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Plasma wakefield acceleration promises compact sources of high-brightness relativistic electron and positron
beams. Applications (particle colliders and free-electron lasers) of plasma wakefield accelerators demand low energy
spread beams and high-efficiency operation. Achieving both requires plateau formation on both the accelerating field
for witness-bunch and the decelerating fields for driver-bunches by controlled beam loading of the plasma wave with
careful tailored current profiles. We demonstrate by numerical simulation by 2.5D PIC code LCODE such optimal
beam loading in a linear and blowout electron-driven plasma accelerator with RF generated low and high beam

charge and high beam quality.
PACS: 29.17.+w; 41.75.Lx

INTRODUCTION

Plasma wakefield accelerators have the ability to
sustain accelerating gradients to 100 GV/m [1 - 3]. In
conventional accelerators, due to breakdown which oc-
curs on the walls of the accelerating structure at high
electric fields, accelerating gradients are currently lim-
ited to approximately 100 MV/m [4] due to breakdown.
Successful experiments on electron-bunch-driven wake-
field acceleration have demonstrated acceleration of
GeV-class electrons [3] and have therefore confirmed
the relevance of this acceleration method. Plasma wake-
field acceleration promises compact sources of high-
brightness relativistic electron beams. Because the
plasma accelerators provide large accelerating gradients
the plasma (see [5 - 45]) accelerators are intensively
investigated.

However, the quality of electron bunch produced in
plasma accelerators is not yet sufficient for the realiza-
tion applications. Precise control over the injected elec-
tron bunch properties is a key problem for plasma wake-
field accelerators. One promising strategy towards the
improvement of final quality of the accelerated electron
bunch is the use of an electron beam from a convention-
al electron linac. Well-developed technologies of radio-
frequency linacs allow electron bunches of good quality:
small size and small energy spread to be provided.

Applications (particle colliders and free-electron la-
sers) of plasma wakefield accelerators demand low en-
ergy spread beams and high-efficiency operation.
Achieving both requires plateau formation on both the
accelerating field for witness-bunch and the decelerating
fields for driver-bunches by controlled beam loading of
the plasma wave with careful tailored current profiles
[32, 33, 46]. It has been proposed in [47] to use the
beam loading effect (see [32, 33]) to compensate the
energy spread of an electron beam in plasma wakefield
accelerators.
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In this paper, we report on numerical investigations
on optimization of the self-consistent distribution of an
accelerating wakefield of plateau type, which can lead to
minimizing the witness-bunch quality degradation dur-
ing acceleration by a plasma wakefield, excited by an
electron driver-bunches and formation a plateau on de-
celerating wakefield in areas of driver-bunches to in-
crease efficiency of plasma wakefield accelerator with
external injection. Analyzing the dependence of distri-
bution of an accelerating and decelerating wakefield on
witness-bunch density and driver-bunch density, we
have demonstrated a mechanism to compensate the en-
ergy spread and to ensure the same deceleration of all
electrons of each bunch.

We present results of numerical simulation of plasma
wakefield excitation by driver-bunches and this wake-
field modification, leading to plateau formation, by wit-
ness-bunch in its area and by driver-bunches in their
areas. The numerical simulation has performed with
2.5D code LCODE [48, 49], which considers the elec-
trons of the beam as ensembles of macroparticles, and
the electrons of the plasma as a cold electron fluid. We
demonstrate by numerical simulation optimal beam
loading in a plasma accelerator with RF generated low
and high beam charge and high beam quality.

We consider the bunch, electrons in which are dis-
tributed according to Gaussian in the transverse direc-
tion along the radius. We use the cylindrical coordinate
system (r, z) and draw the plasma and beam densities
and longitudinal electric field at some z as a function of
the dimensionless time T=wpt or £=Vyt-z, Vy is the bunch
velocity. Time is normalized on electron plasma fre-
quency mpe’l, distance — on c/wmp, bunch current I, — on
Io=nmc®/4e, fields — on mcwp/e. €, m are the charge and
mass of the electron, c is the light velocity.
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1. INVESTIGATION OF THE PLATEAU
FORMATION ON THE DISTRIBUTION
OF AN ACCELERATING WAKEFIELD
IN APLASMA BY AN ELECTRON
WITNESS-BUNCH

To begin with, we consider the wakefield excitation
in plasma in blowout regime by short electron bunch and
plateau formation by accelerated bunch on the special
distribution of an accelerating wakefield E,(¢) (Fig. 1).
One can see that accelerated bunch of a certain charge
leads to the formation of a plateau on E,(€) at some
depth inside the bubble.

2. INVESTIGATION OF THE PLATEAU
FORMATION IN A PLASMA
BY AN ELECTRON WITNESS-BUNCH
ON THE DISTRIBUTION
OF AN ACCELERATING WAKEFIELD,
EXCITED BY SHORT TRAIN
OF RESONANT DRIVER-BUNCHES

Now we simulate the plateau formation on the distri-
bution of an accelerating wakefield in a plasma by an
electron witness-bunch in the case of wakefield excita-
tion by short train of resonant electron driver-bunches
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Fig. 1. The on-axis wakefield excitation E, by short
bunch-driver and plateau formation on E,(¢) by bunch-
witness. Densities of bunches ny, on the axis are shown
by blue. Plasma electron density n, is shown to be black

as a function of the coordinate & along the plasma.

The length of driver-bunch is equal to 0.08 of bubble
length. The length of witness-bunch is equal to 0.04
of bubble length. The radius of bunches is equal to 0.3.
The maximum current of bunch-driver is equal
to 1,=0.72. The maximum current of bunch-witness
is equal to 1,=0.06. The relativistic factor of bunches
is equal to 1000. The arrow shows the plateau
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Fig. 3. The on-axis wakefield excitation E, by short
train of resonant electron driver-bunches and plateau
formation on E,(&) by witness-bunch. Transversal
emittance of bunches is shown to be black. The length
of bunches is equal to 0.19 of bubble length. The radius
of bunches is equal to 0.3. The maximum current
of bunch-driver is equal to 1,=2-107%. The maximum
current of bunch-witness is equal to 1,=8-107,

The arrow shows the plateau
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In this case, the witness-bunch is in an almost uni-

form focusing field (Fig. 2).
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Fig. 4. The off-axis wakefield excitation E, by short
train of driver-bunches and plateau formation on E,(&)
by witness-bunch. The off-axis densities of bunches ny
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Fig. 2. The off-axis wakefield excitation E, by short
bunch-driver and plateau formation on E,(¢) by bunch-
witness. The off-axis densities of bunches n, are shown

by blue. The off-axis wake focusing force F, is shown
to be yellow as a function of the coordinate &along

the plasma. The parameters are identical to Fig. 1.

The arrow shows the plateau
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are shown by blue. The off-axis wake focusing force F,
is shown to be yellow as a function of the coordinate &
along the plasma. The parameters are identical
to Fig. 3. The arrow shows the plateau

In this case, the whitness-bunch is entirely in the fo-
cusing field (Fig. 4), in contrast to the Gaussian bunch,
which would be partially focused and partially defo-
cused.
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3. INVESTIGATION OF THE PLATEAU
FORMATION ON THE DISTRIBUTION
OF A DECELERATING WAKEFIELD
IN APLASMA BY AN ELECTRON
DRIVER-BUNCHES

Now we simulate the plateau formation on the distri-
bution of a decelerating wakefield, excited by short train
of resonant electron driver-bunches in a plasma (Fig. 5).
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Fig. 5. The on-axis wakefield excitation E, by short
train of resonant electron driver-bunches and plateau
formation on E,(&) by driver-bunches. Transversal
emittance of bunches is shown to be black. The length
of bunches is equal to 0.19 of bubble length. The radius
of bunches is equal to 0.3. The maximum current
of bunch-driver is equal to 1,=1.2:102.

The arrows show the plateaus
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Fig. 6. The off-axis wakefield excitation E, by short
bunch-driver and plateau formation on E,(&) by bunch-
witness. The off-axis densities of bunches n, are shown

by blue. The off-axis wake focusing force is shown
to be yellow F, as a function of the coordinate £along

the plasma. The parameters are identical to Fig. 5.

The arrows show the plateau

In this case, the driver-bunches are entirely in the fo-
cusing field (Fig. 6), in contrast to the Gaussian bunch-
es, which would be partially focused and partially defo-
cused.

CONCLUSIONS

The evolution of the distribution of accelerating and
decelerating wakefields of plateau types has been inves-
tigated during wakefield excitation and electron acceler-
ation by wakefield in linear and blowout regimes. The
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plasma wakefield is excited by an electron-bunch or by a
short train of electron-bunches. The investigation has
performed, using 2.5D PIC simulations by code
LCODE. The final quality of the accelerated bunch
strongly depends on the distribution of an accelerating
wakefield. The part of energy, transferred to wakefield
by driver-bunches, also strongly depends on the distribu-
tion of an decelerating wakefield. The investigations
presented here show that the accelerated and decelerated
bunch densities and their shapes can support plateau
type distribution of accelerating and decelerating
wakefields during acceleration in linear and blowout
regimes. This can lead to energy spread of accelerated
bunch decrease and to increase of part of energy, trans-
ferred to the wakefield by driver-bunches.
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®OPMUPOBAHUE ILJIATO HA YCKOPSIIOIIEM KUJIbBATEPHOM MOJIE /151 YCKOPSIEMbBIX
CI'YCTKOB DJEKTPOHOB U HA TOPMO3SIIIIEM KHJIbBATEPHOM MOJIE JJI51 CTYCTKOB,
BO3BYKJIAIOLUX MOJIE

B.U. Macnos, P.T. Os¢cannuxos, /I.C. bonoapw, HU.11. Jlesuyk, H.H. Onuuwienko

YCcKOpeHHe KWIIbBAaTEPHBIM II0JIEM B TUIA3ME MOKET 00ECIeUNTh KOMIAKTHBIE HCTOYHUKN PEJISTUBHCTCKUX JICK-
TPOHHBIX W TO3UTPOHHBIX ITyYKOB BBICOKOW sipkocTH. Mcmonp3oBanne (Kojutaiiaepsl 4acTHIl U Jla3epbl Ha CBOOOI-
HBIX 3JIEKTPOHAX) IJIa3MEHHBIX KWJIBBAaTEPHBIX YCKOpHUTENEH TpeOyeT BHICOKOH 3((EKTUBHOCTH U IyYKOB C MAJBIM
pa3bpocom 1o 3Heprud. JOCTIKEHUsI TOro M JIpyroro TpeOyoT (popMHpOBaHMS IIATO KaK HAa YCKOPSIOLIEM IT0JIe
JUISL yCKOPSIEMOTO CTYCTKa, TaK M Ha TOPMO3SAIIEM MOJIE U CTYCTKOB, KOTOpPBIE BO30YXKIAET II0JIe, IyTeM KOHTPO-
JIMPYEeMOH HArpy3KH IMyYKOM IUIa3MEHHOW BOJIHBI C TIIATENBHO MOJ00paHHBIM IpodmieM Toka. MBI IeMOHCTPHUPY-
eM yucieHHbIM MozenupoBanueM 2,5D PIC-kogom LCODE Takyto onTUMalIbHYIO HAIpy3Ky IMYYKOM B JMHEHHOM U
HEJIMHEHHOM PeXNMax B IUIA3MEHHOM YCKOPHTEJIE C BO30YX/ICHUEM 3JICKTPOHAMHU, KOTOpbIe MHXXEKTHpYIoTes ¢ BU-
YCKOPHTEJIs, ITpX HEOOJIBIIOM M OOJIBILIOM 3apsiiaX IydKOB ¥ BEICOKOM MX KaueCTBE.

®OPMYBAHHJ IIJIATO HA TIPUCKOPIOIOYOMY KIUVIBBATEPHOMY ITOJII AJIA 3I'YCTKIB
EJIEKTPOHIB, 1O IPUCKOPIOIOTHCA, I HA TAJIBMYIOUOMY KIVIBBATEPHOMY HOJII
JJIA 3T'YCTKIB, IO 3BYIKYIOTH ITOJIE

B.I. Macnos, P.T. Oscannikos, /1.C. bonoaps, LII. Jleeuyk, I. M. Oniwenxo

[puckopeHHs KibBaTepHUM IOJIEM Y IIa3Mi Moxe 3a0e3MeunTH KOMITaKTHI JpKepena PesIsTHBICTCHKHUX eJIeKT-
POHHHX 1 O3UTPOHHUX ITYYKIB BHCOKOI SICKPaBOCTI. BUKOpHCTaHHS (KOJaiiiepy YaCTUHOK 1 JIa3epH Ha BUTbHUX eJe-
KTPOHAX) TUIA3MOBHX KUThBAaTePHHUX MPUCKOPIOBAYIB BUMAralOTh BUCOKOT €(DEKTUBHOCTI i MyYKiB 3 HU3BKHM PO3KH-
JIOM 110 eHeprii. JIocATHeHHs TOro i iHIIOr0 BUMAraroTh GOpMyBaHHS IUIATO SK HA MIPUCKOPIOKOYOMY TOJI JUIs 3TYCT-
Ky, 1110 IPHCKOPIOETHCS, TAK 1 HA FAJIbMYIOUOMY II0JIi JUIsl 3TYCTKIB, 110 30y/KYIOTh HOJIE, IIISIXOM KOHTPOJIEOBAHOTO
HaBaHTAXXEHHS MyYKOM IUIa3MOBOI XBHJII 3 peTesbHO MigiOopanuM npodinzeM crpymy. My 1eMOHCTpYEMO YHCETBHUM
mozemoBaHHM 2,5D PIC-konom LCODE Take onruManbHe HaBaHTa)KEHHS IYYKOM Y JIHIHHOMY 1 HeJliHIHHOMY
peXUMax y INIA3MOBOMY IIPUCKOPIOBaYi 31 30y/KEHHSIM €JIEKTPOHAMH, SIKi IHKEKTYI0Thbesl 3 BU-npuckoproBaya, npu
HEBEJIMKOMY 1 BEJIMKOMY 3aps/iax My4KiB 1 BUCOKIH 1X SKOCTI.
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