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The problem of standing out a signal from an additive mixture of a harmonic signal and white Gaussian noise is
considered. The analysis is based on the phenomenon of stochastic resonance (SR), which consists in amplifying a
periodic signal under the influence of noise of a certain power. SR is a universal physical phenomenon that is typical
of some nonlinear systems, and is came out not only in technical, but also in biological and social systems. When
calculating the spectral characteristics of the output signal, Volterra series were used. The problem is solved using
the transfer functions of Volterra without the initial definition of kernels. Volterra transfer functions are obtained by
the harmonic input signal method. The influence of the input signal parameters, in particular the amplitude and fre-
quency of the harmonic signal and the noise power, on the spectral power density of the output signal is studied.
Optimal parameters values are determined. Criteria are formulated for using a stochastic filter to standing out a har-

monic signal on the background white Gaussian noise.
PACS: 05.45

INTRODUCTION

Nonlinear are systems in which processes do not sat-
isfy to the superposition principle, unlike linear systems.
All real physical systems are nonlinear, them it is possi-
ble to consider linear only approximately at small inten-
sity of input signal. Mathematical models of nonlinear
systems are the nonlinear equations. The analytical de-
scription of processes in nonlinear systems is compli-
cated because there are no general methods of a solution
of the nonlinear equations [1, 2].

The analysis on the basis of Volterra series is the
most suitable method for modeling of schemes with
weak nonlinearity [3].

Volterra series have been described as “power series
with memory” which express the output of a nonlinear
system in “power” of the input x(¢) [4]. The output

signal of a nonlinear system is:
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where y(f) is the output, x(f) is the input and

gn (”l seens Uy, ) is the kernels, which describe the sys-

tem. It will be noted that the first-order kernel gj (1)

is simply the familiar pulse responce of a linear circuit.
The higher order kernels can thus be viewed as higher
order pulse responses which serve to characterize the
various orders of nonlinearity.

The coefficient 1/ n! was introduced by E. Bed-
rosian and O. Rice [4] to simplify many of equation.
Any functional nonlinear system with no feedback con-
sisting of inertial linear system and inertial nonlinearity
can be described by Volterra series [5].

The analysis of a nonlinear component of a system is
based on 7 -fold Fourier transform according to which
n -fold transfer functions can be writing as [4]
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where G, is identically equal zero in accordance with

the system causality principle. Thus Volterra series
starts with n =1 and G,(f;) is transfer function of lin-

ear circuit. Spectrum conversion in linear systems real-
izes according to the superposition principle, excluding
in a output signal harmonics which are absent in an in-
put signal. In case of nonlinear systems the ratio be-
tween input and output frequencies is much more diffi-
cult [1, 2].

The complete formulas Volterra series are infinite
series in which the laboriousness of computing the 7 -th
term increases rapidly as 7 increases. Fortunately, in
the study of communication and radioengineering sys-
tems it is often possible to neglect terms in Volterra
series of order higher then second or third [4].

In many cases transfer functions Gy, (f{,..., /) can

be defined, without preliminary calculating a kernel
gn (“l .7 ) Usually Volterra transfer functions are

defined more simply, than multidimensional pulse re-
sponses.

Volterra transfer functions are determined by har-
monic input method and received in [6].

1. CHARACTERIZATION OF STOCHASTIC
RESONANCE

The problem of noise immunity is one of the central
problems of radioengineering. Now there are designed
many different methods of the radioengineering systems
noise immunity increasing. The theory of potential noise
immunity and optimum signal receiving is almost com-
plete and became classical [2, 7, 8], but all this methods
are based, generally, on the principles of the linear sig-
nals analysis. However physicists came to paradoxical
results in the eighties of the last century. Their researches
in the theoretical and experimental physics showed that in
some nonlinear devices additive noise can lead to in-
crease the signal to noise ratio at the output [8]. This ef-
fect is called the stochastic resonance (SR).

SR is the universal physical phenomenon, which has
been observed, quantified, and described in a plethora of
physical and biological systems, including neurons and
even social systems.
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Equation that illustrates a SR (other name is the non-
linear stochastic filter [9]) given by [10]

L vty +x0), G)
where @ n b are constants; x(¢) =s(t)+n(t) is
input signal; s(¢) is periodic signal; n(f) is Gaussian
white noise [10, 11]. The solution of the nonlinear equa-

tion of SR can be received on the basis of Volterra
transfer functions without calculation of kernels

gy (gt

2. NONLINEAR STOCHASTIC FILTER
DRIVING BY HARMONIC
AND GAUSSIAN INPUT

The main components of output power of the non-
linear stochastic filter, driving by harmonic and Gaussi-
an input, are obtained in [12].

Let's consider the calculated components of an out-
put signal in more detail:

1. The square of amplitude of a sinusoidal signal is
given by.

[2(a® + @} ){2a* +3bW,} +34%bal* +16a° 0} (a* + o} )*

al=5(f - fo)A*

where W} is two sided power spectrum density of the

input white Gaussian noise; @ u b are set in system

parameters; A is amplitude of the input sinusoidal
signal; @), is frequency of the input sinusoidal signal.

The square of amplitude of a sinusoidal signal as a
function of Wy and @, when 4 =1 shown in Fig. 1.
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Fig. 1. The square of amplitude of a sinusoidal
signal as a function of Wy and @, for A=1

Results from Fig. 2 show that amplitude of a useful
signal increases with increasing of input noise power,
because of noise stands in the numerator of a formula
(4) and helps to standing out a useful signal. It explains
SR effect. Besides, amplitude of a useful signal sharply
decreases with increasing of frequency of a harmonic
signal that confirms one of SR properties, namely its
low-frequency feature [10].

It is also obvious that amplitude of a useful output
signal grows with growth of input signal amplitude that
illustrates Fig. 2 (since input signal amplitude in (4) is
in numerator).
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Fig. 2. The square of amplitude of a sinusoidal signal as
a function of Wy (red line for A =1, blue line for 4=0.9)
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2. Let's consider a component of a output signal at a
frequency of the third harmonic. It is defined as
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This harmonic demonstrates non-linear distortions of
a signal. Amplitude of a harmonic signal must be less
than unit for reduction of this component (since ampli-
tude is included into numerator in the sixth degree). It
also corresponds to one of SR properties, namely, the
SR effect takes place at a weak input signal [10].

We can calculate this component as a function of A
for various values @, (Fig. 3).
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Fig. 3. The square of amplitude of a third harmonic as a
function of A (red line for @, =0.7, blue line for w, =1)

Results of Fig. 3 show that component of an output
signal at a frequency of the third harmonic it is much
less than amplitude of a harmonic signal, especially at
A <1. 1t is because amplitude of a harmonic signal is
in numerator in the sixth degree.

3. Let's consider the following component of a out-
put power spectrum.

[(2a” +3bW,)(a* + &) +34%ab)* +4a° 0’ (a* + &} )
4a*(a* +a)§ Y(d* + o)’ )

Fig. 3 shows this component.

a3=Ww,

Fig. 4. The component a3 as a function of Wy
and w for A=1
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Results from Fig. 4 show that the component a3
increases with increasing of input noise power. Besides,
this component drastically decreases with increasing of
frequency.

Frequency of an input harmonic signal slightly in-
fluences this component that illustrates Fig. 5. If @ >4,
a3 goes to zero.

4. The following component of the output power
spectrum is defined as:

~ 94*p*w,
16(a? + @) (a* +[0 2w, P) @ + @)

It is obvious that this component increases with in-
creasing of amplitude of an input harmonic signal and
input noise power. Fig. 6 illustrates component a4 .
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Fig. 5. The component a3 as a function of @ (red line

Jor @y =0.5, blue line for @, =1, green line for
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w, =2; where A=1; W)

Fig. 6. The component a4 as a function of Wp

and @ for A=1
Results from Fig. 6 show that the component a4 is
significant only at low frequencies. Fig. 7 confirms this
conclusion. The component a4 becomes very small
when @ > 4.
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Fig. 7. The component a4 as a function of @ (blue
line for W =2, red line for W =1; where A=1;

o, =1)
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The maximum a4 does not depend on amplitude of
the input sinusoidal signal and on input noise power
spectrum and takes place at @ = @,. New extrema ap-

pear with increasing @,: =, +\la)§ —a* . Fig. 8
shows this results.
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Fig. 8. The component a4 as a function of @ (blue
line for W =2, red line for W =1; where A=1;
w,=2)

The component a4 as a function of @ for various
values @, shown on Fig. 9.
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Fig. 9. The component a4 as a function of @ (blue
line for @, = 1, red line for ®,=0.7; where W =1;
A=1)

5. The following component of the output power
spectrum is defined as:
~ 94*p*w,
16(a + ) (@ +o+ 20, P )d + &)

As it is seen this formula is similar to a component
a4 expression. Fig. 10 shows that component a5
drastically decreases with increasing of the input noise
power and becomes very small when @ >4 . Compo-

as

nent a5 increases with increasing of the 4 and W;

since they are in the formula numerator. A is in numera-
tor in the fourth degree therefore for reduction of this
component, it is necessary that 4 was less than 1.

Fig. 10. The component a5 as a function of Wy
and w for A=1
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6. The following component of the output power

spectrum is defined as:
~ 94D W,
2a(a’ + @} )(d + 0*)4d® +(w-ay))

As seen in Fig. 10, the component a6 is significant
only at low frequencies. Fig. 11 confirms this conclu-
sion. The component @6 becomes very small at @ > 4.
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Fig. 11. The component a6 as a function of Wj
and w for A=1
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Fig. 12. The component a6 as a function of @ (blue
line for W =2, red line for W =1, for A=1)

Maximum @6 is possible to define, having solved
the equation
20° - 3a)0a)2 + (Sa2 + a)g )co - aza)o =0
using Cardano formula.
This component is symmetric relatively @ and @,

therefore the component @6 as a function of w, will

be same as Fig. 11.
7. The following component of the output power
spectrum is defined as:

~ 947w,
2a(a* + &} )(a* + 0 )(4d® +(0+@,)°)

Fig. 13 shows this component.

al

Fig. 13. The component a7 as a function of Wj
and @ for A=1

Component a7 increases with increasing of the in-
put noise power and decreases with increasing of the
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frequency, since this frequency is in a denominator with
different degrees.
The component a7 as a function of @ for various

values W shown on Fig. 14.
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Fig. 14. The component a7 as a function of @ (blue
line for W =2, red line for W =1; for A=1)
It is well seen that the component a7 is almost
equal to zero when @ > 4.
This component is symmetric relatively o and @,

therefore the component a7 as a function of @, will be

same as Fig. 14.

8. The following component can be writing as:

~ ob*w;
24*(@® + & )(@* +94%)

This formula does not contain amplitude and the
frequency of a input harmonic signal, therefore, this
component does not depend on an input harmonic sig-
nal.

This component drastically increases with increasing
of the input noise power and drastically decreases with
increasing of the frequency. Fig. 15 shows this results.

Fig. 15. The component a8 as a function of Wy and @

Fig. 16 shows that the component a8 is much more
other components and makes a big contribution to an
output signal. But at the same time the component a8
becomes very small when @ > 4 .
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Fig. 16. The component a8 as a function of @ (blue
line for W =2, red line for W =1)
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These components having summarized, we will re-
ceive the power spectral density at the output of the sto-
chastic filter (Fig. 17).
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Fig. 17. The output power spectrum, as a function

of  where A=1; W =1, o,=1

The dependence of power spectral density has the
appearance characteristic of nonlinear systems [13]. It
drastically decreases with increasing of the frequency,
as seen in Fig. 17. The output power spectral density is
almost equal to 0 when @ >4. There are d-function at
frequency of the input sinusoidal signal.

Unlike linear systems, the frequency composition of
the power spectrum at the output of which remains un-
changed, the power spectrum of the process at the non-
linear element output has a more complex structure
[13]. At the output of the nonlinear system, new spectral
components are formed due to the beating of the com-
ponents of the input process. Moreover, their type and
intensity are determined by the type of nonlinear trans-
formation and the statistical characteristics of the pro-
cess at the input.

CONCLUSIONS

The Volterra series is a powerful tool that can be
used to describe a wide class of non-linear systems.

The received components of spectral power density
allow to investigate influence of amplitude and frequen-
cy of an input sinusoidal signal, noise power, parame-
ters of a system (a and b) on it.

Amplitude of a useful signal increases with increas-
ing of input noise power, that explains SR effect, i.e.
noise helps to standing out a useful signal. Besides, am-
plitude of a useful signal sharply decreases with increas-
ing of frequency of a harmonic signal that confirms one
of SR properties, namely its low-frequency feature.

Analysis of the frequency composition of the signal
at the nonlinear stochastic filter output showed that the
output component in the form of the delta function cor-
responds to the harmonic input signal at the input.

Component of a output signal at a frequency of the
third harmonic it is much less than amplitude of a har-
monic signal, especially at 4 <1. That confirms one of
SR properties, namely that input sinusoidal signal must
be weak.
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Obtained results is shown can be used as the basis
for studying the dependence of the output signal spec-
trum on the parameters of a nonlinear filter.
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MNPUMEHEHUE CIIEKTPAJIBHOI'O METOJA K AHAJIN3Y CTOXACTHYECKOI'O ®UJIBTPA
O.U. Xapuenko

PaccmoTpena 3amaua BeIJENCHUS CUTHANIA U3 aIIUTHBHON CMECH TapMOHMYECKOTO CHTHANa M 0eJoro rayccona
nryma. B ocHOBY aHanmm3a moito)keHo SBJICHHE cToXacTrdeckoro pesoHanca (CP), koTopoe 3aximodaercss B yCHICHIH
MIEPUOIUIECKOTO CHTHANA O] AEWCTBUEM IITyMa ompeaesieHHoi MomHocTh. CP sBisieTcst yHUBepcanbHBIM (pr3mde-
CKUM SIBIICHHEM, KOTOPOE TUITMYHO JJIs1 HEKOTOPHIX HEIMHEHHBIX CHCTEM, U TIPOSABIISIETCS HE TOMBKO B TEXHUYECKHX,
HO U B OMOJIOTHMYECKUX U COLMAIBHBIX cHCTeMax. [Ipy pacyere CieKTpalbHBIX XapaKTEPUCTUK BBIXOAHOTO CUTHAJIa
UCIIOJIb30BANINCH psibl Bonbreppa. 3agava penieHa ¢ MoMoIbio nepeaatoyHbix GyHKuuid Bonbreppa 6e3 nepBona-
YaJbpHOTO onpenaeneHus saep. Ilepenarounsie pyHkun Boabreppa moaydeHsl METOAOM rapMOHHYECKOTO BXOTHOTO
curHana. VccrienoBaHo BIMSHHE apaMeTPOB BXOAHOTO CUTHAJIA, B YACTHOCTU aMIUIMTY/bI M 4aCTOThI TapMOHHUYE-
CKOT0 CHTHaJla ¥ MOIIHOCTH IITyMa, Ha CHEKTPAJbHYIO IUNIOTHOCTh MOIIHOCTH BBIXOJHOTO curHaia. OmpeneseHsl
3HA4YEHHs ONTUMAaJbHBIX HapameTpoB. CHopMynupoBaHbl KPUTEPUU NMPUMEHEHUs] CTOXacTH4ecKoro Quubrpa 1uis
BBIJICJICHUS TAPMOHNYECKOTO CHTHaJIa Ha oHE Oeroro rayccoa Imyma.

3ACTOCYBAHHS CHEKTPAJIBHOI'O METOAY JJI51 AHAJII3Y CTOXACTUYHOI'O ®LUIBTPA
O.1. Xapuenko

PosrisiHyTO 331a9y BHIIIEHHS CUTHAITY 3 aJUTHBHOI CYMIIlli TApMOHIHHOTO CHTHAY i Oimoro raycosa mymy. B
OCHOBY aHaJi3y MOKJIaJICHO SIBHIE CTOXacTHYHOTO pe3oHaHcy (CP), sike momsrae B MOCWICHHI MEPIOANIHOTO CHT-
HaIly T Ji€to mymy meBHoi motykHocTi. CP € yHiBepcanbHUM (i3MIHUM SIBHINEM, SKE THIIOBE AJIS NESKUX Helli-
HIHUX CHCTEM, 1 IPOSIBIIETHCS HE TUIBKU B TEXHIUHHUX, ajic 1 B 010JOTIYHHX, 1 cOIlialbHUX cucTeMax. IIpu pospa-
XYHKY CIIEKTPaJIbHUX XapaKTePUCTHK BUXIJHOTO CUTHATY BUKOPUCTOBYBasUCS psiau BosbTeppa. 3anaya po3s’si3ana
JIOTTIOMOT'010 TiepenaBanbuux (GyHkiiin Bonbreppa 6e3 moyarkoBoro BusHaueHHs siep. [lepenaBanbhi GyHkIil Bo-
JbTEppa OTPUMaHI METOIOM FapMOHIIHOrO BXiJHOTO curHaity. JIOCIiIKeHO BIUIMB MapameTpiB BXiJHOI'O CUTHAIY,
30KpeMa aMIUTTYIU 1 YaCTOTH FapMOHIMHOTO CHTHANY 1 MOTYXHOCTI IIyMY, Ha CIIEKTPaJbHY MIIJIBHICTD MOTYXHOCTI
BUXIJJTHOTO CHTHANly. Bu3HaueHO 3HaueHHA onTHManbHHUX mapamerpiB. CHopMyIaboBaHO KpuTepil 3acTOCyBaHHS
CTOXAaCTUYHOTO (LTBTpa U BUAUICHHS TAPMOHIHOTO CHTHATY Ha TJi 01JI0T0 raycoBa Irymy.
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