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The equation of motion of charged plasma particles in a homogeneous magnetic field and in an inhomogeneous
stochastic electric field with a characteristic oscillation frequency much lower than the electron cyclotron frequency
and much higher than the ion cyclotron frequency is solved. The diffusion motion, as well as the drift of ions and
guiding center of electrons, due to the inhomogeneity of the stochastic electric field, is considered. The obtained
values of the diffusion coefficient and drift velocity are used in the Fokker-Planck equation to determine the station-
ary distribution of the plasma density due to the effect of an inhomogeneous stochastic field.

PACS: 52.35.Ra, 52.35.Mw

INTRODUCTION

It was shown in Ref. [1] that inhomogeneous high-
frequency harmonic electric field in plasma which has
the form

E(7,t)=E(F)sinot (D)
leads to the appearance of a nonlinear force acting on a
charged particles
2

= e -

F(r):—WVEz(r), ()
which called the RF pressure force. This force pushes
the charged particles out of the region of the increased
level of high-frequency oscillations, which leads to a
depletion of the plasma density in this region.

In Ref. [2] the effect of inhomogeneous stochastic
electric fields on charged particles is also found. Such
fields can occur due to the excitation of various insta-
bilities in plasma. It was shown that, as in the case of a
harmonic field, a ponderomotive force acts on the parti-
cles, which leads to the drift motion of particles from
the region of an increased level of oscillations. How-
ever, in addition to drift motion, stochastic electric fields
also lead to increased diffusion motion of particles. This
motion is analogous to the motion of Brownian particles
caused by their collisions with the molecules of the lig-
uid in which they are placed. It was suggested that lo-
calized stochastic electric fields may be responsible for
the appearance of lower hybrid cavities in the plasma of
the earth's ionosphere, that is, regions with a depleted
density, which were often observed by spacecraft [3 -
6]. It was shown [7 - 9] that such cavities can also form
in plasma due to the propagation of electron beams in it
and the excitation of plasma instabilities there.

It was assumed in [2] that there is no the magnetic
field in plasma, or otherwise the characteristic values of
the frequencies of stochastic oscillations significantly
exceed the cyclotron frequency of charged particles.
This condition is satisfied the ions of the lower hybrid
cavities, where the frequency of the lower hybrid oscil-
lations significantly exceeds the ion cyclotron fre-
quency. However, the frequency of the lower hybrid
oscillations turns out to be much lower than the cyclo-
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tron frequency of electrons. In this regard, the problem
arises of studying the motion of particles in inhomoge-
neous stochastic fields, the cyclotron frequency of
which significantly exceeds the characteristic frequency
of oscillations of the electric field. This problem is con-
sidered in this work. In contrast to the case of high-
frequency oscillations, when the cyclotron motion of
particles during the period of oscillations can be ne-
glected, at low-frequency oscillations the cyclotron mo-
tion is important, and therefore, in this consideration,
not the motion of the particle, but the motion of its guid-
ing center, i.c., the center of the Larmor orbit is investi-
gated. Moreover, since the behavior of ions and elec-
trons is different, we investigate the effect of a non-
uniform stochastic electric field on the motion of not
only electrons, but also ions and also compare their
characteristics of motion. This work is a development of
[2], however, in contrast to it where a cylindrical plasma
model was considered, the slab plasma model is used
here.

1. HEATING AND DIFFUSION

Consider homogeneous plasma in the magnetic field

B directed along the z axis, in which there is a region
with a stochastic electric field inhomogeneous along the
x-axis and homogeneous in other directions. It is as-
sumed that the characteristic frequency of the stochastic
field @ is much lower than the electron cyclotron fre-

quency @, and much higher than the ion cyclotron fre-
quency @, . We assume that the turbulent state of the

plasma arises due to an external source, for example, as
a result of the passage of a high-energy particle beam
through the plasma and the excitation of instability in it.
The equation of motion of the charged particles in
the magnetic field, taking into account the stochastic
electric field, is
v e, = e, r. =
i F(x)E(r,t)+m |:V,B:|, 3)

a a

where e, and m, are the charge and mass of o spe-

cies particles (a =i for ions and o =e for electrons),
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E(7,t) is the electric field strength of turbulence, far
from the region with a high level of turbulence,
F (x) >1 is the envelope of turbulent pulsations having

a maximum at x=0 and F(c)=1. Equation (3) is a

stochastic differential equation with random force acting
on the charged particle.

1.1. HEATING AND DIFFUSION OF IONS

First we consider heating and diffusion of ions.
Since the frequencies of stochastic oscillations signifi-
cantly exceed the ion cyclotron frequency, we neglect
the effect of the magnetic field on the motion of ions,
and then the solution to Eq. (3) is

B(t)=2F

m.

i

t
r)jE(?,t')dr’, 4)
where ¢ =¢, is the time of occurrence of turbulence in
plasma. The rate of change of the mean square of the
velocity ion velocity we find by multiplying (3) by
\7(1) (4) and averaging this product over a long period

of time

5 d{V 2
gﬂ =l < >=e_i2F2
e 2 dt m;

Assume that an electrostatic turbulence satisfies the
following conditions

(E(F.0)=0, (E(F.0)E(F.0)) = (E* (F.1))8(¢' 1), (6)
that is the electric-field at a time ¢ is considered to be
completely uncorrelated with it at any other time (white

(N [(EG)EE0)ar. o)

l

noise). Here <Ez(F,t)> is the average value of the

square of the amplitude of electric-field noise far from
the region with a high level of turbulence. Accounting
(6) in (5) gives

mze_leﬂ (r)<E2(F,t)>. (7)

dt m
The solution of this equation,

<v2>=<v§>+:1—’;F2(r)<Ez(F,t)>t, ®)

shows that the mean square velocity, in fact the ion
temperature, in the region of an increased level of turbu-
lent pulsations of the electric field increases linearly

i

with time. In (8) <v§> is the initial value of the mean

square of the ion velocity before the appearance of tur-
bulence, that is, the corresponding value for the envi-
ronment.

Now we find the value of the random displacement

7(t) of ion by integrating (4) over time,

tt
[ [E(F")dedr, (9)
i t o
and then obtain the rate of change in mean square dis-
placement by multiplying (4) by (9) and averaging over
a large time interval

<F(t)d7(t)>=ld<7(t)2> P ()

=j[5th' ==

m

dt 2 dt m?

i
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Lt t
x<”E(f,t")dr"dr'jE(f,t')dt'> : (10)
bty l
Write E(7,t) in the form of a Fourier integral
E(F,t)= jE(F,w)exp(—iwt)da) (11)

—o0

Substituting (11) into (10) we get

1 d(F (1))

2 dt

<” j E (F,0)exp(—iot")dwdt"dt' x

fy fy —®

ij(F,t')dt’>. (12)

)

Integrate (12) over ¢

14(F0))

2 dar

ol

exp (—iot')d ot x

i ty —0

t
XJ'E(F,t’)dt’>,
[}
and find the inverse Fourier transform
VAFO) e
~———F*(r)|(E(F,t'E(F,t))dt",
S P O (ECOEG)
where Aw is the width of the frequency spectrum of the
turbulent pulsations of an electric field. We assume this
is in order of magnitude Aw ~ ® . Accounting for (6),
we finally obtain
— 2
LaFeY) e
~ : Fo(r)(E°(F,t)). 13
2 dt 2m’ Ao’ ( )< ( )> (3)
Equation (13) determines the diffusion coefficient of
the plasma in the turbulent field of electrostatic turbu-
lence.

1.2. HEATING AND DIFFUSION OF ELETRONS

)

For electrons, we take into account the magnetic
field. First, we assume that the effect of the stochastic
electric field is small and write down the integrals of
motion from the equation (3)

v e =
—=—|V,B|. 14
dt  m, [ J (1)

One of the integrals of motion obtained from equa-

tion (14) is the kinetic energy of the electron

2

m,v
‘. 15
5 (15)

The integrals of motion are also the coordinates of
the guiding center

W =

v
X=x+—"1,

ce ce

(16)
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which mean the invariability in time of the coordinates
of the guiding center of an electron rotating in a mag-
netic field.

However, the existence of stochastic electric fields
in plasma leads to slight distortions in these integrals of
motion. Now we consider the solution of equation (3) in
the first approximation and find the changes in the inte-
grals of motion caused by stochastic electric fields. We
consider this effect only on the motion of the electron
across the magnetic field, neglecting the motion along
the magnetic field.

Represent v in the form:

V=y,+V,
where ¥, is the velocity fluctuation caused by stochastic
fields which is determined by the equation

dv, e, ~ e r. »
d—;zm—F(x)E(r,t)+m [VI,B:|.

e e

(17)

In order to estimate the change in the kinetic energy
of electrons we find the dot product ¥, and (17) averag-
ing it over time

_ v, e, .
<vl 7;>= F(x)<le(r,t)>.

m

e

(18)

Find v, from (17). The solutions of the eq. (17) for

the components v, and v, are

eeF(x) dE . (F,t) N eeF(x)

= E (7 19

Vs m,o’, dt maeo, (7). (19)
e,F(x)dE, (F,t) eF(x) .

= - E . (20

o m,o’, dt mao, (7). 20)

Substituting (19) and (20) into (18), we obtain

1 d<‘712> e o |

i (1) (B (7.0)). @D

where T is the time over which averaging is performed.
Assuming that 7 is much larger than the period of field
oscillations, we find that there is no heating of the elec-
trons by low-frequency stochastic electric fields,
whereas ions, the cyclotron frequency of which is much
lower than the frequency of the stochastic field, are
heated.

Calculate the change in the coordinates of the guid-
ing center due to stochastic electric fields. Represent the
X coordinate in the form

X=X,+X, (22)
where X, is the random displacement of the coordinate

of the guiding center due to stochastic electric fields.
Using (16) we write

1
X, =x +—
ce

In (23), the value of x, is determined by integrating

(23)

)
v,, (19) over time
t
X, = jle (¢")dt' =
0

=€—2(EX (F.0)+a,[E, (F,t')j . (29
0
The value of v, in (23) is given by (20).
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Thus, the random displacement of the x -coordinate
of the guiding center is equal to
dE, (7,1)

e F(x)r ., eF(x)
X = [E,(7.0)at +—mewfe ”

eZce 0

(25)

Next, we find the rate of change of X, by differenti-
ating (25) with respect to time

dX, 1 dv, e 1 -

= - v, + o, di = . F(x)Ey (r,t), (26)
and then obtain the rate of change in mean square dis-
placement multiplying (26) by (25) and averaging over
a large time interval

<X dX1>_1M_iF2(x)x

Va2 dr _mez

XLZU (E,(F.0")E, (7.0))d’ +§%W

0 ce

(27)

Neglecting the second term in (27) which is much
smaller than the first one, we obtain

d{xi) e ([F (5 N7 (5 A\
%%ZZ_}F (x)szKEy(r,t)Ey(r,t))df. (28)

Taking into account the condition (6) we obtain
1 d <X 12 > 62

G0 e i)

e e

ce 0

29)

Thus, the rate of mean square displacement of the
guiding center coordinate along the x-axis is deter-
mined by the mean value of the square of y-component
of the stochastic electric field. Equation (29) can also be
written as

1 d(X 12 &’ N
LX) € s 53 7).

or, label v, =cE, /B, which is equal to the velocity of

(30)

the drift motion of a particle in crossed fields along the
x-axis we obtain
14(X)_F ),
= v (7,t)). 31
2 dt 2 {vic(70) G
Then the rate of change in the mean square dis-
placement is equal to the mean value of the square of
the drift rate of particles in crossed fields.
Similarly, for the mean square displacement of the
guiding center coordinate along the y-axis we obtain
1 d <Y12> e’ ) )
= —F°(x)(E.(7,t)),
L ()(E: (7.0)

T M’
or, otherwise, by analogy with the displacement along
the x-axis

(32)

() P,
LT ),

where v, =cE, /B is the drift velocity of a particle in

(33)

crossed fields along the y-axis.
Summing (30) and (32) we obtain

d{R? 2 -
V)L e ).

ce

(34)
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where R is the position vector of the guiding center of
electron with coordinates (X,Y) and R, (X,.Y) is its

perturbation caused by stochastic electric fields. Equa-
tion (34) determines the diffusion coefficient of elec-
trons in the stochastic electric fields of low frequency
turbulence.

Compare the diffusion coefficients of electrons and
ions for this divide (34) by (13)

- - 2
LR [1d(F(0]) mawr Ao’
— — =—5—=—7>>1. (35)
2 dt 2 dt m,o;, oy

Thus, the diffusion coefficient of the guiding centers

of electrons significantly exceeds the diffusion coeffi-
cient of ions.

2. DRIFT MOTION OF PARTICLES

In addition to diffusion, there is also quasilinear mo-
tion of a particle caused by a ponderomotive force in
this region due to the radial gradient of the envelope of
the amplitude of the turbulent field. Ponderomotive
force affecting on the particle in the case of an inhomo-
geneous coherent electric field £ oscillating with the
frequency @ is determined by (2).

Now we obtain the equation of motion of the parti-
cles with the ponderomotive force affecting on a particle
in an inhomogeneous electrostatic turbulence.

2.1. DRIFT MOTION OF IONS

The equation of motion of ion along x-axis is
d2
7

t) is the projection of the electric field

=eF(x)E (7,1), (36)

where E (7,

strength onto the x-axis. We represent the x-coordinate
of ion as the sum of the oscillatory and quasilinear
changes

x=X+Xx, 37
where quasilinear change means the mean value of the
x-coordinate of ion over a long period of time, x = (x) .
If the initial position of ion isx,, and X <<x, then we
can use Taylor expansion on the force equation about
x, . Substituting (37) into (36), we obtain

d’x - -
m—z=e (F(xo)+xVF(x0 ))EX (F,1).
For the oscillating part of trajectory, we obtain
d’s
m; ——
dt
This equation is the x -component of equation (3) at
B =0 and therefore has the solution (9)
tt
5(t)=—2F (x,) [ [ E, (F.t")dr"dt" .
i t 1ty

Writing E_ (7,
(11) we obtain for %(r)

#(t)="tF

(38)

=eF(x,)E, (F.1).

(39)

t) in the form of a Fourier integral

m T )j;[_zEX (F,w)exp(—iwt")dwdt"dt'. (40)

Integrating (40) over ¢" and ¢ we get
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F(r, )zmexp( iot)do =

E. (F,1)
Aw®
Now we average (38) over a large period of time
d’x

ml.y— eVF(x0)< (1)E, (F,t')).

Substitute (41) into (42)

ei
~;F(x0) (41)

i

(42)

dzf ei2 — = 1
mi?=WF(XO)VF(%)<EX(W)EX(rs’)>’
and use (6)
dzf = '
mes e Aw VE? (x,)(E2 (F.t)) 8 (¢'~1). (43)

Thus, we have obtained the equation for the drift
motion of ion under the action of a non-uniform electro-
static turbulent field. The expression on the right side of
(43) is a ponderomotive force which is the effect of the
radial inhomogeneity of the electrostatic turbulent field.
This force is proportional to the delta function. This is
due to the fact that the affecting of this force occurs
only at certain instants of time, corresponding to the
moments of “collision” of particles with random pulsa-
tions of the electrostatic field.

Integrating (43), we obtain the velocity of the drift
motion of ion along the x-axis

5 VF? (x,)(EI (F.1)) . (44)

d2— 2
E - j 4m Aw?
2.2. DRIFT MOTION OF ELECTRONS
Now we obtain the equation of motion of the guid-
ing center of electron with the ponderomotive force in

an inhomogeneous electrostatic turbulence. We repre-
sent the random displacement of the coordinate of the

guiding center X, as the sum of oscillatory X and qua-
silinear X components

X =X+X, (45)
where (X1> =X and <)~(> =0. To determine the drift

velocity of the guiding center we use the equation (16)

dX, dX dX e, 1 _
L F(x)E :
a d dt (D) E, (7:1)

me C()l'e
Expand envelop function F(x) in a Taylor series

(46)

about the initial value of the position of the coordinate
of the guiding center

F(x)=F(X,)+VF(X,)-x (47)
and substitute it into (46)
dx, e 1 -
drl =m_iw—w(F(X0)+leF(X0))Ey(r,t). (48)

Then averaging over a large time interval we obtain
the rate of quasi-linear change in the coordinate of the
guiding center

d{X X e, 1 -
() _ax =—=—VF(X,)(xE, (7.t)) .

dt dt m, o

e ce

(49)
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Calculate <)cl E, (7 ,t)> by substituting here the value
x, (24):

== [Ex(;;’t)"'wyej)‘Ey(F,f,)dl"jEy(17,1‘)>.
(7 )E, (f,t)> =0 we obtain

X & (/5 (s N
== mfwz F(X,)VF(X,)[(E, (F.0)E, (7.¢'))dt' . (50)

e e 0

Integration (50) using condition (6), we obtain

dx & _
" 4m;w2 VE? (X0)<Ej (r,t)>. (51)

Equation (51) determines the velocity of the drift mo-
tion of the guiding center of electron along the x-axis.
Now compare the drift velocities of ions and guiding
centers of electrons. Dividing (51) by (44) we get
dX |df  mA0®  Aw’

=—; >>1.

ci

dt/ dr mla
Inequality (52) means that electrons leave the region

of increased turbulence level much faster than ions.
Note also that the ratio of the diffusion coefficients
of the guiding centers of electrons and ions is of the
same order as the ratio of their drift velocities, namely

A&’ [ .

(52)

3. STATIONARY DENSITY DISTRIBUTION

Inhomogeneous electrostatic turbulence leads to a
change in the plasma density distribution. We find only
stationary distribution of the electron density, since this
process occurs faster than for ions. The evolution of the

distribution function f(x,¢) as a result of diffusion as

well as the drift motion of particles is governed by the
Fokker-Planck equation

%z_g(/l(x)f(xaf)ﬁ

0? B(x)
+—| == f(x,1) |,
ox’ ( 2 f(x )
where A is the drift velocity, B/2 is the diffusion coef-
ficient. Above it was obtained that diffusion coefficient
is (34)
B 1 d<R12> e’ 2 =
—== = F E°(7r,t)), (54
22 d e () B (F.0)). 54
and drift velocity is (51)
v 2
dt 4m o

e ce

(53)

VE (X,)(E] (F.)) . (59)

We now find the dependence of the plasma density
on the x-axis in a stationary state, n(x)=f(x), as-
suming that the evolution of the distribution function
has ended. Equating in (53) the derivative of the distri-
bution function with respect to time to zero, we obtain
the equation

0 o B(x)
——(A(x)n(x))+—| —=n(x)|[=0. (56
2 )+ 25 a0 s
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This equation is simplified and reduces to the fol-

lowing
_A(x)n(x)+%(@

n (x)j =0, (57)

and then
24(x)dr_d(B(x)n(x))

) Bet)
Substituting (54) and (55) into (58) we get
ar () (B2 (7.0))_d(F*(r)n) 59)

F) (o) ()

Assuming that <EX2 (F,t)>/<]§2 (F,t)> =1/2 and in-
tegrating (59), we obtain

n(x) __ ¢

- 2 (x) :

We choose the integration constant C using the

(60)

condition n(c0)=n,, where n, is the plasma density

far from the region with increased turbulence. To the
same value, the plasma density was equal in this region
before the appearance of turbulence, that is, when
t<t,. So we get C=mn, since, as we suggested,

F(o0)=1. Finally, we obtain the plasma density distri-

bution long after the appearance of a region with an
increased level of turbulence in homogeneous plasma
ny
)= oy (61)
In accordance with (61), the minimum plasma den-
sity is reached in the region with the maximum level of
low-frequency turbulence. Thus a region with a depleted
electron density is formed. Distribution of the plasma
density (61) is the result of the evolution of initially
homogeneous plasma due to inhomogeneous electro-
static turbulence.

CONCLUSIONS

The inhomogeneous stochastic electric fields in
plasma in a magnetic field leads to the occurrence of
ponderomotive force, which causes a quasilinear drift
motion of particles outward from the region of an in-
creased level of stochastic oscillations of the electric
field. This effect takes place both for ions whose cyclo-
tron frequency is lower than the frequency of stochastic
oscillations, and for electrons, whose cyclotron fre-
quency significantly exceeds this frequency. It is shown
that the drift rate of the guiding centers of electrons ex-
ceeds the ions drift rate by a factor Aw’/@’ >>1,

where Aw is the width of the spectrum of stochastic
oscillations of an electric field, and thus electrons leave
the region of increased turbulence much faster than
ions.

Apart to drift motion, the increased diffusion of par-
ticles also occurs caused by their collisions with random
pulsations of electrostatic turbulence, and the diffusion
coefficient of electrons exceeds the diffusion coefficient
of ions by a factor A’ / @], >>1.

The drift and diffusion of particles lead to a decrease
in the plasma density in the region of an increased level
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of stochastic oscillations of the electric field. The sta- /' J. Geophys. Res. 1996, v. 101, Ne 12, p. 5299-
tionary distribution of the plasma density was deter- 5316.

mined from the Fokker-Planck equation, where the ob- 5. S.H. Kjus, H.L. Pecseli, B. Lybekk, et al. Statistics
tained values of the drift velocity and the diffusion coef- of the lower hybrid wave cavities detected by the
ficient were used. It is shown that the plasma density FREJA satellite // J. Geophys. Res. 1998, v. 103,
distribution is ultimately determined by (61). Ne 12, p. 26633-26647.
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JABUKXEHUE 3APSKEHHBIX YACTHUIl B MATHUTHOM 1 HEOJJHOPOJHOM
CTOXACTHYECKOM 2JIEKTPHYHECKOM ITOJIAX

H.A. Azapenxos, A./I. Yuoéucos, /1.B. uoucos

Pemraercst ypaBHeHHe ABWKEHMS 3apsDKEHHBIX YaCTHII IUIa3MBbl B OTHOPOJHOM MAarHUTHOM IOJI€ U HEOAHOPO.I-
HOM CTOXaCTHYCCKOM JJICKTPUYCSCKOM ITOJIC C XapaKTEPHON YacTOTOM KOJeOaHUM, MHOTO MCHBIICH 3JICKTPOHHOM
IUKJIOTPOHHOM YaCTOTH M1 MHOT'O OOJIBIIICH HOHHOM IIMKIOTPOHHOM YacToThl. PaccMoTpensl auddysus, aperidoroe
JIBIDKEHUE MOHOB U BEIYIIMX I[EHTPOB 3JIEKTPOHOB, BBI3BAHHBIE HEOAHOPOJHOCTHIO CTOXACTUUECKOrO 3JIEKTpHUe-
ckoro nosst. [lonyyeHHble 3HaueHUs KodppuiueHTa TuPPpy3uu U CKOPOCTH Jperda HCHONB3YIOTCS B YpaBHEHUU
doxkepa-Ilnanka s onpeseneHns CTAIMOHAPHOTO PACIIPE/EICHUs TNIOTHOCTH TUIa3Mbl, O0YCJIOBJIEHHOTO BIIUS-
HUEM HEOJHOPOAHOI0 CTOXACTUYECKOTrO MOJIs.

PYX 3APA/JVKEHUX YACTUHOK Y MAT'HITHOMY I HEOAHOPITHOMY
CTOXACTUYHOMY EJIEKTPUYHOMY IIOJIAX

M.O. Azapenxos, 0./1. Qivicos, /1.B. ivicos

Bupinryerbcst piBHSHHS pyXy 3aps/PKEHUX YAaCTUHOK IUIa3MHU B OJHOPITHOMY MarHiTHOMY TOJI 1 HEOTHOPITHO-
MY CTOXaCTUYHOMY €JIEKTPUYHOMY ITOJIi 3 XapaKTEpHOIO YaCTOTOI KOJNMBAHb, 3HAYHO MEHIIOI eJIEKTPOHHOI IIUKJIIO-
TPOHHOI YaCTOTH 1 3HAYHO OLIBIIOI 1I0HHOT HMKJIOTPOHHOI YacToTH. PosrisHyro nudysito, apeiidoBuii pyx ioHIB i
BEAYUYHX IEHTPIB €JIEKTPOHIB, CIIPUYMHEH] HEOJHOPIMHICTIO CTOXaCTHYHOrO eNeKTpu4Horo mnois. OTpumani 3Ha-
4yeHHs Koedimienrta nudysii i MBUIKOCTI Apelidy BUKOPUCTOBYIOThCS B piBHsIHHI DoKkepa-IlaHka a1t BU3HAUSHHS
CTaIliOHAPHOT'O PO3MOALTY IIIEHOCTI IJIa3MHU, 00YMOBJICHOTO BIUTMBOM HEOTHOPITHOIO CTOXaCTHYHOTO OIS,
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