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TRANSITION RADIATION OF A RELATIVISTIC ELECTRON BUNCH
ON A SEMI-INFINITE METAL CYLINDER
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Transition radiation of a relativistic electron bunch, which arises when it collides with the end face of a semi-
infinite ideally conducting cylinder, is considered. An electron bunch moves along the axis of a semi-infinite cylin-
der. Expressions for the field strength of electromagnetic radiation in the wave zone are obtained. The influence of
the guiding properties of an ideally conducting cylinder on the directional diagram of the transition radiation is in-

vestigated.
PACS: 41.75.Lx, 41.85.Ja, 41.69.Bq

INTRODUCTION

The effects of transition and diffraction radiation of
relativistic electron bunches [1 - 4] can underlie the pro-
cesses of excitation of pulsed electromagnetic radiation
in a wide frequency range [5 - 10]. In [10] the process
of excitation of an infinite ideally conducting cylinder
by a relativistic electron bunch was investigated. There-
at the situation was considered when an electron bunch
collides with a cylinder perpendicular to its cylindrical
surface. Below we will consider a semi-infinite ideally
conducting cylinder, which is excited by a relativistic
electron bunch when it collides with the end face of the
cylinder. It is in this way the ultra-wideband antennas
were excited by a relativistic electron beam [7 - 9]. Ex-
pressions for the intensity of electromagnetic radiation
in the wave zone are obtained. The directional diagram
of transition radiation and, first of all, the influence of
the guiding properties of a cylindrical conductor on its
formation is investigated.

1. STATEMENT OF THE PROBLEM.
BASIC EQUATIONS

We consider a semi-infinite ideally conducting circu-
lar cylinder of radius a. A relativistic electron bunch
moves in vacuum along the cylinder axis and collides
with its face end. For simplicity, we will consider an infi-
nitely thin tubular electron bunch with a current density

]=—éZQ5(r_r°)lT[t_Z/V°j: )
2zr t,

where €, is the unit vector in the longitudinal direction,
Q is the charge of the bunch, r, is the radius of the
bunch, r,<a, v,, t, are velocity and duration of the
bunch, &(r—r,) is the delta function. The dimensionless
function T(z) describes the longitudinal density profile
of the bunch and satisfies the normalization condition

TT(T)dT =1,

where T(7) =T(-7) is symmetrical function.

Let us represent the excited electromagnetic field
and the current density in the form of Fourier integrals
over frequencies. So, for example, for a magnetic field
we have

H(r,z,t) = T H, (r,2e"do, (2
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where
H, (r,z)= 1 .[ H(r,z,t)e'"dt
2 *,

is Fourier amplitude of the magnetic field.

The system of Maxwell's equations for the compo-
nents of the Fourier amplitudes of the electromagnetic
field has the form

oE oE
o et =ikH,,, 3a
oz or 0" g (32)
EﬁrﬁHw +ik0sz =—§6(r_ro)Tweik'Z, (3b)
ror or ct, r
oH
ap :_ikoEwr' (3C)
oz

where k, =w/c, k =awlv,,

TwzijT 2 gt
2r =\t

Let's divide the space into three regions:
I-r,>2r>0, z<0;
Il-azrxr, z<0;
Il —co>r>a, co>2z>-—o0.
The problem is reduced to solving the inhomogene-

ous system of Maxwell's equations (3) with the follow-
ing boundary conditions. On the current surface r=r,,

the longitudinal component of the electric field is con-
tinuous, and the magnetic field experiences a leap

r=r,, E!(z<0)=E)(z<0),
H), (z<0)—H,, (z2<0)= —i—QTwe‘k'Z. (4)
brO

On the boundary r =a in the left half-space z <0,
the tangential components of the electromagnetic field
are continuous

r=a, E!(z<0)=E'(z<0),

H”'J';(z<0):H”'J'w(z<0). (5)
In the right half-space z >0 on the surface of a per-

fectly conductive cylinder, the longitudinal component

of the electric field vanishes

r=a, E"(z>0)=0. (6)

wZ

And, finally, at the end of a semi-infinite cylinder,
the radial component of the electric field also vanishes

a>r>0, E (z=0,r)=E'(z=0,r)=0. (7)

r
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2. METHOD OF SOLUTION. MAIN RESULTS

In the system under consideration, the electromag-
netic field disappears at infinity, so the electromagnetic
field can be sought in the form of a superposition of
waves propagating in the longitudinal direction

E' (r,z)= j e, (k)J, (vr)e*dk , (82)

H!, (r,2) =ik, T e (K)vJ,(vr)edk . (8b)

E"(r,2)= T[ez(k)Jo(vr)+e3(k)H(§” (vr) 'k, (8c)

@l

—o0

H" (r,z) =ik, T v*[e,d, (vr)+e,H (vr) pdk ,(8d)

0P

(8e)

@l

E"(r,2) = Te4 (K)HP (vr)e*dk »

H" (r, z)——ikoTeA(k)v‘lel)(vr)e‘kzdk, (8f)

wp

kZ—k?, e (k)..e,(k) are the sought amplitudes of
the fields in the corresponding regions, J_(vr), H® (vr)
are the Bessel and Hankel functions, n=0.1.

Substituting fields (8) into boundary conditions (4) -
(6), we obtain a system of paired integral equations,
which, using the Wiener-Paley-Rappoport lemma, can
be reduced to the following system of functional equa-
tions

[el(k) &, ()13, (vip) —&s(K)H;" (vi) = (), (9a)
—l—{[el(k) &, (k)13 (vry) —&; (K)H” (vig )} = (k) -

Qg1 (9b)
ctr, “2zi(k—k)
e, (k)J (va) +[e,(K)—&, (OIHE (Vi) =0 (), (9)

i —{e (k)3 (va) +[e; (k) —e, (K)IH” (viy )} = A7 (k) ,

e, (K)H (vip) =" (k) , (9d)
where ¢ (k), w (k), € (k), A7 (k) are analytic func-
tions in the lower half-plane of the complex variable k,
and «*(k) is the analitic function in the upper one,
Imk, <0.

From the boundary condition at the face end of the
cylinder (7) it follows that the following amplitudes are
even

e, (k)=¢e, (-k), «=123. (10)

It can be shown that the system of functional equa-
tions (9), taking into account relations (10), is equiva-
lent to the system of Hilbert boundary value problems
on the real axis Imk =0

" (K)—¢ (k) =0, (11a)
. L 2Q K
y' (K) -y (k)= ot T, (k2K (11b)
0 K)-0 (K)=x"(K)-x (K), (12a)
AT (K) =4~ (k) =—H K)[x" (k) —x~ (K)], (12b)

ik_\le(vro)[co+ (k) +¢" (K)]+ Jo (Vi) [y ™ (k) +y~ (K)] +
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+3{i % J,(va)[e" (K)+6~ (K)]+ J,(va)[A" (K)+ A~ (k)]}

2%, w (k) =k (K)

T30 (Vo)

v, H9(va) ctbr (k2 k?) '
where 0" (k) =6 (=k), 17 (k) =4 (k) etc,
®
H(k) = %o ik, H; : (va)
v H“(va)

Solutions of the boundary problems (11a), (11b) are

found trivially
' (K)=¢ (k) =0,

Q. 1
V0= Zeitk k)
e

T .
ctr, “27i(k+k,)

Using the Sokhotsky formulas [11], the system of
boundary problems (12) can reduce to the following
singular equation for the function kx =x" —x~

21 (K) Lac(k) = LH (k) & (k) — H (k) La(k) =
4Q J,(vry) K,

where

w 2 2y ! (13)

ct a “ J,(va) mi(k®—k)

_iky Ji(va) - (k')
1(k) = T Lf(k)_ j o dk (14)

Integral (14) should be understood in the sense of
the principal value. It is not possible to find a general
solution to this integral equation. However, in the limit-
ing case of a conducting cylinder of small radius
k,a <<1, the solution can be found approximately. In
this limiting case, the term in the integral equation (13),
which proportional 1(k) ~k,a can be neglected. Then

the integral equation is simplified and takes the form

LH (k) (k) + H (k) La(k) = 4Q K

ct,a “ zi(k®—k?) (15)

After replacement
U (k) = H(k)x(k)
the simplified integral equation (15), in turn, is reduced
to the boundary value problem [12]
2Q K,
ot a C mik? —k?)
the solution of which can be found explicitly

4Q 1 ko X'k vk

U =-Hx" =

= k(i)
xj _ V'j‘)_kz' dk’ (16)
2 XT(K)(K™ =k )(K'—k)

where X*(k) is solution of homogeneous conjugation
problem
X' (K)=GK)X (), Hy"(va)
iH" (va)
The solution to this boundary value problem has the
form [11]

X~ (k) =ex

G(k) =

j“G(k) X (K) = . (17)

1
X~ (k)
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The contour C runs along the real axis and bypasses
the singularity k' =k from below. The integral included
in (16) is easily calculated by closing the integration
contour into the lower half-plane. As a result, we obtain

(k) =22 T ik +K)(k, K, X7(k)
ct,ak, 2zi(k, —k) X (k)
Relation (9d), taking into account the obtained ex-
pression for the function x*(k), makes it possible to de-
termine the amplitude e, (k) for the region r>a and,

accordingly, the expression for the magnetic field in this
region

HM :_ZQT{U \fko_kl %
“ ct,a 27zX’(k)
X (K)HO (vr)e®  dk

[k, —k (k, —k) H(l’(va)

We are primarlly mterested in electromagnetic radia-
tion in the wave zone k,R >>1, R is the distance from
the origin of coordinates to the point of observation.
Using the asymptotic representation of the Hankel func-
tion for large values of the argument vr >>1, after
passing to a spherical coordinate  system
z=Rcos$, r=Rsing (4 is polar angle) and replac-
ing the integration variable k =k, cosw instead of the
integral representation (18), we obtain

HM _ \/k (k d il

o cta T 27 X” (k) \]k Rsing

T X*(k,cosw) [ sinw
2 HP (k, sinw) 1-cosw
The integration contour runs along a straight line
from 7 —iwo to 7z, then along a segment 7 >w>0 and
again along a straight line from 0 to ic. In the wave
zone, integral (19) can be estimated by the saddle-point
method. The saddle point w= 9 lies within the real axis
line segment. As a result, we obtain the following ex-
pression for the radiation field
H! — ET \ﬁko(ko_kl)

P Ctb @ kl

DikoRcos(w—S)dW

(19)

sin g
(- /3, cos HVI—cos G
X (k, cos 9) e™F
X“(k) R
B, =V, /c. The function X~ (k) can be calculated ex-

actly. However, in the considered quasistatic approxi-
mation k,a <<1, we can use the asymptotic representa-

tion of this function [13]

T filn%a
i VKy
X "x! (k, —k)a 2i

n—————

va, ;‘ZZko(k0 —-k)
v ~1.78 is Euler's constant. Accordingly, the expres-
sion for the magnetic field of radiation (20) takes the

form

. (20)

H(:)I(Iﬂ :_gTw A 1| X
ct, ~cosd |,

vkyasin—
2
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[_sing _ sing et
1-4,c0s8 1-cosd) R

\/z ~In 27 .
kaaJﬂ0 1-5,) vk,a

7, is a relativistic factor. The first term in formula (21)

describes the transition radiation arising from the colli-
sion of an electron bunch with the end face of a semi-
infinite conducting cylinder. The second term has a sin-
gularity for the angle $=0. The radiation field along
the cylindrical conductor goes to infinity. This effect is
explained by the guiding properties of a perfectly con-
ducting cylinder [13]. The feature of the field is
integrable. The total energy flow remains finite. An
analysis of the radiation pattern shows that the maxi-
mum of the radiation field in the direction characteristic
of transition radiation $=1/y, is never formed. This is

due to the strong distortion of the radiation field in this
direction by radiation focused along the surface of the
cylindrical conductor. Turning to infinity towards
=0, the amplitude of the radiation field decreases
monotonically with increasing polar angle 9. Thus, a
thin semi-infinite cylinder is actually an antenna of a
traveling wave excited by a relativistic electron bunch.

Directly from the form of the second term in square
brackets in formula (21) it follows that the antenna radia-
tion excites a current induced on the surface of a perfectly
conducting cylinder, which propagates along the cylinder
at the speed of light. Moreover, this current is in
antiphase with respect to the current of the electron
bunch.

A single bunch excites an electromagnetic field with
a continuous frequency spectrum, and the shape of the
radiation pulse is determined by the Fourier integral (2),
which is conveniently represented in the form

H n _J‘ H Ille—l(ut + H |||* '”t)da)

1)

where

A=In

(22)

Taking into account the expression (21), relation
(22) takes the form

L coset +2sinwt
H" — Q F(lg)J' ¢ 2 dw,(23)
ety oA, , 7
L +—
2] 4
where
sin g @,
F(lg): 1 A(ozln_’
(1- 3, cos $)(1—cos9) w
2y,
szln &—1 va)(): 7/0 vt:_E
) .9 va c
;/025|nE
For small polar angles ¢ <1 under the condition
TON N
L,=In [ N
0y, 709
expression (23) is essentially simplified and takes the
form
W= Q@ F@na rre). ()
Cty, R
Function
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In
M(t-R/c)=|T @
(t-R1e)= [T, —2
@y, 9
describes the shape of the transition radiation pulse. For
not too small angles

coso(t-R/c)dw

@ 1
IN—=~Ineyt, >In— or 9>>
@ %o

Yooty

H(t—R/c):T(t_tR/CJ,

b
that is, the electromagnetic pulse exactly repeats the
shape of the electron bunch. Otherwise, the shape of the
electromagnetic pulse will depend, albeit weakly, on the
polar angle ¢ and will slightly differ from the shape of
the electron bunch.

CONCLUSIONS

Transition radiation of a relativistic electron bunch,
which arises when it collides with the end face of a
semi-infinite perfectly conductive cylinder, is consid-
ered. The electron bunch moves along the cylinder axis.
Expressions for the intensity of the magnetic field of
radiation in the wave zone are obtained. It is shown that
this expression contains two terms. The first term de-
scribes the actual transition electromagnetic radiation of
the electron bunch. Its characteristics substantially de-
pend on the energy (relativistic factor) of the electron
bunch. The second term describes the radiation of the
current induced on the surface of a perfectly conducting
cylinder and propagating along the cylinder at the speed
of light in vacuum. The strength of this field has
integrable singularity (turns to infinity) strictly along
the surface of the cylinder. The peculiarity is due to the
guiding properties of a perfectly conducting cylinder.
The spatial structure (directional pattern) of this elec-
tromagnetic radiation does not depend on the energy of
the bunch and is determined by the geometry of the cy-
lindrical antenna under consideration. The amplitude of
the radiation field decreases monotonically with increas-
ing polar angle 4. The maximum of the radiation field
in the direction characteristic of transition radiation
& =11y, is never formed. This is due to the strong dis-

tortion of the radiation field in this direction by radia-
tion propagating along the surface of the cylindrical
conductor. The shape of the emitted electromagnetic
pulse has been determined.

we have
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NEPEXOJHOE U3JYYEHUE PEJATHBUCTCKOI'O 3JIEKTPOHHOI'O CT'YCTKA
HA TIOTYBECKOHEYHOM META/UVIMYECKOM IIUWJIMHJAPE
B.A. banaxupes, H.H. Onuwenko

PaccmoTpero mepexoHOe M3ITydeHHE PENISITUBHCTCKOTO 3JIEKTPOHHOTO CIYCTKa, BO3HHMKAIOIEE NPH €r0 CTOIKHOBEHHMH C
TOPIIOM MOTyOECKOHEUHOTO UAEATBHO MPOBOASIIETO HUIMHAPA. DIEKTPOHHBIM CryCTOK ABHXKETCS BAOJIb OCH MOITyOECKOHEUHO-
ro mmHApa. [TorydeHs! BBIpaKeHNS I HANPSHKEHHOCTH 0N HJIEKTPOMarHUTHOTO M3ITydeHHs B BOJTHOBOH 30He. MccienoBa-
HO BJIMSTHUE HAINPaBIITIONINX CBOWCTB MI€a bHO MPOBOSIIEr0 IMINHAPA Ha JUArpaMMy HaIIPAaBIEHHOCTH MEPEXOIHOTO H3ITyde-
HUSL

HNEPEXIJHE BUITPOMIHIOBAHHSA PEJISITUBICTCBKOTI'O EJIEKTPOHHOTI'O 3I'YCTKA
HA HANIBHECKIHYEHHOMY METAJIEBOMY HUJIIHAPI
B.A. Banaxipes, .M. Oniwenko
Po3ristHyTO MepexijiHe BUPOMiHIOBAaHHS PENSTHBICTCHKOTO eEKTPOHHOIO 3IYCTKa, 110 BUHUKAE MTPU HOTO 3iTKHEHHI 3 TOp-
[leM HaIiBHECKIHYEHHOTO i[ealbHO MPOBIIHOrO IHIiHApa. ENeKTpOHHUN 3TyCTOK pyXaeThesl B3IOBXK oci mumiHgpa. OtpumaHo
BUPA3u Uil HANPY)XEHOCTI MOJIS IEKTPOMATHITHOTO BHIIPOMIHIOBAaHHS B XBHJIBOBIH 30HI. J[OCIIPKEHO BIUIMB HAINPaBIISIOUHX
BIIACTHBOCTEH 1/1€alIbHO MPOBITHOTO MWITIHAPA HA JiarpaMy HalpaBlIeHOCTI MEPEXiTHOTO BUIPOMiIHIOBAHHS.
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