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The equation of motion of charged plasma particles in a homogeneous magnetic field and in an inhomogeneous 

stochastic electric field with a characteristic oscillation frequency much lower than the electron cyclotron frequency 
and much higher than the ion cyclotron frequency is solved. The diffusion motion, as well as the drift of ions and 
guiding center of electrons, due to the inhomogeneity of the stochastic electric field, is considered. The obtained 
values of the diffusion coefficient and drift velocity are used in the Fokker-Planck equation to determine the station-
ary distribution of the plasma density due to the effect of an inhomogeneous stochastic field.  

PACS: 52.35.Ra, 52.35.Mw 
 

INTRODUCTION 
It was shown in Ref. [1] that inhomogeneous high-

frequency harmonic electric field in plasma which has 
the form  

   , sin
  E r t E r t            (1) 

leads to the appearance of a nonlinear force acting on a 
charged particles 

   
2

2
24 

  
  eF r E r

m
,           (2) 

which called the RF pressure force. This force pushes 
the charged particles out of the region of the increased 
level of high-frequency oscillations, which leads to a 
depletion of the plasma density in this region.  

In Ref. [2] the effect of inhomogeneous stochastic 
electric fields on charged particles is also found. Such 
fields can occur due to the excitation of various insta-
bilities in plasma. It was shown that, as in the case of a 
harmonic field, a ponderomotive force acts on the parti-
cles, which leads to the drift motion of particles from 
the region of an increased level of oscillations. How-
ever, in addition to drift motion, stochastic electric fields 
also lead to increased diffusion motion of particles. This 
motion is analogous to the motion of Brownian particles 
caused by their collisions with the molecules of the liq-
uid in which they are placed. It was suggested that lo-
calized stochastic electric fields may be responsible for 
the appearance of lower hybrid cavities in the plasma of 
the earth's ionosphere, that is, regions with a depleted 
density, which were often observed by spacecraft [3 -
 6]. It was shown [7 - 9] that such cavities can also form 
in plasma due to the propagation of electron beams in it 
and the excitation of plasma instabilities there.  

It was assumed in [2] that there is no the magnetic 
field in plasma, or otherwise the characteristic values of 
the frequencies of stochastic oscillations significantly 
exceed the cyclotron frequency of charged particles. 
This condition is satisfied the ions of the lower hybrid 
cavities, where the frequency of the lower hybrid oscil-
lations significantly exceeds the ion cyclotron fre-
quency. However, the frequency of the lower hybrid 
oscillations turns out to be much lower than the cyclo-

tron frequency of electrons. In this regard, the problem 
arises of studying the motion of particles in inhomoge-
neous stochastic fields, the cyclotron frequency of 
which significantly exceeds the characteristic frequency 
of oscillations of the electric field. This problem is con-
sidered in this work. In contrast to the case of high-
frequency oscillations, when the cyclotron motion of 
particles during the period of oscillations can be ne-
glected, at low-frequency oscillations the cyclotron mo-
tion is important, and therefore, in this consideration, 
not the motion of the particle, but the motion of its guid-
ing center, i.e., the center of the Larmor orbit is investi-
gated. Moreover, since the behavior of ions and elec-
trons is different, we investigate the effect of a non-
uniform stochastic electric field on the motion of not 
only electrons, but also ions and also compare their 
characteristics of motion. This work is a development of 
[2], however, in contrast to it where a cylindrical plasma 
model was considered, the slab plasma model is used 
here.  

1. HEATING AND DIFFUSION  
Consider homogeneous plasma in the magnetic field 

B directed along the z axis, in which there is a region 
with a stochastic electric field inhomogeneous along the 
x-axis and homogeneous in other directions. It is as-
sumed that the characteristic frequency of the stochastic 
field   is much lower than the electron cyclotron fre-
quency ce  and much higher than the ion cyclotron fre-
quencyci . We assume that the turbulent state of the 
plasma arises due to an external source, for example, as 
a result of the passage of a high-energy particle beam 
through the plasma and the excitation of instability in it. 

The equation of motion of the charged particles in 
the magnetic field, taking into account the stochastic 
electric field, is 

   , , 

 

    

   e edv F x E r t v B
dt m m

,       (3) 

where e  and m  are the charge and mass of   spe-
cies particles (  i  for ions and   e  for electrons), 



ISSN 1562-6016. ВАНТ. 2021. № 4(134) 113 

 ,
 E r t  is the electric field strength of turbulence, far 

from the region with a high level of turbulence, 
  1F x  is the envelope of turbulent pulsations having 

a maximum at 0x  and   1 F . Equation (3) is a 
stochastic differential equation with random force acting 
on the charged particle.  

1.1. HEATING AND DIFFUSION OF IONS 

First we consider heating and diffusion of ions. 
Since the frequencies of stochastic oscillations signifi-
cantly exceed the ion cyclotron frequency, we neglect 
the effect of the magnetic field on the motion of ions, 
and then the solution to Eq. (3) is 

     
0

,   
 t

i

i t

e
v t F r E r t dt

m
,   (4) 

where 0t t  is the time of occurrence of turbulence in 
plasma. The rate of change of the mean square of the 
velocity ion velocity we find by multiplying (3) by 
 v t  (4) and averaging this product over a long period 

of time 

     
0

2 2
2

2

1 , , .
2

   
    t

i

i t

d v edvv F r E r t E r t dt
dt dt m

 (5) 

Assume that an electrostatic turbulence satisfies the 
following conditions 

         2, 0, , , ,    
      E r t E r t E r t E r t t t , (6) 

that is the electric-field at a time t  is considered to be 
completely uncorrelated with it at any other time (white 
noise). Here  2 ,

 E r t  is the average value of the 
square of the amplitude of electric-field noise far from 
the region with a high level of turbulence. Accounting 
(6) in (5) gives 

   
2 2

2 2
2 ,

 i

i

d v e
F r E r t

dt m
.             (7) 

The solution of this equation,  

   
2

2 2 2 2
0 2 , 

 i

i

e
v v F r E r t t

m
,          (8) 

shows that the mean square velocity, in fact the ion 
temperature, in the region of an increased level of turbu-
lent pulsations of the electric field increases linearly 
with time. In (8) 2

0v  is the initial value of the mean 
square of the ion velocity before the appearance of tur-
bulence, that is, the corresponding value for the envi-
ronment.  

Now we find the value of the random displacement 
 r t  of ion by integrating (4) over time, 

     
0 0 0

,


      
  t t t

i

it t t

e
r t vdt F r E r t dt dt

m
,   (9) 

and then obtain the rate of change in mean square dis-
placement by multiplying (4) by (9) and averaging over 
a large time interval 

     
 

2
2

2
2

1
2

  


 i

i

d r tdr t e
r t F r

dt dt m
 

   
0 0 0

, ,


       
  t t t

t t t

E r t dt dt E r t dt .           (10) 

Write  ,
 E r t  in the form of a Fourier integral 

     , , exp  




 
  E r t E r i t d .     (11) 

Substituting (11) into (10) we get  
 

     
0 0

2

2
2

2

1
2

, exp
t t

i

i t t

d r t
dt

e F r E r i t d dt dt
m

  
 





      



 
 

 
0

,  
 t

t

E r t dt .                                                  (12) 

Integrate (12) over t  

 

     
0

2

2
2

2 2

1
2

,
exp

t

i t

d r t

dt
E re F r i t d dt

m


 








    



   

 
0

,  
 t

t

E r t dt , 

and find the inverse Fourier transform 

 
     

0

2
2

2
2 2

1 , ,
2 

 
 


  t

i

i t

d r t e F r E r t E r t dt
dt m

, 

where   is the width of the frequency spectrum of the 
turbulent pulsations of an electric field. We assume this 
is in order of magnitude    . Accounting for (6), 
we finally obtain  

 
   

2
2

2 2
2 2

1 ,
2 2 





 i

i

d r t e
F r E r t

dt m
.        (13) 

Equation (13) determines the diffusion coefficient of 
the plasma in the turbulent field of electrostatic turbu-
lence.  

1.2. HEATING AND DIFFUSION OF ELETRONS 

For electrons, we take into account the magnetic 
field. First, we assume that the effect of the stochastic 
electric field is small and write down the integrals of 
motion from the equation (3)  

,   

 e

e

edv v B
dt m

.                      (14) 

One of the integrals of motion obtained from equa-
tion (14) is the kinetic energy of the electron 

2

2
 em v

W .                        (15) 

The integrals of motion are also the coordinates of 
the guiding center 

,
 

   y x

ce ce

v v
X x Y y ,              (16) 
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which mean the invariability in time of the coordinates 
of the guiding center of an electron rotating in a mag-
netic field.  

However, the existence of stochastic electric fields 
in plasma leads to slight distortions in these integrals of 
motion. Now we consider the solution of equation (3) in 
the first approximation and find the changes in the inte-
grals of motion caused by stochastic electric fields. We 
consider this effect only on the motion of the electron 
across the magnetic field, neglecting the motion along 
the magnetic field. 

Represent v  in the form: 
0 1 

  v v v , 
where 1

v  is the velocity fluctuation caused by stochastic 
fields which is determined by the equation 

   1
1, ,    

   e e

e e

e edv
F x E r t v B

dt m m
.           (17) 

In order to estimate the change in the kinetic energy 
of electrons we find the dot product 1

v  and (17) averag-
ing it over time 

   1
1 1 ,
   e

e

edv
v F x v E r t

dt m
.         (18) 

Find 1
v  from (17). The solutions of the eq. (17) for 

the components 1xv  and 1yv are 

       1 2

,
,


 


e x e

x y
e cee ce

e F x dE r t e F x
v E r t

dt mm
,     (19) 

       1 2

,
,


 


ye e

y x
e cee ce

dE r te F x e F x
v E r t

dt mm
.     (20) 

Substituting (19) and (20) into (18), we obtain 

   
2 2

1 2 2
2 2

1 1 ,
2





  e

e ce

d v e
F x E r t

dt Tm
,    (21) 

where T  is the time over which averaging is performed. 
Assuming that T  is much larger than the period of field 
oscillations, we find that there is no heating of the elec-
trons by low-frequency stochastic electric fields, 
whereas ions, the cyclotron frequency of which is much 
lower than the frequency of the stochastic field, are 
heated. 

Calculate the change in the coordinates of the guid-
ing center due to stochastic electric fields. Represent the 
X  coordinate in the form 

0 1 X X X ,      (22) 
where 1X  is the random displacement of the coordinate 
of the guiding center due to stochastic electric fields. 
Using (16) we write  

1 1 1
1


  y
ce

X x v .     (23) 

In (23), the value of 1x  is determined by integrating 

1xv  (19) over time 

 1 1
0

  
t

xx v t dt  

     2
0

, ,


 
  

 


 t
e

x ce y
e ce

e F x
E r t E r t

m
. (24) 

The value of 1yv  in (23) is given by (20). 

Thus, the random displacement of the x -coordinate 
of the guiding center is equal to 

       
1 3

0

,
,

 
  


t

ye e
y

e ce e ce

dE r te F x e F x
X E r t dt

m dtm
.    (25) 

Next, we find the rate of change of 1X  by differenti-
ating (25) with respect to time 

   11
1

1 1 ,
 

  
y e

x y
ce e ce

dv edX
v F x E r t

dt dt m
,    (26) 

and then obtain the rate of change in mean square dis-
placement multiplying (26) by (25) and averaging over 
a large time interval 

 
2 2
1 21

1 2

1
2

  e

e

d X edX
X F x

dt dt m
 

   
 

2 2
0

,1 1 1, , .
2 

 
   
 
 



 t

y
y y

ce ce

d E r t
E r t E r t dt

dt
(27) 

Neglecting the second term in (27) which is much 
smaller than the first one, we obtain 

     
2 2
1 2

2 2
0

1 1 , , .
2 

  
 t

e
y y

e ce

d X e
F x E r t E r t dt

dt m
  (28) 

Taking into account the condition (6) we obtain 

   
2 2
1 2 2

2 2

1 ,
2 2 


e

y
e ce

d X e
F x E r t

dt m
.        (29) 

Thus, the rate of mean square displacement of the 
guiding center coordinate along the x-axis is deter-
mined by the mean value of the square of y-component 
of the stochastic electric field. Equation (29) can also be 
written as 

   
2 2
1 2 2

2

1 ,
2 2




y

d X c F x E r t
dt B

,        (30) 

or, label /dx yv cE B , which is equal to the velocity of 
the drift motion of a particle in crossed fields along the 
x-axis we obtain 

   
2 2
1 21 ,

2 2



dx

d X F x
v r t

dt
.        (31) 

Then the rate of change in the mean square dis-
placement is equal to the mean value of the square of 
the drift rate of particles in crossed fields.  

Similarly, for the mean square displacement of the 
guiding center coordinate along the y-axis we obtain 

   
2 2

1 2 2
2 2

1 ,
2 2 

 
e

x
e ce

d Y e
F x E r t

dt m
,         (32) 

or, otherwise, by analogy with the displacement along 
the x-axis 

   
2 2

1 21 ,
2 2




dy

d Y F x
v r t

dt
,        (33) 

where /dy xv cE B  is the drift velocity of a particle in 
crossed fields along the y-axis. 

Summing (30) and (32) we obtain  

   
2 2
1 2 2

2 2

1 ,
2 2 




 e

e ce

d R e
F x E r t

dt m
,        (34) 
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where 

R  is the position vector of the guiding center of 

electron with coordinates  ,X Y  and  1 1 1,

R X Y  is its 

perturbation caused by stochastic electric fields. Equa-
tion (34) determines the diffusion coefficient of elec-
trons in the stochastic electric fields of low frequency 
turbulence. 

Compare the diffusion coefficients of electrons and 
ions for this divide (34) by (13) 

 22 2 2 2
1

2 2 2

1 1 1
2 2

 
 
 

  

 
i

e ce ci

d r td R m
dt dt m

.  (35) 

Thus, the diffusion coefficient of the guiding centers 
of electrons significantly exceeds the diffusion coeffi-
cient of ions. 

2. DRIFT MOTION OF PARTICLES  
In addition to diffusion, there is also quasilinear mo-

tion of a particle caused by a ponderomotive force in 
this region due to the radial gradient of the envelope of 
the amplitude of the turbulent field. Ponderomotive 
force affecting on the particle in the case of an inhomo-
geneous coherent electric field E  oscillating with the 
frequency   is determined by (2). 

Now we obtain the equation of motion of the parti-
cles with the ponderomotive force affecting on a particle 
in an inhomogeneous electrostatic turbulence.  

2.1. DRIFT MOTION OF IONS 

The equation of motion of ion along x-axis is 

   
2

2 ,


i i x
d xm e F x E r t
dt

,  (36) 

where  ,xE r t  is the projection of the electric field 
strength onto the x-axis. We represent the x-coordinate 
of ion as the sum of the oscillatory and quasilinear 
changes 

 x x x ,  (37) 
where quasilinear change means the mean value of the 
x-coordinate of ion over a long period of time, x x . 
If the initial position of ion is 0x , and 0x x  then we 
can use Taylor expansion on the force equation about 

0x . Substituting (37) into (36), we obtain 

      
2

0 02 ,  
i i x

d xm e F x x F x E r t
dt

. (38) 

For the oscillating part of trajectory, we obtain 

   
2

02 ,
 

i i x
d xm e F x E r t
dt

. 

This equation is the x -component of equation (3) at 
0


B  and therefore has the solution (9) 

     
0 0

0 ,


    


t t
i

x
i t t

e
x t F x E r t dt dt

m
. (39) 

Writing  ,xE r t  in the form of a Fourier integral 

(11) we obtain for  x t  

       
0 0

0 , exp .  
 



     


t t
i

x
i t t

e
x t F r E r i t d dt dt

m
(40) 

Integrating (40) over t  and t  we get 

       0 2

,
exp


 







  


 xi

i

E re
x t F r i t d

m
 

   
0 2

,






xi

i

E r te
F x

m
.  (41) 

Now we average (38) over a large period of time 

     
2

02 ,  
i i x

d xm e F x x t E r t
dt

. (42) 

Substitute (41) into (42) 

       
22

0 02 2 , ,


 


 i
i x x

i

ed xm F x F x E r t E r t
dt m

, 

and use (6)  

     
22

2 2
02 2 ,

2



  


i

i x
i

ed xm F x E r t t t
dt m

.  (43) 

Thus, we have obtained the equation for the drift 
motion of ion under the action of a non-uniform electro-
static turbulent field. The expression on the right side of 
(43) is a ponderomotive force which is the effect of the 
radial inhomogeneity of the electrostatic turbulent field. 
This force is proportional to the delta function. This is 
due to the fact that the affecting of this force occurs 
only at certain instants of time, corresponding to the 
moments of “collision” of particles with random pulsa-
tions of the electrostatic field. 

Integrating (43), we obtain the velocity of the drift 
motion of ion along the x-axis 

   
0

22
2 2

02 2 2 ,
4 

  


t
i

x
it

edx d x dt F x E r t
dt dt m

.   (44) 

2.2. DRIFT MOTION OF ELECTRONS 

Now we obtain the equation of motion of the guid-
ing center of electron with the ponderomotive force in 
an inhomogeneous electrostatic turbulence. We repre-
sent the random displacement of the coordinate of the 
guiding center 1X  as the sum of oscillatory X  and qua-
silinear X  components  

1  X X X ,            (45) 

where 1 X X  and 0X . To determine the drift 
velocity of the guiding center we use the equation (16)  

   1 1 ,


  
 e

y
e ce

edX dX dX F x E r t
dt dt dt m

.      (46) 

Expand envelop function  F x  in a Taylor series 
about the initial value of the position of the coordinate 
of the guiding center  

     0 0 1  F x F X F X x             (47) 
and substitute it into (46) 

      1
0 1 0

1 ,


  
e

y
e ce

edX
F X x F X E r t

dt m
.   (48)  

Then averaging over a large time interval we obtain 
the rate of quasi-linear change in the coordinate of the 
guiding center  

   1
0 1

1 ,


  
e

y
e ce

d X edX F X x E r t
dt dt m

.     (49)  



ISSN 1562-6016. ВАНТ. 2021. № 4(134) 116 

Calculate  1 ,yx E r t  by substituting here the value 

1x  (24): 

 1 , 


yx E r t  

       0
2

0

, , ,


 
   

 


   t
e

x ce y y
e ce

e F X
E r t E r t dt E r t

m
. 

Since    , , 0
  

x yE r t E r t  we obtain 

       
2

0 02 2
0

, ,


   
 t

e
y y

e ce

edX F X F X E r t E r t dt
dt m

. (50)  

Integration (50) using condition (6), we obtain 

   
2

2 2
02 2 ,

4 
 

e
y

e ce

edX F X E r t
dt m

.         (51)  

Equation (51) determines the velocity of the drift mo-
tion of the guiding center of electron along the x -axis. 

Now compare the drift velocities of ions and guiding 
centers of electrons. Dividing (51) by (44) we get 

2 2 2

2 2 2 1
 
 
 

  i

e ce ci

mdX dx
dt dt m

. (52) 

Inequality (52) means that electrons leave the region 
of increased turbulence level much faster than ions. 

Note also that the ratio of the diffusion coefficients 
of the guiding centers of electrons and ions is of the 
same order as the ratio of their drift velocities, namely 

2 2  ci . 

3. STATIONARY DENSITY DISTRIBUTION  
Inhomogeneous electrostatic turbulence leads to a 

change in the plasma density distribution. We find only 
stationary distribution of the electron density, since this 
process occurs faster than for ions. The evolution of the 
distribution function  ,f x t  as a result of diffusion as 
well as the drift motion of particles is governed by the 
Fokker-Planck equation  

      ,
,

 
  

 

f x t
A x f x t

t x
 

   
2

2 ,
2

 
  
  

B x
f x t

x
,   (53) 

where A is the drift velocity, / 2B  is the diffusion coef-
ficient. Above it was obtained that diffusion coefficient 
is (34) 

   
2 2

1 2 2
2 2

1 ,
2 2 2 
 


 

c

d RB e F x E r t
dt m

,   (54) 

and drift velocity is (51) 

   
2

2 2
02 2 ,

4 
  

e
y

e ce

edXA F X E r t
dt m

.    (55) 

We now find the dependence of the plasma density 
on the x -axis in a stationary state,    n x f x , as-
suming that the evolution of the distribution function 
has ended. Equating in (53) the derivative of the distri-
bution function with respect to time to zero, we obtain 
the equation 

        
2

2 0
2

  
   
   

B x
A x n x n x

x x
.     (56) 

This equation is simplified and reduces to the fol-
lowing  

        0
2

 
   

  

B x
A x n x n x

x
,      (57) 

and then 
 
 

    
   

2


d B x n xA x dr
B x B x n x

.    (58) 

Substituting (54) and (55) into (58) we get  

 
 

 
 

  
 

2 2

22

,

,


 
 

rE r t d F r ndF r
F r nF rE r t

.      (59) 

Assuming that    2 2, , 1 / 2
  

xE r t E r t  and in-
tegrating (59), we obtain 

   3/ 2
Cn x

F x
.         (60) 

We choose the integration constant C  using the 
condition   0 n n , where 0n  is the plasma density 
far from the region with increased turbulence. To the 
same value, the plasma density was equal in this region 
before the appearance of turbulence, that is, when 

0t t . So we get 0C n  since, as we suggested, 
  1 F . Finally, we obtain the plasma density distri-

bution long after the appearance of a region with an 
increased level of turbulence in homogeneous plasma 

   
0

3/ 2
nn x

F x
.       (61) 

In accordance with (61), the minimum plasma den-
sity is reached in the region with the maximum level of 
low-frequency turbulence. Thus a region with a depleted 
electron density is formed. Distribution of the plasma 
density (61) is the result of the evolution of initially 
homogeneous plasma due to inhomogeneous electro-
static turbulence. 

CONCLUSIONS 
The inhomogeneous stochastic electric fields in 

plasma in a magnetic field leads to the occurrence of 
ponderomotive force, which causes a quasilinear drift 
motion of particles outward from the region of an in-
creased level of stochastic oscillations of the electric 
field. This effect takes place both for ions whose cyclo-
tron frequency is lower than the frequency of stochastic 
oscillations, and for electrons, whose cyclotron fre-
quency significantly exceeds this frequency. It is shown 
that the drift rate of the guiding centers of electrons ex-
ceeds the ions drift rate by a factor 2 2/ 1  ci , 
where   is the width of the spectrum of stochastic 
oscillations of an electric field, and thus electrons leave 
the region of increased turbulence much faster than 
ions.  

Apart to drift motion, the increased diffusion of par-
ticles also occurs caused by their collisions with random 
pulsations of electrostatic turbulence, and the diffusion 
coefficient of electrons exceeds the diffusion coefficient 
of ions by a factor 2 2/ 1  ci .  

The drift and diffusion of particles lead to a decrease 
in the plasma density in the region of an increased level 
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of stochastic oscillations of the electric field. The sta-
tionary distribution of the plasma density was deter-
mined from the Fokker-Planck equation, where the ob-
tained values of the drift velocity and the diffusion coef-
ficient were used. It is shown that the plasma density 
distribution is ultimately determined by (61). 
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ДВИЖЕНИЕ ЗАРЯЖЕННЫХ ЧАСТИЦ В МАГНИТНОМ И НЕОДНОРОДНОМ  
СТОХАСТИЧЕСКОМ ЭЛЕКТРИЧЕСКОМ ПОЛЯХ  

Н.А. Азаренков, А.Д. Чибисов, Д.В. Чибисов 
Решается уравнение движения заряженных частиц плазмы в однородном магнитном поле и неоднород-

ном стохастическом электрическом поле с характерной частотой колебаний, много меньшей электронной 
циклотронной частоты и много большей ионной циклотронной частоты. Рассмотрены диффузия, дрейфовое 
движение ионов и ведущих центров электронов, вызванные неоднородностью стохастического электриче-
ского поля. Полученные значения коэффициента диффузии и скорости дрейфа используются в уравнении 
Фоккера-Планка для определения стационарного распределения плотности плазмы, обусловленного влия-
нием неоднородного стохастического поля. 

РУХ ЗАРЯДЖЕНИХ ЧАСТИНОК У МАГНІТНОМУ І НЕОДНОРІДНОМУ  
СТОХАСТИЧНОМУ ЕЛЕКТРИЧНОМУ ПОЛЯХ  

М.О. Азаренков, О.Д. Чібісов, Д.В. Чібісов 
Вирішується рівняння руху заряджених частинок плазми в однорідному магнітному полі і неоднорідно-

му стохастичному електричному полі з характерною частотою коливань, значно меншої електронної цикло-
тронної частоти і значно більшої іонної циклотронної частоти. Розглянуто дифузію, дрейфовий рух іонів і 
ведучих центрів електронів, спричинені неоднорідністю стохастичного електричного поля. Отримані зна-
чення коефіцієнта дифузії і швидкості дрейфу використовуються в рівнянні Фоккера-Планка для визначення 
стаціонарного розподілу щільності плазми, обумовленого впливом неоднорідного стохастичного поля. 


