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INTRODUCTION 
Transition and diffraction radiation of relativistic 

charged particles is widely used in various fields of 
physics [1 - 4]. These elementary radiation processes 
can be used to obtain coherent electromagnetic radiation 
from centimeter to infrared wavelength ranges, depend-
ing on the size of electron bunches grouped in one way 
or another. We also note that the effect of transition 
radiation of high-current relativistic electron bunches 
can be used to obtain powerful ultra-broadband elec-
tromagnetic pulses [5 - 7]. 

In the present work, we study the transition radiation 
arising from the collision of a relativistic electron bunch 
with a perfectly conductive infinite cylinder for the 
case, when the electron bunch moves perpendicular to 
the surface of the cylinder. Expressions for the strength 
of electromagnetic radiation in the wave zone are ob-
tained and investigated. The main attention is paid to the 
influence of the guiding properties of the perfectly con-
ductive cylinder on the main characteristics of the tran-
sition radiation, first of all, the radiation pattern. 

1. STATEMENT OF THE PROBLEM.   
BASIC EQUATIONS 

Let's consider an infinitely long perfectly conductive 
round cylinder of radius a . The cylinder is in a vacuum. 
A relativistic electron bunch (or periodic sequence of 
bunches) moves in a vacuum toward the cylinder along 
a straight trajectory perpendicular to the cylinder sur-
face. The problem is to determine the field of electro-
magnetic radiation in all space surrounding the cylinder 
and, ultimately, in the wave zone. 

We will assume that the electron bunch infinitely 
thin in the transverse plane relative to the direction of its 
motion. In the longitudinal direction, the electron bunch 
has finite dimensions. Let us choose a cylindrical coor-
dinate system, the axis z  of which coincides with the 
axis of the cylinder. Then the current density of a single 
bunch can be represented as 

0/ 1 ( ) ( )r
b b

t r vQj e z
t t r

  
 

   
 

  , (1) 

where re  is the unit vector in the radial direction, Q  is 
the charge of the bunch, 0v , bt  are its velocity and dura-
tion. The function ( )  describes the longitudinal pro-

file of the bunch and satisfies the normalization condi-
tion 
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( )x  is delta-function. 
For a periodic sequence of bunches for the current 

density, we have the sum of the currents of individual 
bunches 
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T  is the bunch repetition period. 
To solve Maxwell's equations, the current density of 

an individual bunch (1) is conveniently expanded in the 
Fourier integral  
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For a periodic sequence of bunches, the current den-
sity (2) should be represented as a Fourier series 
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If the bunches do not overlap within the repetition 

period, then in the sum (6) it is sufficient to take into 
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Accordingly, the electromagnetic field must also be 
expanded either in the integral 
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or in the Fourier series 
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Due to the geometry of the system, the electric field 
of the electron bunch will induce longitudinal and azi-
muthal surface currents on the cylinder surface. In turn, 
the longitudinal surface current will excite the E-
components of the electromagnetic field, and the azi-
muthal surface current will excite the H-components. 
Thus, in the considered system, a radial currents of the 
form (1) or (2) will excite all six components of the 
electromagnetic field. 

In cylindrical geometry, it is convenient to start from 
the equations for the longitudinal Fourier components of 
the electric zE  and magnetic zH  fields  

2
0

0

4 1 ,r
z z

jiE k E r
ck r r z


 

 
  

 
  (9) 

 2
0

4 1 r
z z

j
H k H

c r


 





   


.                 (10) 

The other field components are related with compo-
nents zE  and zH  by the equations 
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0 /k c . 
The system of equations must be supplemented with 

boundary conditions, which consist in the vanishing of 
the tangential components of the electric field on the 
surface of the cylinder and the condition of radiation at 
infinity in free space. 

We represent the Fourier amplitude of the current 
density ( , , )rj r z   as a combination of the series and 
the Fourier integral 
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For the Fourier amplitude of the current density (4), 
we obtain 
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In the case of a periodic sequence of relativistic elec-
tron bunches, instead of (12), we have 
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The components of the electromagnetic field de-
scribed by the system of equations (9) - (11) must be 
represented in the same form 
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Then, instead of partial differential equations (9), 
(10), we obtain simpler ordinary differential equations 
for the amplitudes of the expansion of the longitudinal 
components of the electromagnetic field (13) 
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where subscript   denotes a group of indices nk . 
The transverse components of the electromagnetic field 
are related to the longitudinal components by the rela-
tions 
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where 2 2 2
0v k k  .  

On the surface of a perfectly conductive cylinder, 
the following conditions must be satisfied 
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The radiation condition (absence of waves coming 

from infinity) can be written as follows 
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Solutions of second-order inhomogeneous differen-
tial equations (14), (15) satisfying the indicated condi-
tions for electromagnetic field have the form 
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Here ( ) ( ) /n nF vr dF vr dr  , 
(1) (1)( , ) ( ) ( ) ( ) ( )n n n n nvr va H vr J va H va J vr   , 

(1) (1) (1)( , ) ( ) ( ) ( ) ( )n n n n nvr va H vr J va H va J vr   .  
Expressions for the transverse components of the 

electromagnetic field follow from relations (16). 

2. FIELD OF TRANSITION RADIATION  
IN THE WAVE ZONE 

The field of electromagnetic radiation in the wave 
zone is of the greatest interest. To determine it in total 
expressions for the longitudinal field components (18), 
(19) it is necessary by passing to the limit r  , to 
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select that part of the field which satisfies the radiation 
condition (17). As a result, we obtain 
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It is more preferable to perform further analysis for 
the azimuthal components of electromagnetic field. We 
find expressions for them from relations (16b), (16d) 
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And, finally, taking into account the combined ex-
pansion (13), we obtain integral representations for the 
frequency Fourier-amplitudes of the azimuthal compo-
nents of the radiation field  

    
2

( )
0

1

2 ( , ) 2 ( , ) cosrad
n

n
H H r z H r z n

c  







 
  

 
 , (20) 

       
( )

(1)
2 (1)

( )
( , ) ( )

( )

h
ikzn

n n
n

S vakH r z H vr e dk
v H va





  ,          (21) 

    ( ) ( ) ( , ) ( )h
n n r

a

S va vr va j r rdr



  ,             (22) 

 
2

( ) 0

1

4
( , ) ( , ) sinrad

n
n

k
E r z nE r z n

c 








   ,  (23) 

       
( )

(1)
2 (1)

( )1( , ) ( ) ,
( )

e
ikzn

n n

n

S va
E r z H vr e dk

v H va







            (24) 

       ( ) (1)( ) ( , ) ( )e
n n r

a

S va vr va j r dr



  .           (25) 

Note that ( , ) ( , )n nH r z H r z   and 
( , ) ( , )n nE r z E r z  . The next step in the theory is the 

approximate calculation of integrals (21), (24). To do 
this, we will use the saddle-point method. Integrals of 
this type are well known in electrodynamics [8]. There-
fore, we present the final expressions for the compo-
nents of the electromagnetic field (20), (23) 
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0 0k a  .  
First of all, we note that the H-components of the 

electromagnetic radiation field ( , , )z rH H E  contain 
only asymmetric modes 0n  . There is no symmetrical 
mode 0n  . As for the E-components ( , , )z rE E H  of 
the field, they contain both symmetric and asymmetric 
modes. 

Consider a conductive cylinder with a small radius 
/ 1a c   or a low-frequency range of the transition 

radiation spectrum. Transition radiation is mainly con-
centrated in the specified frequency range for electron 
bunches with duration /bt a c . Under these condi-
tions, waves with higher frequencies are radiated 
weakly, since for waves with frequencies /c a  , the 
condition of the radiation coherence by an electron 
bunch is violated. 

Let us first of all consider the asymptotic representa-
tion of integral (27) in the considered limiting case 

0 0 1k a    for a symmetric mode 0n  . The expres-
sion for the coefficient 0L  can be written as follows  
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0 ( )N x  is the Neumann function,   is the Euler con-
stant. In expression (27), we used the asymptotic repre-
sentations of cylindrical functions for small values of 
the argument, and in the integrals we installed the lower 
limit equal to zero. The integrals included in (30) are 
tabular [9]. After substitution their values into (30), we 
obtain the final expression for the coefficient 0L  

 
0

0
0 0

0

2 ( )ln
( ) 1

( ) ( )
ln(2 / sin )

L i

  
  

   
 


  ,            (31) 

where 

2 2
0

1( )
1 sin

 
 




. 

Let us now consider the coefficients nL  for asym-
metric modes. Here we also use the asymptotic repre-
sentations for cylindrical functions of order 1n  . As a 
result, we obtain 
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The first integral in (32) is also tabular. As for the 
second integral, it should be taken into account that the 
main contribution to the value of the integral gives the 
region of small  . Therefore, to estimate it, one can 
use the asymptote of the Neumann function for small 
values of the argument. As a result, taking into account 
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the above, we obtain the following approximate expres-
sion for the coefficients nL  
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Now let's move on to calculating the coefficients 
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the expression for them (29) can be simplified and rep-
resented in the form 
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The first integral is tabular. The second integral can 
be estimated approximately. As a result, we obtain the 
following expression for the expansion coefficients 
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We can be seen that the terms n  and nD  are small 
and rapidly decrease with increasing number n . There-
fore, they can be neglected. Taking into account the 
above, expressions for the azimuthal components of the 
field (26), (28) take the form 
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The series included in expressions (37) and (39) are 
summed exactly. As a result, for the functions ( , )asF    
and ( , )asG    we obtain the following expressions 
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The function ( )sF   describes the dependence of the 
symmetric part of the azimuthal component of the mag-
netic field ( )radH  on the polar angle  , and the function 

( , )asF    describes asymmetric part. In the azimuthal 
component of the electric field, the symmetrical part is 
absent. 

Let note that the function ( )sF   has a singularity for 
the polar angles 0   and   . For these angles, the 
function and, consequently, the radiation field along the 
conductor becomes infinity. An asymmetric field does 
not have such a feature. A cylindrical conductor has a 
guiding effect on a symmetrical wave. Note that the 
guiding action of a cylindrical conductor is also mani-
fested during wave diffraction [10] and excitation of 
cylindrical conductors by concentrated currents. The 
field singularity is integrable, so the total radiated en-
ergy remains finite. In fact, in this situation, a thin cy-
lindrical conductor is a traveling wave antenna excited 
by a relativistic electron bunch. Accordingly, the radia-
tion pattern of symmetric radiation is determined pri-
marily by the antenna geometry and weakly depends on 
the relativistic factor of the bunch. 

Let us show that the asymmetric terms in the expres-
sions for the azimuthal field components (35), (38) de-
scribe the transition radiation, which is characterized by 
a narrow radiation pattern in the region of small angles 
relative to the direction of the bunch motion. Let us 
consider the dependence of the electromagnetic field 
components of radiation on the angles   and  . It is 
convenient to perform replacement / 2    , 
    . For the new angles, the expressions for the 
functions ( , )asF    and      take the form 
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/ 2 / 2     ,      . 
First of all, we note that in the plane 0  ( 0)z  , 

in which the electron bunch propagates, the function 
(0, ) 0asF   , i.e. there is no radiation of E-

electromagnetic waves in this plane. Let's consider the 
radiation pattern in the plane 0   or   . For this 
value of the azimuthal angle, the function ( ,0)asF   
takes the form 

 
0

0 0
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     

 
  

.      (44) 

For small polar angles with respect to the direction 
of the relativistic bunch motion 1  , this expression 
is simplified 
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where 0  is the relativistic factor of the bunch elec-
trons. In the directions 
   01/    

( ,0)asF  , and, consequently, the transition radiation 

field has a sharp maximum by polar angle   

0max
( ,0) 1asF    . 

Expressions (44), (45) are valid in a narrow range of 
the azimuthal angle 

2
0    

Outside this interval of the azimuthal angle, the ra-
diation of E-electromagnetic waves loses its narrow 
directivity. 

Let us now investigate expression (43), which de-
scribes the dependence of the H -components of the 
field of electromagnetic radiation on the angular coordi-
nates. For further analysis, it is convenient to make 
some transformation of the function ( , )asG    and rep-
resent it in the form 
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function (43) reaches its maximum value 
( ) ( )asg    , which depends only on the polar angle 

 . In turn the function ( )  is maximal at 0   and 
with increasing angle   decreases monotonically. In 
particular at 1   for the function ( )  we have the 
expression 
  0

2 2
0

( )
1




 
 


. 

Thus, the sharpest radiation pattern of H -
electromagnetic radiation is formed for angles 

2 2
0   . 

On the whole, the picture of asymmetric transition 
radiation looks as follows. The excited E -field forms 
on the full radiation pattern two sharp peaks with angles 

01/    in the horizontal plane 0  . For its part, 
the H-field forms two sharp peaks with angles 

01/    on the radiation pattern in the plane 
0 ( 0)z    perpendicular to the cylinder axis. Four 

maxima in the directional radiation pattern have the 
form of a cross in the plane perpendicular to the direc-
tion of motion of the bunch. 

Thus, asymmetric transition radiation has a narrow 
directivity in directions close to the direction of motion 
of a relativistic electron bunch. 

All that has been said above also fully applies to the 
case of excitation of a conductive cylinder by a periodic 
sequence of relativistic electron bunches. The only dif-

ference is that in the latter case, field (7) with a discrete 
frequency spectrum ml   is excited. 

A single bunch excites an electromagnetic field with 
a continuous frequency spectrum, and the pulse shape is 
determined by the Fourier integral (7). First of all, we 
note that the angular functions (40), (41) of the Fourier 
amplitudes of the asymmetric transition electromagnetic 
field do not depend on the frequency. Therefore, the 
shape of an asymmetric transition pulse, which is radi-
ated at small angles to the direction of motion of the 
relativistic electron bunch, completely repeats the shape 
of the bunch [5] 
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In the case of a periodic sequence of relativistic elec-
tron bunches, the transition radiation will have the form 
of a periodic sequence of electromagnetic videopulses 
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The symmetric angular function ( , )sF    in general 
case depends on frequency. Therefore, the shape of the 
symmetric transition pulse will differ from the profile of 
the electron bunch. However, as follows from expres-
sion (36) for polar angles 

0ln(1/ ) ~ ln( / ) ln(1/ sin )bk a ct a   
or 

sin / 1ba ct                          (49) 
there is practically no dependence of the angular func-
tion on frequency 
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In this case, the shape of the symmetrical transition 
video pulse will also repeat the profile of the electron 
bunch. The magnetic field of a symmetric transition 
pulse is described by formula (48), in which ( , )asF    
should be replaced by (50). If the condition (49) is not 
satisfied, then it is necessary to take into account the 
dependence of the angular function on frequency 

ln
( , )

2ln
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c
aF
c
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 

 . 

In this case, the shape of the radiated pulse differs 
from the bunch profile. 

CONCLUSIONS 
Transition radiation of a relativistic electron bunch, 

which arises when it collides with the surface of an infi-
nite ideally conductive cylinder, is considered. The elec-
tron bunch moves perpendicular to the cylinder surface. 
Expressions for the strength of electromagnetic radia-
tion in the wave zone are obtained. It is shown that this 
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expression contains two terms. The first term describes 
the actual transition electromagnetic radiation of the 
electron bunch. This radiation is azimuthally asymmet-
ric and is primarily determined by the properties and 
parameters of the electron bunch itself. The radiation 
contains both E- and H-field components and is di-
rected at a small angle to the direction of the bunch mo-
tion. The radiation angle is inversely proportional to the 
relativistic factor of the bunch, and the strength of the 
electric and magnetic field in this direction is propor-
tional to the relativistic factor. The second term de-
scribes the radiation of the current induced on the sur-
face of a perfectly conductive cylinder and propagating 
along the cylinder at the speed of light in vacuum. The 
strength of this field has an integrable singularity (turns 
to infinity) strictly along the surface of the cylinder. The 
peculiarity is due to the guiding properties of a perfectly 
conducting cylinder.  

The spatial structure (radiation pattern) of this transi-
tion electromagnetic radiation weakly depends on the 
parameters (energy) of the bunch, and is mainly deter-
mined by the geometry of the considered cylindrical 
antenna. The shape of the radiated electromagnetic 
pulse has been determined. 

In the case of a periodic sequence of relativistic elec-
tron bunches, the transition radiation will have the form 
of a periodic sequence of electromagnetic pulses. 
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новении с поверхностью бесконечного идеально проводящего цилиндра. Электронный сгусток движется 
перпендикулярно поверхности цилиндра. Получены и исследованы выражения для напряженности поля 
электромагнитного излучения в волновой зоне.  
 

ПЕРЕХІДНЕ ЗБУДЖЕННЯ ІДЕАЛЬНО ПРОВІДНОГО ЦИЛІНДРА РЕЛЯТИВІСТСЬКИМИ 
ЕЛЕКТРОННИМИ ЗГУСТКАМИ  

В.А. Балакiрєв, I.М. Онiщенко  
Розглянуто перехідне випромінювання релятивістського електронного згусткa, що виникає при його зі-

ткненні з поверхнею нескінченного ідеально провідного циліндра. Електронний згусток рухається перпен-
дикулярно поверхні циліндра. Отримано і досліджено вирази для напруженості поля електромагнітного ви-
промінювання в хвильової зоні. 

 


