Lagrange-Cauchy integral) of the Euler equation 

             ( )i
t i t i i i i

i

pd U in Q t
      


v v v v  (15)

provided by (9), (11) and defi nition (4). 
Th e proof of (14) becomes obvious aft er taking the variation of (5) by i . To prove (15), one 

should apply the gradient operation to equality (14) and defi nition (4). Th e second application 
yields the derivation line 

' ''( ) ( )[2 ]i
i i i i i i

i

p E E
     


[ '( )) (i i i i iE E   ].

∑
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Furthermore, the left -hand side of (15) can be re-written as follows

     

                  
( )

[ ] { ( )) }(

i i i i i

i i i i t i i t i t i i i i i i

m m

d d m m m m

i i iv v v

v v

      [ ]t i i t i i i i i i i im m dm         v v  (16)

and, applying the gradient operation to the fi rst three quantities in (14) gives 

21 [ ]
2t i i t i t i i t i t i i im m m                     

 
i iv v  

) . ( [ ]i i i i i t i i t i i i i i im m m m m d              i i iv v v v  (17)

Th e right-hand sides in (16) and (17) are identical provided by (10), (12) following from the 
zero-variation conditions (9) and (11).

Lemma 5. Under the smoothness assumption above, the zero fi rst variation condition 

0W   (18)

is equivalent to the interface condition 

2
1 1 1 1 1 1 1 1[ ( ) ( )]1

2t tm U E t           v

2
2 2 2 2 2 2 2 2 ]1 ([ ) )(

2t tm U E t           v   on ( )t , (19)

which is the same as the traditional dynamic interface condition 

1 2p p  on ( )t   (20)

provided by (6), (9), (11) and defi nition (5).
Proof. Equality (19) obviously follows from the zero-variation condition (18) by  :

2

1

2
2

1 ( )

1 (–1)( ) 0. )
2

[
|

(
|

]
i

t i

i t i i t i i i i
it Q t

m U E t dQ



            

  iv

In order to deduce (20), one should note that defi nition (5) and Bernoulli equation for barotropic 
compressible fl uids (14) derive 

21[ ] –
2

( ) ( )i t i i t i i i i i im U E t p           v

provided, according to conditions of the Lemma 4, by (6), (9), (11).
Summarizing the Lemmas 1-5 shows that the Bateman-type variational formulation derives 

a free-interface boundary value problem on a drop oscillating in an acoustic fi eld excited by pre-
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scribed vibrations of the box surface S(t) as shown in Fig. 1 by consequently applying the neces-
sary condition (6), (9), (11), (13), and (16) to the action (5). Th e main result can be formulated as 
the following theorem. 

Th eorem 6. Under the smoothness assumption above, the zero fi rst variation of the action (5),

0
i i i im ZW W W W W W               subject to 

1 2,
0i t t

   and 
1 2,

0 ,i t t
 

is equivalent to the free-interface boundary value problem on acoustically-driven liquid drop 2 ( )Q t  in ul-
lage gas 1 ( )Q t  for a prescribed vibration of the gas box on ( )S t . Th e diff erential boundary value problem 
consists of the continuity equations (7) in fl uid domains, the kinematic boundary condition (8a) on the 
interface and the `vibrating box surface’ condition (8b), the Bernoulli equations (14) (alternatively, the 
Euler equations (15)) in fl uid domains, the dynamic interface condition (20) on the interface as well as 
the vortex line conditions (10) and (12) provided by the defi nitions of pressure (5) and velocity fi elds (2). 

Conclusions and discussion. By using the Clebsch potentials, the Bateman-type variational 
formulation from [1, 2] can be generalised for barotropic fl uids to the case of rotational fl uid fl ows. 
Th e free-interface boundary value problem derived from the Bateman-type variational formula-
tion not necessary has a unique solution. One should then consider viscous fl uid fl ows.  

Th e author acknowledges the fi nancial support of the National Research Foundation of Ukraine 
(Project number 2020.02/0089).
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ВАРІАЦІЙНИЙ ФОРМАЛІЗМ ТИПУ БЕЙТМЕНА ДЛЯ АКУСТИЧНО КЕРОВАНОЇ КРАПЛІ 

Використовуючи потенціали Клебша, пропонується варіаційне формулювання типу Бейтмена для краплі, 
що левітує в акустичному полі, коли обидві рідини, крапля рідини та зовнішній газ є баротропними, 
нев’язкими, стисливими та допускають вихорові рухи.
Ключові слова: віаріаційний принцип Бейтмена, потенціали Клебша, акустична левітація.


