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Transition radiation of a relativistic electron bunch, which arises when it collides with the surface of an infinite
perfectly conducting cylinder, is considered. The electron bunch moves perpendicular to the cylinder surface. Ex-
pressions for the field strength of electromagnetic radiation in the wave zone are obtained and investigated.
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INTRODUCTION

Transition and diffraction radiation of relativistic
charged particles is widely used in various fields of
physics [1 - 4]. These elementary radiation processes
can be used to obtain coherent electromagnetic radiation
from centimeter to infrared wavelength ranges, depend-
ing on the size of electron bunches grouped in one way
or another. We also note that the effect of transition
radiation of high-current relativistic electron bunches
can be used to obtain powerful ultra-broadband elec-
tromagnetic pulses [5 - 7].

In the present work, we study the transition radiation
arising from the collision of a relativistic electron bunch
with a perfectly conductive infinite cylinder for the
case, when the electron bunch moves perpendicular to
the surface of the cylinder. Expressions for the strength
of electromagnetic radiation in the wave zone are ob-
tained and investigated. The main attention is paid to the
influence of the guiding properties of the perfectly con-
ductive cylinder on the main characteristics of the tran-
sition radiation, first of all, the radiation pattern.

1. STATEMENT OF THE PROBLEM.
BASIC EQUATIONS

Let's consider an infinitely long perfectly conductive
round cylinder of radius a . The cylinder is in a vacuum.
A relativistic electron bunch (or periodic sequence of
bunches) moves in a vacuum toward the cylinder along
a straight trajectory perpendicular to the cylinder sur-
face. The problem is to determine the field of electro-
magnetic radiation in all space surrounding the cylinder
and, ultimately, in the wave zone.

We will assume that the electron bunch infinitely
thin in the transverse plane relative to the direction of its
motion. In the longitudinal direction, the electron bunch
has finite dimensions. Let us choose a cylindrical coor-
dinate system, the axis z of which coincides with the
axis of the cylinder. Then the current density of a single
bunch can be represented as

j=-z %H(%J%é(wa(z) G
where €, is the unit vector in the radial direction, Q is
the charge of the bunch, v,, ¢, are its velocity and dura-
tion. The function I1(z) describes the longitudinal pro-
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file of the bunch and satisfies the normalization condi-
tion

T II(r)dr =1,

O(x) is delta-function.

For a periodic sequence of bunches for the current
density, we have the sum of the currents of individual
bunches

j=-é 215@)5(2) R [MJ )
L, r = t,
T is the bunch repetition period.
To solve Maxwell's equations, the current density of
an individual bunch (1) is conveniently expanded in the
Fourier integral

J==¢ [ j(rz0)e " do, (3)
where
—iky,r
. e
.]r(u (7’, z, gD) = QH(,) T5(g0)5(z) ) (4)
1 R iot,T
IT, =giml_[(r)e “dt, ky=w/v,.

For a periodic sequence of bunches, the current den-
sity (2) should be represented as a Fourier series

j = _ér Z jrz (I", z, go)e—iw,t .
J—

—ilk,,r

. e
Here J,.,(r,z,co)=tgnl 5@)8(). 5)
b
© T2 _ [
m-y1] e””mfn£—’ lTJdt, )
I'=—0 r -T/2 tb

k,=w,/v,, 0, =21/T .

If the bunches do not overlap within the repetition
period, then in the sum (6) it is sufficient to take into
account only one term /' =0

1 T/2 ) ¢
m=— e”’“m’n[—J dt .
T )

-T/2 b
Accordingly, the electromagnetic field must also be
expanded either in the integral

(B = [ (B, Ao, ()
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or in the Fourier series

(E,H)= i (E,,H)e """ . (8)

=0
Due to the geometry of the system, the electric field
of the electron bunch will induce longitudinal and azi-
muthal surface currents on the cylinder surface. In turn,
the longitudinal surface current will excite the FE-
components of the electromagnetic field, and the azi-
muthal surface current will excite the H-components.
Thus, in the considered system, a radial currents of the
form (1) or (2) will excite all six components of the
electromagnetic field.
In cylindrical geometry, it is convenient to start from
the equations for the longitudinal Fourier components of
the electric £, and magnetic /,_ fields

4 1 6
AE,(D + kozE,w ﬂl a ]rw (9)
) ) ck r ar oz’
4 1 oj
AH., + K H = -~ (10)
crop

The other field components are related with compo-

nents £, and H_ by the equations
2 H ., E
a—+k2 19 6 0 +4—1k0]m, (11a)
oz’ " 6g0 araz c
2 E H .
O i\, =ik, o (LM AT gy
oz’ o r 6g062 c 0Oz
2 2H E
9 |, =Tty 10 (11c)
oz oroz r ago
2 H,, E.,
9 i |E, =ik, B L2 (11d)
oz or r opoz
ky=w/c.

The system of equations must be supplemented with
boundary conditions, which consist in the vanishing of
the tangential components of the electric field on the
surface of the cylinder and the condition of radiation at
infinity in free space.

We represent the Fourier amplitude of the current
density ;. (r,p,z) as a combination of the series and

ro

the Fourier integral

© ©

Z e”"/’ J. jr(unk (r)eikldk’
where B

. 1 —in 1
]r(unk(r) (2 ) J.nge ’ J. Jr(u(gDsZ r)e Ldz

For the Fourier amphtude of the current density (4),

we obtain
—ikyr

I, — 12
Trone (1) = (2 . —=0 (12)

In the case of a periodic sequence of relativistic elec-
tron bunches, instead of (12) we have

Q e*ilk,”r
=II, ——.
rlnk( ) (2 ) t 1 r
The components of the electromagnetic field de-

scribed by the system of equations (9) - (11) must be
represented in the same form
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(En) s [jl(u) = Z ei’7‘/’ J. (E(unk 4 Ijl(unk )eikl dk . (1 3)

Then, instead of partial differential equations (9),
(10), we obtain simpler ordinary differential equations
for the amplitudes of the expansion of the longitudinal
components of the electromagnetic field (13)

1d dE. , n 47rkl d
LR r VR BN o) 14
rdrr dr [v rzj “ ck rdr o T (19

1 dH 2 i
d ' 2 +(Vz _anHla = 4ﬂﬂjra (7"),
cC r

- 15
rdr dr r (13
where subscript a denotes a group of indices wnk .
The transverse components of the electromagnetic field
are related to the longitudinal components by the rela-
tions

k dE k
E,=—2lp i @ AT 6w
vor Vo dr c Vv
k n .k, dE_, Arm ik
H, =-——H, ey — Jra»  (16b)
Vo Ve dr V
ky n  k dH
Hra __2_Eza +l_2 —, (160)
vor Vo dr
k n k, dH
E =———F —j-Y_"—= 16d
oo =T B DI (164d)

where v =k, —k>.
On the surface of a perfectly conductive cylinder,
the following conditions must be satisfied
E, (r=a)=E,(r=a)=0.
The radiation condition (absence of waves coming
from infinity) can be written as follows
Ea(r—>oo),[jla (r > o) ~ e (17)
Solutions of second-order inhomogeneous differen-

tial equations (14), (15) satisfying the indicated condi-
tions for electromagnetic field have the form

E_=-2ir’ k !

ay .
' %W{A” (vr, va)'! H (vr)j , (r)rdr+

+H’<7‘) (vr)j Al (vr,va)j,, (r)rdr} , (18)

2n 1

H, =2« -

{AS) (vr, va)J- Hf,') vr)j,, (r)dr+

O 0r)[ AL G va) @4 W

Here F)(vr)=dF,(vr)/dr,
A, (vrva)=H" (vr)J,(va)-H" (va)J, (vr) ,
AV (vr,va) = HO (vr)J ! (va)— HY (va)J, (vr) .

Expressions for the transverse components of the
electromagnetic field follow from relations (16).

2. FIELD OF TRANSITION RADIATION
IN THE WAVE ZONE

The field of electromagnetic radiation in the wave
zone is of the greatest interest. To determine it in total
expressions for the longitudinal field components (18),
(19) it is necessary by passing to the limit » — o, to
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select that part of the field which satisfies the radiation
condition (17). As a result, we obtain

. HY (vr) §

(rad) __ n
ENY =2in k H(l)( )I L (vr,va)j,, (r)rdr,
H" =27 21 O J-A(l) (vr,va)j,, (r)dr.

¢ H“’( @)

It is more preferable to perform further analysis for

the azimuthal components of electromagnetic field. We
find expressions for them from relations (16b), (16d)

k HY (vr)?
(rad) __
H," = cv2 HO (v )IA,,(W va) j, (ryrdr
HY
B0 = 2ix ) 1 jA“)(vr, va) j,, (r)dr .

v’ H (l)' (va)

And, finally, takmg into account the combined ex-

pansion (13), we obtain integral representations for the

frequency Fourier-amplitudes of the azimuthal compo-
nents of the radiation field

27 2
H;J;wl) - %{Hwo (r,2)+ 22 H, (r,z)cos ngo} , (20)
n=1
S(?) ;
H, (r,z)= k (l)(V“) HY (vr)e™d 1)
=V H,(va)
S (va) = j Al (vr,va)j,, (r)rdr (22)
E;,;"d)( ko ZnEW (r,z)sinng , (23)
n=1
E,, ()= | 12 Sy (V“) HY (vr)e™dk, (24)
2V HY (va
S (va) = j AV (vr,va)j,, (rdr . (25)
Note that H, (r,z)=H, (r,z) and
E, (r,z)=E,_ (r,z). The next step in the theory is the

approximate calculation of integrals (21), (24). To do
this, we will use the saddle-point method. Integrals of
this type are well known in electrodynamics [8]. There-
fore, we present the final expressions for the compo-
nents of the electromagnetic field (20), (23)
(rad) _ Q elk”
H R [L (9 +

+2)" L, (9)e ™" cos ngo} , (26)

n=l1

L,(9)= j J (psin9)e ' Fodp—

J,(k,sin9) 7 W ipl
H, sin@)e P g 27
“H e sm 9)j (psin9)e”Pdp . (27)

ikyR w©
E(rad) — Q € M 9 —inm/2 Sln 28
oo ¢ R sml9,,z:‘n (9e ng ., (28)
e‘iP//jo
M,7(9)=jJn(psin9) dp -

Ko
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—zp/ﬁn

—M'{H(”(psmg) (29)
H" (x,sin 9)x,

K, =kya.
First of all, we note that the H-components of the
electromagnetic radiation field (H_,H,,E,) contain

only asymmetric modes 7 # 0. There is no symmetrical
mode n=0. As for the E-components (E_,E,,H ) of
the field, they contain both symmetric and asymmetric
modes.

Consider a conductive cylinder with a small radius
wa/c<1 or a low-frequency range of the transition
radiation spectrum. Transition radiation is mainly con-
centrated in the specified frequency range for electron
bunches with duration ¢, > a/c. Under these condi-
tions, waves with higher frequencies are radiated
weakly, since for waves with frequencies @ > c/a , the
condition of the radiation coherence by an electron
bunch is violated.

Let us first of all consider the asymptotic representa-
tion of integral (27) in the considered limiting case
K, = k,a <1 for a symmetric mode n=0. The expres-

sion for the coefficient L, can be written as follows
Ly(9) = j J,(psin e *Pdp +
0

1
In(2/vi,sin 9)

N,(x) is the Neumann function, V is the Euler con-

+% IN (psindePdp , (30)

stant. In expression (27), we used the asymptotic repre-
sentations of cylindrical functions for small values of
the argument, and in the integrals we installed the lower
limit equal to zero. The integrals included in (30) are
tabular [9]. After substitution their values into (30), we
obtain the final expression for the coefficient L

N 2B,y(9)
vic, (7(9)+1)

—, 1)
In(2/ vk, sin )

Ly($) =~iByy ()

where
1

JI=Bisin’ g

Let us now consider the coefficients L, for asym-

y(9) =

metric modes. Here we also use the asymptotic repre-
sentations for cylindrical functions of order n>1. As a
result, we obtain

L(9)= j J (psin®e*Pdp -
0

. 2n o

bid K, sin g . —iplf
- N (psine”™dp. (32
nl"z(n)( 5 j j . (psing) p. (32)
The first integral in (32) is also tabular. As for the
second integral, it should be taken into account that the
main contribution to the value of the integral gives the
region of small p . Therefore, to estimate it, one can
use the asymptote of the Neumann function for small
values of the argument. As a result, taking into account

ISSN 1562-6016. BAHT. 2021. Ne4(134)



the above, we obtain the following approximate expres-
sion for the coefficients L,

L(9) =i,y (e ™" [—m (‘9)““9} +A,, (33)

y($)+1
_&sind g 1 n=l;
KO
Al'l = . n
K, K, sin 9 a1,
(n=DI'(n+1) 2

Now let's move on to calculating the coefficients
M, (). In the considered approximation x, =ka <1,
the expression for them (29) can be simplified and rep-

resented in the form
—ip/ By

M, (9)=[J,(psin§)“—dp+
0

. 2n o« —ip/ By
LT K, sin 9 j N, (psind) e
I'(n)I'(n) 2 o P

The first integral is tabular. The second integral can
be estimated approximately. As a result, we obtain the
following expression for the expansion coefficients

M, (8)= e B (9)sin ¥ +D
" n 7(9)+1 "

D, =- 1 K, sin9 ”,nzl.
A+l 2

We can be seen that the terms A, and D, are small

dp.(34)

and rapidly decrease with increasing number 7. There-
fore, they can be neglected. Taking into account the
above, expressions for the azimuthal components of the
field (26), (28) take the form

ikoR
e~ Qo € e 0.9+ F Go)]. (35
o L R A D
where
2B,7(9)
F (o 9)=ﬂ0)/(9)COS9 v, (7(9)+1) (36)
S sin 9 In(2/vik, sin9) ’
2 kal . n
F,8,0)=—2288 [ m0(9)] cosnp, (37)
ﬂl—ﬂoz Sin29 n=1
0 oMo
EU = —=1] G,.(%,9), 38
(] c w R as( QD) ( )
2 > —ir n o,
Gas(9,¢)=ﬁ;[e 09| sinng,  (39)
0(8) = By (P)sin 9 .
r(P)+1

The series included in expressions (37) and (39) are
summed exactly. As a result, for the functions F_(9,¢)

and G, (9,p) we obtain the following expressions

F (9.0)=-2 Oy (I) cos ¢ +0(J) (40)
@ g3 [cosgo+Q(l9)]2 +sinZep
289 sing

G, (%,0)= (41)

r(3)+1 [cosgo+Q(l9)]2 +sinZp
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The function F,(9) describes the dependence of the
symmetric part of the azimuthal component of the mag-
netic field H“ on the polar angle &, and the function

]
F._(9,9) describes asymmetric part. In the azimuthal

component of the electric field, the symmetrical part is
absent.
Let note that the function F, (%) has a singularity for

the polar angles 9 =0 and 9 = . For these angles, the
function and, consequently, the radiation field along the
conductor becomes infinity. An asymmetric field does
not have such a feature. A cylindrical conductor has a
guiding effect on a symmetrical wave. Note that the
guiding action of a cylindrical conductor is also mani-
fested during wave diffraction [10] and excitation of
cylindrical conductors by concentrated currents. The
field singularity is integrable, so the total radiated en-
ergy remains finite. In fact, in this situation, a thin cy-
lindrical conductor is a traveling wave antenna excited
by a relativistic electron bunch. Accordingly, the radia-
tion pattern of symmetric radiation is determined pri-
marily by the antenna geometry and weakly depends on
the relativistic factor of the bunch.

Let us show that the asymmetric terms in the expres-
sions for the azimuthal field components (35), (38) de-
scribe the transition radiation, which is characterized by
a narrow radiation pattern in the region of small angles
relative to the direction of the bunch motion. Let us
consider the dependence of the electromagnetic field
components of radiation on the angles 9 and ¢ . It is

9=r/2+9,
@ = +¢@ . For the new angles, the expressions for the

convenient to perform replacement

functions F,_(3,¢) and ¢ =7 +¢ take the form
tgg[é(g) —cos gﬂ

F,(8,0) =27 (909 —— 5 ., (42)
[0(9)—cosp | +sin*p
T~ 2B¥ (9 sin@
G, (9,p)=—= — - . (43)
7D +1[0(9)-cosp | +sin* @
) 1 = oy BT (9)cos§
) =, 9=,
7 J1-B2cos’ § o 7(9)+1

7/2>9>-n/2,7>p>-1.
First of all, we note that in the plane 3 =0 (z=0),
in which the electron bunch propagates, the function
F _(0,p)=0, ie. there is no radiation of E-

electromagnetic waves in this plane. Let's consider the
radiation pattern in the plane ¢ =0 or ¢ =z . For this

value of the azimuthal angle, the function F (9,0)
takes the form

28,sin 9 (9)

=By cos9 (1+ B, cos 3 )y(9)+1

For small polar angles with respect to the direction

(44)

F,(8,0)=~

of the relativistic bunch motion 9 < 1, this expression
is simplified

- 29
F;b(‘gao) =T = 5>
8 +y;?

(45)
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where y, is the relativistic factor of the bunch elec-
trons. In the directions
9 ==x1/y,

F, <l ,0)| , and, consequently, the transition radiation
field has a sharp maximum by polar angle 9
F (3,00 =y,>>1.

Expressions (44), (45) are valid in a narrow range of
the azimuthal angle

o] <7’

Outside this interval of the azimuthal angle, the ra-
diation of E-electromagnetic waves loses its narrow
directivity.

Let us now investigate expression (43), which de-
scribes the dependence of the H-components of the
field of electromagnetic radiation on the angular coordi-
nates. For further analysis, it is convenient to make

some transformation of the function G (9,p) and rep-
resent it in the form

ﬂ()

G, (8.0)=- o5 %o (3,9) ., (46)
= _ sin @
. 19, — =, 47
A T (47)
= 20(9 —~ ) 0058
ﬂ(9)=—2Q£ ) <1’ Q_ﬂoy( )
0 ($+1 1+7(3)
For the value of the azimuth angle
?(9) = +arcsin 1_ ,T(9)= 1+Q (9)
I'($) 1-0° (9)
function (43) reaches its maximum  value

s (9)=T(9), which depends only on the polar angle
9 . In turn the function I'(9) is maximal at ¢ =0 and

with increasing angle 9 decreases monotonically. In
particular at 3 <<1 for the function I'(3) we have the

expression
r(§)=7—
J1+709°
Thus, the sharpest radiation pattern of H-

electromagnetic radiation is formed for angles
9 <y,
On the whole, the picture of asymmetric transition
radiation looks as follows. The excited E-field forms
on the full radiation pattern two sharp peaks with angles

9 =+1/ 7, in the horizontal plane ¢ =0 . For its part,
the H-field forms two sharp peaks with angles

@ =%x1/y, on the radiation pattern in the plane

9 =0 (z=0) perpendicular to the cylinder axis. Four

maxima in the directional radiation pattern have the
form of a cross in the plane perpendicular to the direc-
tion of motion of the bunch.

Thus, asymmetric transition radiation has a narrow
directivity in directions close to the direction of motion
of a relativistic electron bunch.

All that has been said above also fully applies to the
case of excitation of a conductive cylinder by a periodic
sequence of relativistic electron bunches. The only dif-
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ference is that in the latter case, field (7) with a discrete
frequency spectrum o =/, is excited.

A single bunch excites an electromagnetic field with
a continuous frequency spectrum, and the pulse shape is
determined by the Fourier integral (7). First of all, we
note that the angular functions (40), (41) of the Fourier
amplitudes of the asymmetric transition electromagnetic
field do not depend on the frequency. Therefore, the
shape of an asymmetric transition pulse, which is radi-
ated at small angles to the direction of motion of the
relativistic electron bunch, completely repeats the shape
of the bunch [5]

A =2Fus(3,€0)n[t—R/cj’ us)
ct, R l,
g - 9 Gu(8,0) f1-R/c)
’ ct,, R t,

In the case of a periodic sequence of relativistic elec-
tron bunches, the transition radiation will have the form
of a periodic sequence of electromagnetic videopulses

F,.(9, go)z [ T - R/cj
E(/(}us) _ 0 G, (%,0) Z

o < i t—IT-R/c '
ct, R = A

The symmetric angular function F,(w,9) in general

(as) _
H(/’
c,

case depends on frequency. Therefore, the shape of the
symmetric transition pulse will differ from the profile of
the electron bunch. However, as follows from expres-
sion (36) for polar angles
In(1/ kya) ~ In(ct, / a) >>In(1/sin 3)
or
sing >>a/ct, <<1 (49)

there is practically no dependence of the angular func-
tion on frequency
B, cos 9

sin 9y/1— f3; sin* 3 ‘

In this case, the shape of the symmetrical transition
video pulse will also repeat the profile of the electron
bunch. The magnetic field of a symmetric transition
pulse is described by formula (48), in which F_ ($,0)

should be replaced by (50). If the condition (49) is not
satisfied, then it is necessary to take into account the
dependence of the angular function on frequency

c

In—
voa

JIn 2
vwa9
In this case, the shape of the radiated pulse differs
from the bunch profile.

CONCLUSIONS

Transition radiation of a relativistic electron bunch,
which arises when it collides with the surface of an infi-
nite ideally conductive cylinder, is considered. The elec-
tron bunch moves perpendicular to the cylinder surface.
Expressions for the strength of electromagnetic radia-
tion in the wave zone are obtained. It is shown that this

F(0,9) = (50)

F(0,9) =
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expression contains two terms. The first term describes
the actual transition electromagnetic radiation of the
electron bunch. This radiation is azimuthally asymmet-
ric and is primarily determined by the properties and
parameters of the electron bunch itself. The radiation
contains both E- and H-field components and is di-
rected at a small angle to the direction of the bunch mo-
tion. The radiation angle is inversely proportional to the
relativistic factor of the bunch, and the strength of the
electric and magnetic field in this direction is propor-
tional to the relativistic factor. The second term de-
scribes the radiation of the current induced on the sur-
face of a perfectly conductive cylinder and propagating
along the cylinder at the speed of light in vacuum. The
strength of this field has an integrable singularity (turns
to infinity) strictly along the surface of the cylinder. The
peculiarity is due to the guiding properties of a perfectly
conducting cylinder.

The spatial structure (radiation pattern) of this transi-
tion electromagnetic radiation weakly depends on the
parameters (energy) of the bunch, and is mainly deter-
mined by the geometry of the considered cylindrical
antenna. The shape of the radiated electromagnetic
pulse has been determined.

In the case of a periodic sequence of relativistic elec-
tron bunches, the transition radiation will have the form
of a periodic sequence of electromagnetic pulses.
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HEPEXO/JHOE BO3BYKAEHUE UJEAJIBHO IMTPOBOJALIEI'O TUJIMHAPA
PEJATUBUCTCKUMMU JIEKTPOHHBIMU CI'YCTKAMUA

B.A. banakupes, H.H. Onuwenko

PaCCMOTpeHO NEPEXOAHOC U3ITYYCHUE PEIIATUBUCTCKOIO 3JICKTPOHHOI'O CI'yCTKa, BOSHUKAIOUICC IMPHU €T0 CTOJIK-
HOBC€HUU C IMOBEPXHOCTHIO 0ECKOHEYHOTO HUACAJIBbHO MPOBOAAIICTO HUJIWHIApPA. 3H6KTpOHHLIﬁ CTYCTOK OBUIKETCA
NEPHNCHAUKYIIAPHO IMOBEPXHOCTU HUIIMHApPA. HOJ'Iy‘IeHI)I U HUCCIICAOBAHbI BBLIPAXKCHUA JIA HAIIPSAKCHHOCTH I10JIA

QJICKTPOMArHuTHOI'O M3JIYUYCHHS B BOJTHOBOM 30HE.

HNEPEXIIHE 3BYI’KEHHSA II1EAJIBHO IMTPOBITHOI'O HUJIIHAPA PEJIATUBICTCBKUMUA
EJIEKTPOHHUMMU 3I'YCTKAMU

B.A. banakipes, L. M. Oniuwienko

Po3risinyTo mepexinHe BUIPOMIHIOBAHHS PEJSITUBICTCHKOTO €JIEKTPOHHOrO 3TYCTKa, 1[0 BUHUKAE MPU HOTOo 3i-
TKHEHHI 3 TIOBEPXHEI0 HECKIHYEHHOrO i/1eabHO MPOBITHOTO MIiHAPA. EJIEeKTpOHHMIA 3TYCTOK pyXa€eThes TepIieH-
JUKYIISIPHO TIOBEpXHI LtiHapa. OTpUMaHO 1 JOCIIKEHO BUpa3u AJIsl HAIIPYKESHOCTI MOJS €JIeKTPOMArHiTHOTO BH-
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