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Transition radiation of a relativistic electron bunch, which arises when it collides with the end face of a semi-

infinite ideally conducting cylinder, is considered. An electron bunch moves along the axis of a semi-infinite cylin-

der. Expressions for the field strength of electromagnetic radiation in the wave zone are obtained. The influence of 

the guiding properties of an ideally conducting cylinder on the directional diagram of the transition radiation is in-

vestigated. 
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INTRODUCTION 

The effects of transition and diffraction radiation of 

relativistic electron bunches [1 - 4] can underlie the pro-

cesses of excitation of pulsed electromagnetic radiation 

in a wide frequency range [5 - 10]. In [10] the process 

of excitation of an infinite ideally conducting cylinder 

by a relativistic electron bunch was investigated. There-

at the situation was considered when an electron bunch 

collides with a cylinder perpendicular to its cylindrical 

surface. Below we will consider a semi-infinite ideally 

conducting cylinder, which is excited by a relativistic 

electron bunch when it collides with the end face of the 

cylinder. It is in this way the ultra-wideband antennas 

were excited by a relativistic electron beam [7 - 9]. Ex-

pressions for the intensity of electromagnetic radiation 

in the wave zone are obtained. The directional diagram 

of transition radiation and, first of all, the influence of 

the guiding properties of a cylindrical conductor on its 

formation is investigated. 

1. STATEMENT OF THE PROBLEM. 

BASIC EQUATIONS 

We consider a semi-infinite ideally conducting circu-

lar cylinder of radius a. A relativistic electron bunch 

moves in vacuum along the cylinder axis and collides 

with its face end. For simplicity, we will consider an infi-

nitely thin tubular electron bunch with a current density 
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where 
ze  is the unit vector in the longitudinal direction, 

Q  is the charge of the bunch, 
0r  is the radius of the 

bunch, 
0r a , 

0v , 
bt  are velocity and duration of the 

bunch, 
0( )r r   is the delta function. The dimensionless 

function ( )T   describes the longitudinal density profile 

of the bunch and satisfies the normalization condition 
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where ( ) ( )T T    is symmetrical function. 

Let us represent the excited electromagnetic field 

and the current density in the form of Fourier integrals 

over frequencies. So, for example, for a magnetic field 

we have 
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is Fourier amplitude of the magnetic field. 

The system of Maxwell's equations for the compo-

nents of the Fourier amplitudes of the electromagnetic 

field has the form   
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Let's divide the space into three regions: 

0 0, 0;I r r z     

0 , 0;II a r r z     

, .III r a z        

The problem is reduced to solving the inhomogene-

ous system of Maxwell's equations (3) with the follow-

ing boundary conditions. On the current surface 
0r r , 

the longitudinal component of the electric field is con-

tinuous, and the magnetic field experiences a leap 

0r r ,    ( 0) ( 0)II I
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On the boundary r a  in the left half-space 0z  , 

the tangential components of the electromagnetic field 

are continuous 

r a ,     ( 0) ( 0)III II

z zE z E z    , 

( 0) ( 0)III IIH z H z    .  (5) 

In the right half-space 0z   on the surface of a per-

fectly conductive cylinder, the longitudinal component 

of the electric field vanishes 

r a ,     ( 0) 0III

zE z   .  (6) 

And, finally, at the end of a semi-infinite cylinder, 

the radial component of the electric field also vanishes 

0a r  , ( 0, ) ( 0, ) 0I II

r rE z r E z r     .      (7) 
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2. METHOD OF SOLUTION. MAIN RESULTS 

In the system under consideration, the electromag-

netic field disappears at infinity, so the electromagnetic 

field can be sought in the form of a superposition of 

waves propagating in the longitudinal direction 
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2 2

0v k k  , 
1 4
( )... ( )e k e k  are the sought amplitudes of 

the fields in the corresponding regions, (1)( ), ( )n nJ vr H vr  

are the Bessel and Hankel functions, 0.1n  . 

Substituting fields (8) into boundary conditions (4) - 

(6), we obtain a system of paired integral equations, 

which, using the Wiener-Paley-Rappoport lemma, can 

be reduced to the following system of functional equa-

tions 
(1)
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where ( )k , ( )k  , ( )k  , ( )k  are analytic func-

tions in the lower half-plane of the complex variable k, 

and ( )k   is the analitic function in the upper one, 

Im 0.lk   

From the boundary condition at the face end of the 

cylinder (7) it follows that the following amplitudes are 

even  

( ) ( ), 1,2,3e k e k     .            (10) 

It can be shown that the system of functional equa-

tions (9), taking into account relations (10), is equiva-

lent to the system of Hilbert boundary value problems 

on the real axis Im 0k   
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where ( ) ( ), ( ) ( )k k k k           etc, 
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Solutions of the boundary problems (11a), (11b) are 

found trivially 
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Using the Sokhotsky formulas [11], the system of 

boundary problems (12) can reduce to the following 

singular equation for the function       
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Integral (14) should be understood in the sense of 

the principal value. It is not possible to find a general 

solution to this integral equation. However, in the limit-

ing case of a conducting cylinder of small radius 

0 1k a  , the solution can be found approximately. In 

this limiting case, the term in the integral equation (13), 

which proportional 
0( ) ~I k k a  can be neglected. Then 

the integral equation is simplified and takes the form 
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After replacement 

( ) ( ) ( )U k H k k  

the simplified integral equation (15), in turn, is reduced 

to the boundary value problem [12] 
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the solution of which can be found explicitly 
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where ( )X k is solution of homogeneous conjugation 

problem  
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The solution to this boundary value problem has the 

form [11] 
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The contour C  runs along the real axis and bypasses 

the singularity k k   from below. The integral included 

in (16) is easily calculated by closing the integration 

contour into the lower half-plane. As a result, we obtain 
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Relation (9d), taking into account the obtained ex-

pression for the function ( )k  , makes it possible to de-

termine the amplitude 
4 ( )e k  for the region r a  and, 

accordingly, the expression for the magnetic field in this 

region 
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We are primarily interested in electromagnetic radia-

tion in the wave zone 
0 1k R  , R  is the distance from 

the origin of coordinates to the point of observation. 

Using the asymptotic representation of the Hankel func-

tion for large values of the argument 1vr  , after 

passing to a spherical coordinate system 

cos , sinz R r R    (  is polar angle) and replac-

ing the integration variable 
0 cosk k w  instead of the 

integral representation (18), we obtain 
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The integration contour runs along a straight line 

from i    to  , then along a segment 0w    and 

again along a straight line from 0  to i . In the wave 

zone, integral (19) can be estimated by the saddle-point 

method. The saddle point w   lies within the real axis 

line segment. As a result, we obtain the following ex-

pression for the radiation field 
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0 0 /v c  . The function ( )X k  can be calculated ex-

actly. However, in the considered quasistatic approxi-

mation 
0

1k a  , we can use the asymptotic representa-

tion of this function [13] 
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1.78   is Euler's constant. Accordingly, the expres-

sion for the magnetic field of radiation (20) takes the 

form 
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where  
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0  is a relativistic factor. The first term in formula (21) 

describes the transition radiation arising from the colli-

sion of an electron bunch with the end face of a semi-

infinite conducting cylinder. The second term has a sin-

gularity for the angle 0  . The radiation field along 

the cylindrical conductor goes to infinity. This effect is 

explained by the guiding properties of a perfectly con-

ducting cylinder [13]. The feature of the field is 

integrable. The total energy flow remains finite. An 

analysis of the radiation pattern shows that the maxi-

mum of the radiation field in the direction characteristic 

of transition radiation 
01/   is never formed. This is 

due to the strong distortion of the radiation field in this 

direction by radiation focused along the surface of the 

cylindrical conductor. Turning to infinity towards 

0  , the amplitude of the radiation field decreases 

monotonically with increasing polar angle  . Thus, a 

thin semi-infinite cylinder is actually an antenna of a 

traveling wave excited by a relativistic electron bunch. 

Directly from the form of the second term in square 

brackets in formula (21) it follows that the antenna radia-

tion excites a current induced on the surface of a perfectly 

conducting cylinder, which propagates along the cylinder 

at the speed of light. Moreover, this current is in 

antiphase with respect to the current of the electron 

bunch. 

A single bunch excites an electromagnetic field with 

a continuous frequency spectrum, and the shape of the 

radiation pulse is determined by the Fourier integral (2), 

which is conveniently represented in the form 
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Taking into account the expression (21), relation 

(22) takes the form 
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For small polar angles 1   under the condition 
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expression (23) is essentially simplified and takes the 

form 
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describes the shape of the transition radiation pulse. For 

not too small angles 

0

0

0

1
ln ~ ln lnbt



  

    or   
0 0

1

bt


 
  

we have 

   
/

/
b

t R c
t R c T

t

 
    

 

, 

that is, the electromagnetic pulse exactly repeats the 

shape of the electron bunch. Otherwise, the shape of the 

electromagnetic pulse will depend, albeit weakly, on the 

polar angle   and will slightly differ from the shape of 

the electron bunch. 

CONCLUSIONS 

Transition radiation of a relativistic electron bunch, 

which arises when it collides with the end face of a 

semi-infinite perfectly conductive cylinder, is consid-

ered. The electron bunch moves along the cylinder axis. 

Expressions for the intensity of the magnetic field of 

radiation in the wave zone are obtained. It is shown that 

this expression contains two terms. The first term de-

scribes the actual transition electromagnetic radiation of 

the electron bunch. Its characteristics substantially de-

pend on the energy (relativistic factor) of the electron 

bunch. The second term describes the radiation of the 

current induced on the surface of a perfectly conducting 

cylinder and propagating along the cylinder at the speed 

of light in vacuum. The strength of this field has 

integrable singularity (turns to infinity) strictly along 

the surface of the cylinder. The peculiarity is due to the 

guiding properties of a perfectly conducting cylinder. 

The spatial structure (directional pattern) of this elec-

tromagnetic radiation does not depend on the energy of 

the bunch and is determined by the geometry of the cy-

lindrical antenna under consideration. The amplitude of 

the radiation field decreases monotonically with increas-

ing polar angle  . The maximum of the radiation field 

in the direction characteristic of transition radiation 

01/   is never formed. This is due to the strong dis-

tortion of the radiation field in this direction by radia-

tion propagating along the surface of the cylindrical 

conductor. The shape of the emitted electromagnetic 

pulse has been determined.  
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ПЕРЕХОДНОЕ ИЗЛУЧЕНИЕ РЕЛЯТИВИСТСКОГО ЭЛЕКТРОННОГО СГУСТКА  

НА ПОЛУБЕСКОНЕЧНОМ МЕТАЛЛИЧЕСКОМ ЦИЛИНДРЕ 

В.А. Балакирев, И.Н. Онищенко  

Рассмотрено переходное излучение релятивистского электронного сгустка, возникающее при его столкновении с 

торцом полубесконечного идеально проводящего цилиндра. Электронный сгусток движется вдоль оси полубесконечно-

го цилиндра. Получены выражения для напряженности поля электромагнитного излучения в волновой зоне. Исследова-

но влияние направляющих свойств идеально проводящего цилиндра на диаграмму направленности переходного излуче-

ния. 

ПЕРЕХІДНЕ ВИПРОМІНЮВАННЯ РЕЛЯТИВІСТСЬКОГО ЕЛЕКТРОННОГО ЗГУСТКА  

НА НАПIВНЕСКIНЧЕННОМУ МЕТАЛЕВОМУ ЦИЛІНДРІ  

В.А. Балакiрев, I.М. Онiщенко  

Розглянуто перехідне випромінювання релятивістського електронного згустка, що виникає при його зіткненні з тор-

цем напівнескінченного ідеально провідного циліндра. Електронний згусток рухається вздовж осі циліндра. Отримано 

вирази для напруженості поля електромагнітного випромінювання в хвильовій зоні. Досліджено вплив направляючих 

властивостей ідеально провідного циліндра на діаграму  направленості перехідного випромінювання. 


