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Analytical expressions for the elastic interaction energy of radiation point defects of the dipole type with basic
dislocation loops in zirconium are obtained for edge with Burgers vector b° =1/2[0001] and mixed with

b® =1/6 <2023 > using Lifshitz-Rosenzweig method. They were used in numerical calculation (by the finite
difference method) of the bias of these loops in a toroidal reservoir taking into account the elastic anisotropy of a
hexagonal crystal. The toroidal geometry of the reservoir allows calculations for a loop of any size and without any
correction of the elastic field in its area of influence. In the approximation of the center of dilatation, the
dependences of the bias of loops on their radius and nature are obtained. It is suggested that bias is determined only
by the edge component of its Burgers vector. The essential role of the form of the boundary condition on the outer

surface of the reservoir is shown.
PACS: 62.20.Dc; 62.20.Fe

INTRODUCTION

It is known that radiation damage in metals and
alloys during their bombardment by energy particles is
manifested in the form of atomic displacements, the
initial morphology of which depends on the energy
transmitted during the collision of particles with lattice
atoms. Thus, megaelectronvolt electrons create damage
in the form of Frenkel pairs, i. e. isolated vacancies and
self-interstitial atoms (SIA). Fast neutrons and heavy
ions cause damage in the form of displacement
cascades, the thermal relaxation of which leads to the
formation of not only single Frenkel pairs, but also
embryos of interstitial and vacancy dislocation loops.
Further diffusion evolution of the latter plays a very
important role in many phenomena of radiation-induced
deformation of irradiated metals and alloys. A typical
example of such deformation is the radiation growth
(RG) of hexagonal close-packed (hcp) metals, in
particular zirconium — the main structural material in the
production of fuel elements and fuel assembls of nuclear
reactors of the WWER type [1]. The RG phenomenon is
accompanied by a change in the shape of the material
without the application of an external load and without a
noticeable change in volume. Thus, zirconium expands

in (a) -direction and shrinks along the <C> -axe during

the process of radiation growth [2, 3]. This disturbs the
stability of the initial geometry of the fuel claddings,
which negatively affects the service life of the reactor.
Such behavior of zirconium is associated with the
nucleation and growth of vacancy dislocation loops on

the basal planes, “eating” the crystal along <C> -axe. At

the same time, mainly interstitial loops should grow on
prismatic planes, forming additional extraplanes in

(a) -direction. However, the mechanism for the growth

of vacancy loops is not yet clear.
The most popular version of the cause of radiation
growth of zirconium is anisotropic diffusion of radiation
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point defects (PD) between its planes (DAD theory —
diffusional anisotropy difference) [4,5]. Its main

assumption is as follows D* /DS > D?/D;. Here
D2 is the diffusion coefficient of PD of m -type in the

plane of zirconium; DS is the diffusion

basal M

coefficient in <C>—direction (subscript i and v refer to

vacancies and SIA respectively). However, there is no
experimental confirmation of this inequality to date.
Moreover, recent numerical calculations [6] have shown
that vacancies and SIA really migrate diffusionally

mainly parallel to the basal plane (D, /Dyf, >1),

however, the inequality in the range of reactor
temperatures (T <800K) is just the opposite

D? /D < DZ/D;. Therefore, the classical elastic

ideology: EID — elastic interaction difference [5] is used
in the paper. Its central element is the concept of
preferential absorption by internal extended crystal
defects (sinks) of radiation PD of a certain type, known
as bias. The physics is that SIA elastically interacts with
dislocations more strongly than vacancies. As a result,
the total diffusion flux of SIAs on them is greater than
the vacancy flux, and this difference is interpreted as a
preference for the absorption of SIAs. The vacancies
remaining in excess are absorbed by the pores. This way
is accepted to explain the phenomenon of radiation
swelling of cubic metals and alloys. As for the radiation
growth, within the framework of the elastic ideology,
the growth of vacancy loops in zirconium is possible in
the presence of an uncompensated vacancy flux into the
basal plane. The latter means that prismatic interstitial
loops, as well as edge dislocations, should more
strongly absorb SIA, i.e. their bias should be higher than
the basic ones. Therefore, when constructing a theory of
RG, one must be able to calculate this value for both
types of loops. In this regard, the paper presents the
methodology and results of calculating the bias of two
types of basis loops in zirconium with Burgers vectors
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b® =1/2[0001] and b® =1/6<2023>. These are

vacancy loops, the first is purely edge, and the second
contains a shear component.

LOOP BIAS. FORMULATION
OF THE PROBLEM

The sink bias is determined by a relation of the form
B=1-2,/Z,. Here subscripts v and i correspond to
vacancies and SIA respectively. If B > 0, one says that
the loop has a preference to SIA. The dimensionless
quantity Z, . is called the absorption efficiency of the
PD by the sink. It appears as a result of calculating the
PD diffusion flux to a specific sink. Under the
assumption of diffusion isotropy of the medium
(Dj; = Doj) the PD flux J to the dislocation loop is
found by solving the following diffusion problem in its
region of influence using the quasi-stationary
approximation:

wdiv j(r)=0; wj(r)=-DC(r)B Vu(r);
B=1/kT M)

B u(r)=In (ﬁexp(ﬂam(r))j;

—ISI [ni(r) Jdo.

Here C(r) is the concentration of migrating PD; j(r),
u(r)— their flux density and chemical potential,
respectively; E,,(r)— their interaction energy with the

loop; C°— equilibrium thermal concentration of PD in
the crystal in the absence of a stress field E,,. The
integral is taken over an arbitrary surface containing the
loop with the outer normal n. Equation (1) should be
supplemented with boundary conditions. The inner
surface S.is usually chosen in the form of a torus
containing a dislocation line. The torus minor radius r
corresponds to the dislocation core radius. The
boundary condition on it has the form:

C(r)exp(E;()ls, =0. @)

The condition has the traditional form and
corresponds to the value of the PD chemical potential at
the dislocation core ulsc:O, when we neglect the
linear tension of the loop and the effect of coalescence
of loops of the same nature during annealing. Outer
surface S, following the authors [7] we choose in the
form torus coaxial with S. with generating circle radius
R, Which corresponds to the radius of the loop
influence region. By analogy with (2) we formulate it
for the chemical potential in the form:
Buls,, =IN(C/C*%). Here C is the average PD
concentration in an effective medium that simulates the

influence of all sinks. This is the standard form of the
PD chemical potential in an effective medium, where
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the influence of a particular sink is neutralized by the
others. Then:

C(r)exp(E;, (1), =C ®3)

It remains to find interaction energy of PD with the
loop. According to Eshelby [8] it looks like:

Eint (r) = IJ u (r)
R =Py . (4)
Here u; (r)— deformation field caused by the loop in the

point where the PD is situated. The point defect itself is
described by the distribution of volumetric forces
without moment. If the elastic dipole has an axis of
symmetry which coincides with <c>-axis of hpc crystal,
then tensor B, has only diagonal components, which in

the abbreviated description can be written as
P=PQLLle), P=P, e=P/P. Here P, and P, —
strength of the force-dipoles in (a)- and (C)

directions. Note that P,and P, do not have a simple

physical meaning for defect in crystal with non-cubic
symmetry. Therefore, in papers [9, 10], by analogy with
P=P@1¢), displacement dipoles Q =Q@L1 ),
Q=Q,, 6=Q./Q, were introduced. They are
connected with force-dipoles by relation B, =C;Q;,
C; is the crystal elastic moduli. In this case, it was

assumed that the change in the volume AV of the finite
crystal caused by a point defect is related to the
displacement dipoles by the relation AV =Q(2+0).
Then for hexagonal crystal:
E,,(r) = - av Tt et oG
2+06(¢)

XI:Sp u; (r) — (- &)y (I’)],

g(C..+C.)-2C
5(8) — ( 1(1: 12) 13 (5)
1 —ECp3

and one need to calculate the deformation field created
by a particular loop.
There are two ways of calculating the field u;(r).

First one is solving of equilibrium equations in terms of
displacements with appropriate boundary conditions. In
the case of zirconium, it is applicable for a loop with a

Burgers vector b°® =1/2[0001] (axial symmetry). The

second is through the tensor Green's function G; (TGF)

equations of equilibrium of a given elastic medium,
which allows calculating the displacements created by a
loop with any Burgers vector. The second option is used
in the work, a TGF is calculated by the method Lifshitz-
Rosenzweig [11]. As a result, for the vacancy loop
b® =1/2[0001] and dilatation center (e=1) in the

Cartesian coordinate system we have [12]:
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|:(1 32-3 )Q(Ts )+ 273 - 2'3

dQ

drgl’

20132 B (Cn + Clz) C33

Qz3) =Cpu [ V() +K (@) [+ Cu [V(E) +W (D) | ;. =

K(Ts)_ N(Ts) 273 d72

where integration is carried out over an arbitrary surface
Sy, based on the line of dislocation;

point coordinate; r’ — surface point coordinate S, ; b°

= : (6)
4C13 - 2C33 - (Cll + Clz)
=22 /|r—r[;
2\ _ 2 2 2 2 dq)
V(r;)=1-3c;)P(z5) + 205 (L-75) —
dz;
dF
W(z)=F(z)-2(1-7))—;
3
dN dM
3T3M(2'3 )+ 2r3 1-7, N— >
3 dz;
: variable 2. To calculate a similar value for the loop
' — observation b® =1/6 <2023 >, it is convenient to represent its
Burgers vector as the sum of two vectors

is Z-component of the Burgers vector. Functions
o(z2), F(Z), N(Z), and M(c?) are very
complicated. Their explicit expressions are given in
[12]. It is important that they all depend on only one

S
(r)— AVP— |d |

dvy

EDS

int

(r) =Eq

int

H(z}) =3{¥(s})-Y ()}

3

300 H@) o =(x=X)|r=r’

dy
+2T32d—r2+2(1—'[§)d—2;

1/6[ 2023]=1/2[0001]+1/3[1010 |=b® +b°. Then,
choosing the axis “x” of basal plane “xy” Cartesian
coordinate system along b®, we get:

(7

3

W(3)=Cy [V(E)+W(z) |; Y(£)=Cy[V () +K()].

Note that the second term in (7), in contrast to E2

int ?
is symmetric with respect to replacement z — -z,
X — —X, so in the lower half-plane (z <0) the picture
is the same, but turned to 180°. Thus, it is necessary to
solve the diffusion problem (1)—(3) numerically in the
region of influence of a loop with a given energy of its
elastic interaction with PD (6), (7) and find its bias.

CALCULATION PROCEDURE
AND RESULTS

We assume that the loops are in the form of a circle
with a radius R, lying in the plane z =0 (zirconium
basal plane) of a cylindrical system coordinates (7, ¢, z).
All calculations are performed using dimensionless
z—>z/b°;

the

r—>r/b°;
z'=0,

coordinates
(x=x")=rcosp—r'cos¢g’; since
integration in (6), (7) is carried out over the area of the
. Note that

the

loop; |r— r'|2 =r>+2z*-2rr'cos(p— ') +r"

due to isotropy in the crystal basal plane,
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dependence on the azimuthal angle ¢ in (6) is absent.
At the same time, in (7) it is conserved in the second
term due to the presence z; and it produces significant

problems in numerical calculations. Figs. 1 and 2 for

loop with radius R =20 in plane z=3 illustrate this
2.1

dependency in (7) I'f(r,z,¢,R) = j | ———1,1, H(t3)
SD -

for two regions: inner r=10 (point line), r=17 (solid
line) (see Fig. 1) and external r =23 (point line), r=25

(solid line) (see Fig. 2) (all values are measured in b®).
Wherein experimental values of the elastic moduli of
zirconium according to [13] (Mbar) look like:
Ci1=1.154; C;,=0.672; C;3=0.646; Cs3=1.725;

Css = C44 = 0.363. One can see, that in both regions the
function 1'% () changes sign when ¢=m/2 and
¢=3n/2, and in absolute value it increases with

approaching the dislocation line. It should be said that
the bias is not experimentally determined. It is estimated
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theoretically and a prediction is made regarding the
macroscopic deformation of the material, which can be
observed and measured experimentally. Therefore, in
order to avoid unnecessary complications in the
numerical calculation, we exclude the dependence on
the azimuthal angle ¢, averaging over it the function

02

0.1

Functions ILE
[

-0

-02

azitnuth angle

Fig. 1. Dependency of 1'%(p) on the azimuth angle for

R=20; z=3 and inner region of the loop r =10 ( point

line), r=17 (solid line)

In terms of a variable
w(r,z)=C(r,z)expE,, (r,z)/C  the diffusion
problem  (1)-(3) in dimensionless  cylindrical

coordinates taking into account isotropy in the basal
plane has the form:

82w+82w+(1_@j6_w_%8_w:0 ©

or* o \r or Jor oz oz

with boundary conditions
l//(r, Z) =0 on the inner toroidal surface
R-r. <r<R+r; 9
w(r,z)=1 on the outer toroidal surface

R-R,<r<R+R, for R>R

ext »

I""(p). Thus, in half of the
(3n/2<@<5n/2) this will be a positive addition to

E> in (7), and negative in another (/2 <¢@<3n/2).

one loop

functions ILE

azimuth angle

Fig. 2. Dependency of 1'%(p) on the azimuth angle

for R=20; z=3 and outer region of the loop
r =23 (point line), r =25 (solid line)

0<r<R+R, for R<R,.
Then for the flux and absorption efficiency Z,; we
have:

J :27zRD—CZ(rC,R,Rext),
(2]

Z(r,R,R,)= MLRHexp(—Eim(r, 7)) x

x[nVy(r,z) |do.

The diffusion problem (8), (9) was solved
numerically by the finite difference method. Fig. 3
shows a cross section of a toroidal reservoir containing
a loop [14].

(10)

ARB

Fig. 3. Coordinate system for a toroidal reservoir: a — R > Reyq; b — R < Rey

It is important to note that in the event (6)
(b® =1/2[0001]) the expression for the interaction

energy of the loop with the PD is symmetric with
respect to rotation around the “z” axis (does not depend
on the azimuthal angle ¢) and to change of variables

z—>-z. So its bias is determined by one capture
efficiency PD of type m (Z,) B® =1-Z,/Z,. In case
(7) (b® =1/6 < 2023>), although the average addition
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to E> does not depend on ¢, but it is of the opposite
sign in different halves of the loop. Therefore, the value
of its bias is determined by two efficiencies (Z(")
B® =1-(Z® +z2)/1(Z" +Z), corresponding to
positive (+) and negative (-) additions to (7).

Fig. 4 shows the dependences of the bias of the basis
loops of zirconium (B® and B™) on their radius (in
b®) for two values of the outer size of the toroidal
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reservoir: R, =200b°, which corresponds to the
dislocation density p~8-10° cm™(see Fig. 4,a) and
R,. =90b° (p~4-10° cm™ (see Fig.4,b)). Curves

with a maximums refer to vacancy loops, with a
minimum to interstitial; “e ™, “ A correspond to loops

with b° =1/2[0001] (B®), solid lines to loops with
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10! 102 10}

Loop radius, b2

b® =1/6 <2023 > (B ). Good quality agreement BP°

with B is seen ('we remind that in the framework of
the approximation associated with averaging over the
azimuthal angle). Hence follows an interesting and,
possibly, rather general conclusion that the bias of a
loop is determined only by the edge component of its
Burgers vector.
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Fig. 4. Dependences of the bias of the basis loops of zirconium ( B® and B ) on their radius for two values of the
external size of the toroidal reservoir: a— R,, =200b°; b - R,, =90 b"

It should also be noted that, in the region of small
sizes, vacancy loops have the smallest bias compared to
interstitial loops and rectilinear dislocations; they are
the main sink for vacancies, which contributes to their
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nucleation. In the region of large sizes, the situation is
the opposite. Interstitial loops become the main sinks
for vacancies. Therefore, they have no chance of
survival, which is observed in experiments.
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Fig. 5. Dependences of the bias of the loop with b® =1/ 2[0001] (B”) with different boundary conditions on the
outer radius of the toroidal reservoir: a - R,, =200b°; b - R, =90 b".

e — corresponds to the vacancy loop; m — to the interstitial

Fig. 5 reflects the role of the type of boundary
condition on the outer radius of the toroidal reservoir
R, - Inour case (9) it is w(r,z) =1, in paper [7] it is
w =expE, . . The result [7] is shown in Fig. 5 in red for
b® =1/2[0001] (B°) in
R,. =200b° (see Fig. 5,a) and R_, =90b° (see
Fig. 5,b): dependence of the bias on the loop radius does
not depend on its nature (vacancy or interstitial). The
result of solution (8), (9) is shown in blue. It is seen that
in the region of small loop sizes bias does not depaend
on kind of boundary condition on the outer radius of the
toroidal reservoir R, . With an increase in the size of

the loops, this symmetry is broken. In case y =expE

int *

a loop with case

int
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[7] we see monotonic growth of bias, in our case (9), a
maximum appears for vacancy loops, and a minimum
for interstitial loops. However, with R —o both
dependencies go to the same constant value of bias
corresponding to rectilinear dislocation. This behavior
of the bias factor is retained for both values of the
dislocation density. The positions of the maximum and
minimum are shifted towards the smaller sizes of loops
with increase in density of sinks (or with decrease in the
size of an external toroid). The magnitude of the bias
difference between our variant of boundary conditions
and the traditional one for both types of loops growth
too.
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SUMMARY

1. Base loops in zirconia are biased sinks, which
absorb SIAs more efficiently than wvacancies, since

B®, B™ >0 for both types of loops (see Fig. 4).
2. There is a good qualitative agreement between the
dependence of the bias of loops with b° =1/2[0001]

(B°) and b™ =1/6<2023> (B™) on their radius.
This allows us to assume that the bias of the loop is
determined only by the edge component of its Burgers
vector.

3. Boundary condition at the outer radius of the
toroidal reservoir (9) violates the traditional symmetry
in the absorption of PD by loops of different nature,
namely: the bias of the vacancy loop depending on its
radius has a maximum, while the bias of interstitial
loop- a minimum (see Fig. 5).

4. The bias of basic interstitial loops is the smallest,
so they can be considered the main sink for vacancies,
that makes their existence impossible. This is what is
observed in the experiment.
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METO/ JUPIIULA-PO3EHIIBEIMT' A B PACYETAX BIAS-®AKTOPA
BA3ZUCHBIX JTUCJOKAIIMOHHBIX ITETEJIb B IUPKOHUN

O.I'. Tpoyenxo, A.B. baouu, I1.H. Ocmanuyk

Merogom Jludmmna-Po3eHiBeiira mnonyueHbl aHAJMTUYECKHE BBIPAXKEHUs Ui JHEPTHU  YIPYTroro
B3aUMOJICHCTBUS PAMAllIOHHBIX TOYEYHBIX JEe(PEKTOB JMIOIBHOTO THMA C OA3UCHBIMU JHCIOKALMOHHBIMHU

TIeTIISMHI IUPKOHUS: KpaeBoii — ¢ BekTopoM broprepca b® =1/ 2[0001] ¥ ememanHoii — ¢ b =1/6 < 2023>. Onn

ObLIM KCIOJB30BaHBI JJISI YHCICHHOTO pacdyeta (METOJOM KOHEWHBIX pasHocteil) bias-dakropa stux merens B
TOPOMJIAIFHOM pE€3epByape € YYeTOM YNPYroil aHM30TPOIMM TeKCaroHaJIFHOTO KpucTamia. TopouganbHas
TeOMETpHsl pe3epByapa MO3BOJISIET IPOBECTH PACUETHI JUIA METIH JI000ro pasMepa U 0e3 Kakol-1nbo KOppeKuuu
YIPYroro mojs B e¢ 00JaCTH BIWSHUS. B npuOIMKeHUH HEHTpa JUIaTaliy MOoMydYeHbl 3aBUCUMOCTH bias-dakTopa
HeTenb OT UX paguyca U NPUPOAbL. BricKa3biBaeTCs MPEaNoNIoKeHHe 0 TOM, 4To bias-akrop onpenensercst TOIBKO
KpaeBoil cocraisitomeil ee BekTopa broprepca. [lokasana cymecTBeHHass poib (JOPMbBI TPAaHUYHOTO YCJIOBHS Ha
BHEIIIHEH MOBEPXHOCTHU pe3epByapa.
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METOJ .JII(I)HII/II_[A-PO3EHI_[BEI7H:A B PO3PAXYHKAX BIAS-®AKTOPA
BA3ICHUX JUCJTOKAINIMHUX ITIETEJIb Y IUPKOHII

O.I. Tpoyenko, A.B. babiu, II.M. Ocmanuyk

Meronom Jlipmuna-Po3eHiBelira oTpiMaHi aHaJITUYHI BUpa3u Ul €Heprii Mpy)KHOI B3aeMoJil pajiamiiiHux
TOYKOBUX J€()EKTIB AUMOIBHOrO TUITY 3 0a3MCHUMH JAMCIOKALiHHUMH METJIIMH LIUPKOHII0: KpalHoBOi — 3 BEKTOPOM

Bioprepca b° =1/2[0001] Ta — 3mimanoi 3 b™ =1/6<2023>. Boun GymM BHKOPHCTaHi U YHCENHHOTO

po3paxyHKy (METOJOM KiHIEBMX BimMmiHHOCTei) bias-pakropa mux meTens y TOpOigaibHOMY pe3epByapi 3
ypaxyBaHHSM IIPY)KHOI aHI30Tpomii reKcaroHaJbHOTO KpucTana. TopoigaibHa TeOMeTpis pe3epByapy I03BOJISIE
MPOBOIUTH PO3PAXyHKH I METi Oyap-saKkoro po3Mipy i 6e3 Oyap-sikoi KOpekmii mpy>KHOTO IMojisi B oOmacTi ii
BIUTMBY. Y HAOJMKEHHI [EHTpa JijaTarii oTpuMaHi 3aiexxHocTi bias-¢pakropa merens Bif iX pagiyca Ta MPHPOJIH.
BucnoBiroeTscss IpUIyIIEHHST TIpo Te, MO bias-(hakTop BHU3HAYAETHCS TINBKH KpailOBOIO CKIAIOBOIO i BEKTOpa
Broprepca. [lokazana cyrreBa pois popMu TpaHUYHOT YMOBH Ha 30BHIIIHII TOBEPXHi pe3epByapa.
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