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The distribution parameter interval estimators are obtained by direct numerical approximation of the expected 

value for infinite and finite populations under the known upper and lower bounds of the random variable domain. 
Like in Bayesian approach, the distribution parameters are treated as random variables, and their uncertainty is de-
scribed as a distribution. The Monte Carlo procedure is involved to get the correspondent confidence interval end-
points. The model does not impose any restrictions on the type of distributions. In contrast to other nonparametric 
interval assessments of distribution parameters, the model is operable for samples of any size. 
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INTRODUCTION 
Data analysis lies in the basement of physical sci-

ences. The significantly increased cost of modern physi-
cal experiment makes us pay attention to the lack of 
reliable methods for analyzing small-volume samples. 
Actually, the sample methods [1] are widely used to 
study states of large population. In this case, the collec-
tive properties of the population, being quantified 
through the parameters of the distribution of individual 
properties among the elements, are usually of great in-
terest. In order to evaluate a specific distribution param-
eter, a sampling plan for elements is determined and 
implemented, which ensures representativeness of the 
sample for estimation, taking into account the known 
properties of the population. 

In the analysis of sample data, both parametric and 
nonparametric methods can be used, depending on 
whether hypotheses are involved in the analysis regard-
ing the type of distribution or not. An example of a par-
ametric approach is the maximum likelihood method 
[2], in which an interval estimation of the distribution 
parameter is performed using the likelihood function 
constructed from the probability distributions of sample 
elements. At the same time the consequences of specify-
ing the wrong distribution may prove very costly. If 
such distribution does not hold, then the confidence 
levels of the confidence intervals (or of hypotheses 
tests) may be completely off. 

An example of a nonparametric approach is the 
bootstrap method, which is currently widespread [3, 4], 
in which it is assumed that a representative sample ade-
quately reflects the distribution structure of a property in 
a population and can replace a population. This allows 
one to obtain interval estimate of the distribution pa-
rameter using statistical trials (Monte Carlo method [5]), 
consisting in multiple selections of samples with re-
placement from the original sample. At the same time, 
for all the asymptotic advantages of method [6], one can 
hardly expect reliable estimates if the size of the origi-
nal sample is small or extremely small, because boot-
strap operates under assumption that all possible differ-
ent values of population have been observed [7]. 

Another approach to statistical inference may be re-
lated to the fact that any real property of a real popula-
tion is a limited variable distributed in the local domain 
of the real line. In this regard, the sample can be consid-
ered as a random segmentation of the domain. Domain 

partition becomes complete if the sample is supple-
mented with numerical values of the upper and lower 
domain boundaries. If the distribution parameter can be 
represented as an integral or a sum for the expected val-
ue, then such a domain structure can serve as the basis 
for the interval parameter estimation by approximating 
this representation. A variant of the model of expected 
value approximation is described below. 

1. PROBLEM FORMULATION 
Infinite population. We consider an infinite popula-

tion of elements having a measurable property X. The 
result x  of measuring this property in a randomly select-
ed element is a random variable with an unknown inte-
grable probability density function (pdf) )(xρ  having 
limited domain maxmin xxx ≤≤ , where minx  and maxx  are 
known lower and upper endpoints of the domain, respec-
tively. We conditionally call population to be infinite if it 
is possible to draw the simple random sample of any size 
n without introducing any distortions to the pdf. In this 
sense the finite population that allows extracting samples 
with replacement can be referred to infinite.  

Let )(xu  is integrable monotonic (non-decreasing 
or non-increasing) function (generator of distribution 
parameter) determining the contribution of the individu-
al property x  of element to the collective property U  
of population, which we call distribution parameter. 
Then we consider distribution parameter that can be 
presented as integral 

∫=
max

min

)()(
x

x
dxxxuU ρ .                     (1) 

It may be m -th moment of distribution if mxxu =)( , 
or proportion of population with property *xx ≤  if 

( )xxYxu −= *)( , or something else ( )(∗Y  is Heaviside 
function). If there is no additional information then one 
can estimate the value of distribution parameter as  

                          maxmin uUu ≤≤ ,                        (2) 
where 

))(),(min( maxminmin xuxuu = , 
))(),(max( maxminmax xuxuu = . 

To improve the precision of this estimate, if it is 
deemed insufficient, the measurement data are added to 
data available on the property of the elements from a 
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simple random sample of size n. Thus, the new data set 
in ascending order looks like this: 

                 ni xxxx ≤≤≤≤≤ ......21 .                (3) 
This data are combined with endpoints min0 xx =  and 

max1
xx

n
=

+
; the corresponding series of values of the 

generator function being either non-decreasing or non-
increasing: 

{ } )(,)(),( max11min0 xuuixuiuxuu n
n
i === += .    (4) 

It is required to reassess the value (2) of the distribu-
tion parameter (1) in the light of new data. 

Finite population. We also consider a finite popula-
tion Nxxx ,...,, 21  with a known size N, for which the 
distribution parameter is determined by the sum 

                                   ∑=
=

N

j
jxs

N
S

1
)(1 ,                           (5) 

where )(xs  is another monotonic generator function. 
Without loss of generality, we assume that the ele-

ments of the population are numbered in order of in-
creasing property x. If sampling were made with re-
placement from this population, then the population 
could be considered as infinite population having pdf as 

                         ∑ −=
=

N

j
jN xx

N
x

1
)(

1
)( δρ ,                  (6) 

where )(∗δ  is Dirac delta function. 
Let (3) be the simple random sample extracted from 

this population without replacement. The correspondent 
values of the generator function are 
                                  { }n

iii xss
1

)(
=

= .                           (7) 
In this case initial interval estimation of S  is also 

just a range of function )(xs : 
                                  maxmin sSs ≤≤ ,                            (8) 
where  
                      ))(,(min( max)minmin xsxss = ,   
                      ))(),(max( maxminmax xsxss = . 

The task is the same as before: it is required to reas-
sess the value (8) of the distribution parameter (5) in the 
light of new data. 

2. PROBLEM ANALYSIS 
Infinite population. We introduce the cumulative 

distribution function (cdf) into consideration in a usual 
way 

∫=
x
x dxxxf

min
)()( ρ . 

In particular for (6) it will be 

∑ −=
=

N

j
jN xxY

N
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1
)(1)( . 

Integral (1) can be presented as following 

∑ ∫=∫=
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where )( fx  is inverse cdf and { }n
iixfif 1

)(
=

= , 00=f , 

11=+nf . 
In accordance to the integral mean value theorem 

equation (9) can be presented as following: 
( )

1

1
1

n

i i i
i

ˆU u f f
+

−
=

= −∑ ,                      (10) 

where, if ( )xu  is entirely non-decreasing or non-
increasing function, 

1 1min( ) max( )i i i i iˆu ,u u u ,u− −≤ ≤ ; ( )ii xuu = . Then fol-
lowing conditions are fulfilled: 

                 ( )( )∑ −=≥
+

=
−−

1

1
11min ,min

n

i
iiii ffuuUU ,     (11) 

           ( )( )∑ −=≤
+

=
−−

1

1
11max ,max

n

i
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Although values { }n
iif 1=

 are unknown they have 
well-known posterior pdf as following 

       


 ≤≤≤≤≤

=
otherwize

fffifn
fff n
n 0

1...0!
),...,,( 21

21r . (13) 

It means that any set { }n
iif 1=

 of random independ-
ent uniformly distributed on [0, 1] and ordered in as-
cending order numbers is equally probable and can be 
considered to be likely true set. Now, taking into ac-
count (13) and representations (11), (12) for endpoints, 
sample (3) can be considered as deterministic and pa-
rameter U as random.   

To get interval assessment of population parameter 
(1) by use of statistical trials [8] one can generate K  sets 
of above-mentioned numbers { }n

ikif 1, =
 ( )Kk ,...,2,1=  

and calculate correspondent posterior statistics: 

                ( )( )∑ −=
+

=
−−

1

1
,1,1min, ,min~ n

i
kikiiik ffuuU ,     (14) 

                ( )( )∑
=

−=
+

−−

1
,1,1max,

1
,max~ n

kikiiik
i

ffuuU .    (15) 

Arranging the results of statistical trials (14) and 
(15) in ascending order { }K

mmU
1min, =
 and { }K

mmU
1max, =
 

one can get the resultant interval estimation in the form 
of confidence interval 

                      
KK UUU






 −

≤≤
2

1max,
2

min, aa ,            (16) 

where α  is appropriate level of significance.  
Finite population. It is suitable to rewrite the sum 

(5) in the following way: 

           
N
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j
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where min0 xx =  and max1 xxN =+ . 
Let )(ir  be the serial number in the population of the 

element, which in the sample takes position i . Let also 
the serial number of elements min0 xx =  and max1 xxN =+  
attached to the population be 0)0( =r  and 

.1)1( +=+ Nnr  Then expression (18) can be repre-
sented as the sum of elements within the segments of real 
line, the ends of which are the elements of the sample: 

           
( ) ( )

∑ ∑
+

+
=

+

=

−

−=

+1

1

1)(

)1(

1

21
1 n

i

ir

irj

jj xsxs
N

V .          (19) 

It is now possible to express the value V  in terms of 
the average values of the generator function iŝ  within 
each segment i: 
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Taking into account the monotonic property of gen-
erator ( )xs  the value (20) can be assessed as 

[ ][ ]∑ −−⋅
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In these expressions, now random variables are ac-
tually not the elements of the sample but the places that 
the elements of the sample occupy in an ordered popula-
tion. 

Obviously Monte Carlo procedure can be also ap-
plied to find the lower and upper bounds of the confi-
dence interval of appropriate significance level α  for 
the population parameter S . For this purpose K  ran-
dom samples of n  positive integers should be extracted 
from the set { }N

rr 1=  without replacement, ordered from 
the bottom to the top to represent likely true sets 
{ }n

ikir
1

),(
−

, ( )Kk ...,,2,1= , and substituted to the 
equations (22), (23) to calculate likely true values of 
correspondent endpoints. 

After sorting resultant sets in ascending order 
{ }K

kkV
1min, =
, { }K

kkV
1max, =

 the confidence interval of 
desirable significance level α  for the distribution pa-
rameter S  can be presented as following: 
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3. SIMULATIONS 
Here we consider some special cases of the above 

mentioned model application to demonstrate its useful 
properties. 

Infinite population – continuous distribution. Let 
)(xρ  be the pdf of the uniformly distributed within 

closed interval [0, 1] random variable, so that 

                        {
otherwise

xif
x

0
101

)(
≤≤

=r , 

then m-th moment of this distribution is 1)1( −
+= mM . 

To test the described approach for statistical inference 
we generated 100 samples of different size 

50,30,15,7,3=n  from this distribution and did 1000=K  
statistical trials on the every sample to get interval esti-
mation for the following moment: 30,15,7,3=m ; the 
generator function being mxxu =)( . The endpoints of 
confidence interval (16) with confidence level 

95.01 =−α  for the every sample and minimal Dmin and 
maximal Dmax widths of the confidence interval for the 
every set of samples of definite size were calculated 
together with the number of faults when true value of 

moment went outside the correspondent interval. These 
results are presented in table below. 

Simulation Output for the Uniform Distribution 

n Parame-
ters 

Order of Moment, m 
1 3 7 15 30 

3 Dmin 0.677 0.677 0.656 0.673 0.669 
 Dmax 0.861 0.861 0.861 0.881 0.88 
 Faults 0 0 2 0 0 

7 Dmin 0.423 0.419 0.378 0.388 0.37 
 Dmax 0.65 0.631 0.582 0.652 0.595 
 Faults 0 0 1 1 2 

15 Dmin 0.27 0.233 0.224 0.207 0.2 
 Dmax 0.415 0.436 0.399 0.336 0.354 
 Faults 2 0 0 1 1 

30 Dmin 0.204 0.154 0.127 0.12 0.104 
 Dmax 0.276 0.293 0.264 0.266 0.206 
 Faults 3 2 2 6 1 

50 Dmin 0.153 0.128 0.099 0.082 0.071 
 Dmax 0.207 0.21 0.191 0.172 0.151 
 Faults 3 2 2 2 1 
One can see from table that described numerical al-

gorithm adequately worked independently on the sam-
ple size and moment order providing the statistical in-
ference on the chosen significance level. These results 
demonstrate expected decrease of the confidence inter-
val width (increase of the assessment precision) with 
increase of the sample size and order of the moment. 

At the same time, the graphs (Figs. 1-5) of the em-
pirical distribution functions for the confidence interval 
boundaries show that the reduction of the width of the 
confidence interval at a high value of the moment order 
( 30=m ) is achieved mainly by moving the right 
boundary. The distribution function of the left boundary 
of the confidence interval remains sandwiched between 
the left endpoint of the domain and the exact value of 
the moment when the sample size grows. 

The cdf of the generator m
m xxu =)(  for the m-th 

moment of considered random variable is m
m uu =)(η .  

 
Fig. 1. Distribution functions of the lteft (solid line),  
and right (dotted line) confident interval boundaries 

for the sample size 3=n . Dashed line shows the point 
of true moment value 31/1=M   

 
Fig. 2. The same for the sample size 7=n  
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Fig. 3. The same for the sample size 15=n  

 
Fig. 4. The same for the sample size 30=n  

 
Fig. 5. The same for the sample size 50=n  

It can be understood from Fig. 6, where dependence 
of moment distribution skewness and kurtosis versus 
moment order m is graphically presented, that moment 
distribution has right tail; being right-skewed the distri-
bution is concentrated near the left boundary of the in-
terval [0, 1].  

Infinite population – discrete distribution. Here 
we consider dichotomous population that consists of 
elements having one of two possible signs 1=x  or 0=x , 
in other words – “success” or “failure”, and p  is pro-
portion of population elements having sign 1. 

 
Fig. 6. Skewness (Sn) and kurtosis (Ks) vs order (m) of 
the moment of variable uniformly distributed on [0, 1] 

If the random value is the sign x  of the element 
randomly extracted from the population (Bernoulli trial) 
then correspondent pdf is 

)1()()1()( −+−= xpxpx δδρ , 
and first moment xxu =)(  of this distribution is 

pdxxx =∫
∞

∞−
)(ρ . 

Let nxxx ,...,, 31  be the signs of elements in the or-
dered simple random sample from this population, so 

that sn−  elements have sign 0 and s  elements have 
sign 1: 01 =−≤≤ snix , 11 =≤≤+− nisnx . Then 
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Taking into account that the i-th order statistic if  is 
a beta-distributed random variable having pdf 
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,)1,(
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ff
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iiρ

 

the pdf of the confidence interval endpoints are 
)1,()( min +−= mnmBetaUρ , 
),1()( max mnmBetaU −+=ρ . 

Then the α−1  confidence interval for the probabil-
ity of success is just Clopper-Pearson interval [9] (“ex-
act” confidence interval) that is an early and very com-
mon method for calculating binomial confidence inter-
vals: 

( ) ( )mnmBpmnmB −+−≤≤+− ,1,
2

11,,
2

αα , 

where ),,( zsrB is r-th quantile from the beta distribu-
tion with shape parameters s  and z . 

Finite population. Here we consider dichotomous 
population consisted of N  elements, where every ele-
ment x  has also one of two possible signs 1 or 0. Then 
the sum (5), where generator jj xxs =)( , turns to the 
proportion 

p
N
F

xs
N

S
N

j
j ==∑=

=1
)(

1
, 

where F  is number of elements having sign 1 and p  is 
probability to extract element having sign 1 if Bernoulli 
trial is applied. 

Let 01 =−≤≤ mnix  and 11 =≤≤+− nimnx  is ordered sim-
ple random sample of size n  without replacement 
where m  elements have sign “1”. Then equations (22), 
(23) take the following view 

[ ])1(1
1

1
min +−−+

+
=≥ mnrN

N
VV , 

[ ])(1
1

1
max mnrN

N
VV −−+

+
=≤ . 

The total number of ordered simple random samples 
of size n  that can be drawn without replacement from 

the population including N  elements is ( )n
N . The num-

ber of such samples with fixed value inNiri +−≤≤ )(  is 

( )( )in
irN

i
ir

−
−

−
− )(
1

1)( . That means that probability distri-

bution for the discrete random value )(ir  can be pre-
sented as 
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Equations (26), (27) enable to calculate two end-
points, αmαx,r  and αmin,r , of the confidence interval  
(28) for the desirable level of significance α , though 
the discontinuous nature of the distribution (25) may 
preclude any interval with exact probability coverage 
for all population proportions. 
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As example we consider situation when 100=N , 
30=n , 3=m  and 05.0=α . Then we get 97max, =ar , 

76min, =αr , 245.0035.0 ≤≤ p . For comparison corre-
spondent Clopper-Pearson confidence interval has an-
other endpoints 266.0021.0 ≤≤ p , so the width of the 
“exact” confidence interval is greater than the width of 
the interval (26), (27) for a population of known size. 
Moreover the Monte Carlo algorithm, being applied 
directly to (22), (23), allows to get more valuable in-
formation about properties of distribution of random 

values { }K
kkp
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ikkp
=max, : 
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which define the endpoints of confidence interval 
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Actually, under 610=K  statistical trials the corre-
spondent endpoints were found 035.025000min, =p  and 

245.0975000max, =p . At the same time it was happened 
that set of quantiles from the empirical distribution 
function have the same value 035.07744824446min, =≤≤ kp . 
Then one can conclude that level of significance for the 
lower endpoint is less then 05.0=α  and it can be esti-
mated as 0489.0:244462 =⋅= Kα . The same is true for 
the right boundary of the confidence interval because 

245.0980677973365max, =≤≤ kp , then we have to reassess 
the level of significance for this quantile as 

0386.0):9806771(2 =−⋅= Kα . It is also possible to test 
the nearest quantile 235.0973364max, =p  for the right 
endpoint. The correspondent level of significance for 
the interval 235.0035.0 ≤≤ p  can be estimated as 

051.0:973364:244461 =−+= KKα . It seems that this 

interval is in the best degree satisfying a significance 
level of 0.05. It’s worse also pointing that all 106 statis-
tical trials gave proportions in the absolute limits 

525.0025.0 ≤≤ p .  
These results are in agreement with notation [10] 

that for interval estimation of a proportion, coverage 
probability tends to be too large for “exact” confidence 
intervals based on inverting the binomial test.  

CONCLUSIONS 
It is shown that interval estimation of the distribu-

tion parameter can be fulfilled by the direct approxima-
tion of expected value integral or sum if the upper maxx  
and lower minx  bounds of random value domain are 
known. In this model it is assumed that the sample to be 
drawn divides the domain of a random variable into 
fixed segments: [ ]ii xx ,1− , if population is infinite, or  

[ ])()1( , irir xx − , if population is finite. At the same time, 

the statistical weights of the segments, 1−−= iii ffp  or 

[ ] 1)1()1()( −+⋅−−= NirirPi , and, therefore, the distribu-
tion parameter are considered as random variables, 
which resembles the Bayesian approach [11]. However, 
this all the similarity ends. The model of the expected 
value approximation does not need hypotheses about a 
priori distribution of the parameter, since the probability 
distributions of these statistical weights are known if the 
sample satisfies the i.i.d. conditions. It is easily imple-
mented numerically using the Monte Carlo method, and 
it does not impose any restrictions on the sample size. In 
contrast to the bootstrap method, the model is formally 
operable for samples of any size 1≥n . 

It is clear that the possibilities of practical applica-
tion of the model are directly related to the availability 
of information regarding the boundaries of the domain 
of the variable, the distribution parameter of which is 
estimated. The practical attractiveness of the described 
approach is stipulated for the circumstance that some 
measurable properties of the physical, biological and 
social populations have known bounds. There may be 
various options for information support. First of all, it 
should be pointed out that there are variables with natu-
rally well-defined boundaries. A classic example is the 
dichotomous population with a variable taking two pos-
sible values. Another example is the correlation coeffi-
cient K . If there are no expectations, then the natural 
boundaries for the correlation coefficient are 11 ≤≤− K , 
if there is confidence in a positive relationship, then 

10 ≤≤K , and 01 ≤≤− K  in opposite case. 
Generally speaking, if the problem concerns the ex-

treme values of the observed variable in a large system, 
then one can expect that the addresses of such "extreme" 
elements in the system are known and this makes it pos-
sible to target these extreme values. Note that the use of 
the model does not require knowledge of the exact up-
per and lower bounds of the variable domain. These 
boundaries, if necessary, can be assigned with a margin. 
For example, if it is known that the upper bound ex-
ceeds the lower bound by hundreds or more times, then 
the lower bound can be set equal to zero. Obviously, 
this will lead to a slight broadening of the confidence 
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interval. Furthermore, the special options could be en-
visaged in the frames of the sampling plan in order to 
find appropriate population elements and to estimate the 
measured variable bounds. These are just the cases, 
when the described method of expected value approxi-
mation could be applied. 
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ИНТЕРВАЛЬНАЯ ОЦЕНКА ПАРАМЕТРА РАСПРЕДЕЛЕНИЯ СТАТИСТИЧЕСКИМИ 
ИСПЫТАНИЯМИ ОЖИДАЕМОЙ ВЕЛИЧИНЫ 

В.А. Баранник 
Получены интервальные оценки параметров распределения аппроксимацией ожидаемых значений бес-

конечной или конечной генеральной совокупности с известными границами. Аналогично методу Байеса 
параметры распределения интерпретируются как случайные переменные, и их неопределенность выражает-
ся в терминах распределений. Для нахождения границ доверительного интервала используется метод Мон-
те-Карло. Модель не накладывает каких-либо ограничений на вид распределений. В отличие от других не-
параметрических интервальных оценок параметров распределений модель работает с выборками любого 
размера. 

ІНТЕРВАЛЬНА ОЦІНКА ПАРАМЕТРА РОЗПОДІЛУ СТАТИСТИЧНИМИ  
ВИПРОБУВАННЯМИ ОЧІКУВАНОЇ ВЕЛИЧИНИ  

В.О. Бараннік 
Отримано інтервальні оцінки параметрів розподілу апроксимацією очікуваних значень нескінченної або 

скінченної генеральної сукупності з відомими границями. Аналогічно методу Байєса параметри розподілу 
розглядаються як випадкові величини, а їх невизначеність виражається в термінах розподілу. Для знахо-
дження границь довірчого інтервалу застосовується метод Монте-Карло. Модель не накладає будь-яких об-
межень на вид розподілів. На відміну від інших непараметричних інтервальних оцінок параметрів розподілу 
модель працює з вибірками будь-якоко розміру. 
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