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The issue of simultaneous longitudinal and transverse particle propagation stability in a linear ion accelerator
channel based on combined RF-focusing is investigated. Values for RFQ field gradient to provide transverse propa-
gation stability for all the particles in an acceleration mode are calculated. It is also shown that electrical strength of
the electrodes influences the gradient value. Much attention is given to modeling of an accelerating-focusing chan-

nel which provides the minimal growth in beam emittance.
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INTRODUCTION

A new line of investigation in accelerator physics
and technology based on a possibility to steadily accel-
erate charged particles by the RF field has been evolv-
ing since the early 1960s owing to studies by
V. Vladimirsky [1], M. Good [2], Ya. Fainberg [3], and
many others. In particular, V. Vladimirsky suggested
making use of the RF quadruple field to stabilize radial-
ly charged particle as they are being accelerated in a
self-focusing accelerator. M. Good and Ya. Fainberg
independently proposed that the use of periodically al-
ternating reference phase improves radial-phase stability
of the accelerated beam. These two principals initiated
the development of RF-focusing in ion linacs in two
different ways: RF quadrupole focusing (RFQ) and al-
ternating phase focusing (APF). A modified version of
the APF method (MAPF) is described in Ref. [4]. As an
initial part of the MILAC machine (see Ref. [5]), the
MAPF-based accelerator with built-up field along the
grouping section and stepwise variations in the refer-
ence particle phase along the focusing section was de-
signed, constructed, and put into operation Refs. [6 - 8].
Ref. [9] presents the accelerating and focusing channel
of a medium-energy proton linac that uses the combina-
tion of axisymmetrical and quadrupole gaps for particle
acceleration and focusing. A general principle for the
RF-field focusing of particles namely combined RF
focusing (CRFF) with the mass-to-charge ratio
A/q <65 is proposed in Ref. [10]. Further improve-

ments on the MILAC accelerator such as replacement of
grid and magnetic quadrupole focusing for CRFF are
presented in Refs. [11, 12]. Design, layout, and adjust-
ment procedures for interdigital IH accelerating CRFF-
based structures for the MILAC machine are discussed
in Refs. [13 - 18].

This paper objective is to develop a mathematical
model that enables calculation of general parameters of
the focusing gap providing stable beam acceleration
with high acceleration rate and low emittance growth.

MATHEMATICAL MODEL.
GENERAL EQUATIONS

To examine the problem of simultaneous longitudi-
nal and transverse accelerated beam stability in a CRFF-
based channel, let us use the approach described by
I. Kapchinskij in Ref. [19]. The space-charge influence
on beam dynamics is considered negligible. The prob-
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lem is approached in the following way: first, the area
of phase particle capture into the acceleration process is
determined; then, the prospect of stable radial motion of
these particles is evaluated, and if it is the case, the re-
quired values for field gradient along the accelerating
channel are calculated.

As has been stated above, the combination of ax-
isymmetrical and quadrupole gaps constitutes a CRFF-
based accelerating channel. The longitudinal equations
of particle motion are as in Refs. [19, 20].

dy 2
—=—(w/y)h,
& (@/77)

%(ﬂspsh) =eEp, [cos(p, +y)—cosp,]. (1)

Here v = ¢ — ¢, is the phase shift relative to the ref-
erence particle,
y=01-p)", h=(p-p,)/p, . p, is the reference
particle impulse, e is the elementary charge, and E is

traveling wave amplitude.
For Eqs. (1) there is a corresponding Hamiltonian

® 1is the operating RF frequency,

p, + eEB [y cosg, —sin(p, +y)] (2)

o
2p.B.7;
with p, =B ph.
The second term in Eq. (2) is similar to the potential
function and determines the domain of stable particle
motion by the interval ¢ <y < -2¢_ yielding the value

of 3|qos|.

When considering stability of radial motion, we as-
sume the change in particle velocity and phase shift is
negligible. The linearized transverse motion equations
are as in Ref. [19]

d’x

dr’
where W2(z) and W3 (7) is the coefficient of unit peri-
od,ie. ¥ (r)=V¥] (z+1).

The linear equations Eqs. (3) are referred to as
Mathieu-Hill equations and provide a basis for the anal-
ysis of particle motion in a strong-focusing channel. To
study motion stability along a focusing period, the ap-
plication of matrix algebra methods seems most conven-
ient.

So, as the variables in Egs. (3) can be split, we con-
sider only one equation and rewrite it in the matrix form

2
FP(0)x=0, Zy+‘l’f,(r)y=0, 3)

2
T

ISSN 1562-6016. BAHT. 2019. Ne6(124)



X _ I, T, X
dx/dr) | \T, T,)\dx/dr)’

Here the matrix 7 called the matrix of the focusing
period links the variable and its derivative at the begin-
ning and the end of the focusing period which starts at
any given phase 7 in the range fromOto 1 (0<7<1).

The advantages of the matrix method over the direct
use of differential equations for description of particle
dynamics lie in the following: generally, a focusing line
consists of various sections (namely, an accelerating
gap, a drift segment, a quadrupole lens, etc.) and each
such section is described by a corresponding differential
equation. So, each section has its own transformation
matrix for particle coordinates and velocities which is
defined regardless of initial conditions at the beginning
of the section. Thus, the overall matrix for the whole
focusing line is the product of all section matrices. By
calculating the coefficients of the matrix 7', we com-
pletely define particle motion along the section under
investigation.

The stable trajectory domain in the strong-focusing
channel is defined by

(T, +T,,)/2|<1.

In our case the CRFF-based section consists of three
distinctive segments, namely, the drift gap, the axisym-
metrical accelerating one, and the RF quadrupole one.

The Drift Gap Matrix. Let us assume that there is no
field over the distance /. Then the corresponding ma-
trix takes the form

(1 L ,
o "] @

with L being the length of the whole focusing section.
The Matrix for the Axisymmetrical Accelerating Gap
in a Standing Wave System. Let us use the electric field
component £ along the accelerating gap in the “square
wave” approximation which means that the electric field
along the gap is constant and has the value of £, while

inside the drift tube it equals zero. At the beginning and
the end of the gap there is a transit region of length Az
over which the change in radial velocity occurs (over
the main part of the gap radial motion is drift-like).
Thus, the overall matrix for the accelerating gap is the
product of three matrices:

TRy

Here the first and the third matrix describes the tra-
jectory refraction with corresponding coefficient y, and

7, (by definition y =1/xA(dx/dr)and the middle ma-

trix represents the idle segment of length g .

Now, let us calculate the velocity change at the be-
ginning (or the end) of the segment.

The general equation of motion for the longitudinal
coordinate (assuming it x) is

i —%qu(t)x =0, (6)

where
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By substituting Eq. (7) into Eq. (6), we rewrite the
latter in a difference form as

_g
Auinput 1 € AE&'( Z\J

=———x,
At 2m Az

g
AE | &
AUoutput _li g(zjx

At 2m Az
for the input and output segments respectively.
Then, the expression for the trajectory refraction
takes the form

M:_lﬁﬁE _&
X 2mAz ¢\ 2)

Auaulpul :liﬁE g
x 2mAz *\2

After introducing a dimensionless variable, 7 and
assuming v, = Az/At, we obtain the refraction coeffi-

el wg
=————F cos| —=+¢ |,
7 2myc* B ( 20 ¢’]

eL wg
=———FE_cos| —+¢|.
7 2myc* B [20 (D]

Here ¢ represents the standing wave phase at the

cients as

moment of the particle crossing the accelerating gap
center.

The Matrix for the RF quadrupole section. The
transverse motion equations are

d’x e OE
—=——-(2)coswt-x,
dt~ m, Ox
2 OE
d_‘zyzi_y(z)cosa)t.y
dt~ m, Oy

with the quadrupole field component accounted for (see
Ref. [19]).

After introducing a function for the quadrupole field
gradient

1| 0E OE,
G s Vs =—|—= s Vs -— s Vs
(x,9,2) 2[8x(xy2) 6y(xyz)

and allowing for

OE, . OE, _ 6£
o ox oz’
we obtain
E OE, E
a’“=—18EZ+G, —"':—la E-G. (8
Ox 2 0z oy 2 0z

The term —1/2(0E./0z) in both Egs. (8) describes

the defocusing effect of the axisymmetrical rf field in an
accelerating gap. As we are considering the focusing
effect over the quadrupole section, we assume this term
infinitesimal in relation to the quadrupole rf field gradi-
ent. In addition, we also assume the particle displace-
ment over the gap length is small (the so-called thin lens
approximation). Then, the resulting matrix is
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Here /, is the quadrupole gap length, y, is the re-

fraction coefficient. The matrixes to the left and right
correspond to the drift segments while the matrix in the
center describes the refraction of particle trajectory. All
the particles crossing the refraction line, experience a
change in their velocity

A ﬂ = ixf G(z)cos a)t(z)é )
dt i v

0
d d
A - —iy.[ G(z)cos wt(z)—Z .
dt my " v
Assuming the value of v does not change over the
quadrupole segment and introducing a dimensionless
variable, 7 = ut/L we obtain the following expressions

dx

(10)

A—= G(z)coswt(z)—
- moc j (2) (z)
Ay y j G(z)cos a)t(z)—.
dr moc2 ; v

Allowing for #(z)=z/v+¢/w and the function
G(z) to be even, the expressions for the refraction coef-
ficients take the form

1/x(Adx/d7) = eL/my’ cos goj G(z)cos(27z/ A Yz »
lq
1/y(Ady/dz)=—eL/mu’ cos (0I G(z)cos(27z/ Az .

l‘l
If we represent the integrand as
[G(2)cos (272 pA )z
J. G(z)cos(27z/ PA)z = o
"I

JG(z)dz ZJ.G(z)dZ

q

then the following function

T, = [ G(z)cos 272/ pA)dz / [G(2)az

presents a similarity to the transit time in case of an ax-
isymmetric gap between drift tubes. On putting the
function G(z) constant and equal to G, over the seg-

ment of length g, where the so-called ‘horned” elec-

trodes overlap, we arrive at the expression
T, = sin(ﬂgq/ﬂl)/(irgq/ﬂﬂ) .

Thus, the refraction coefficients take the form
1/x(Adx/dr)=eL/mw’ cosp G,T g, ,
1/y(Ady/dr)=—eL/mp’ cospG,T,g, .

So, the matrixes for all the segments of a CRFF-
based focusing section have been defined completely.
These matrixes will be useful while considering particle
motion stability for a CRFF-based focusing structure of
various designs. As an example, let us consider a sec-
tion consisting of double rf quadrupole segments sepa-
rated by three axisymmetrical gaps. This structure has a
FOOODDOOOF pattern (with F being the focusing
segment in a transverse plane, O representing the ax-
isymmetrical gap, and D standing for the defocusing

area). The schematic view of the structure is given in
Fig. 1,b,d.
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Fig. 1. Focusing sections of a CRFF-based structure:
two focusing sections incorporating rf quadrupole
doublets and respective reference particle phases —
the schematic view (a) and the corresponding section
of the real machine (c); medium-energy focusing section
with the use of double rf quadrupoles and relevant
reference particle phases — the schematic view (b)
and the real section (d)

The combined matrix for the whole section under
consideration is the product of all segment matrixes

M =1/2 HQHTHTHTUHQHQHTHTHTHQ 1/2 H .
Here H is the drift gap matrix (see Eq. (4)), O is
the quadrupole segment matrix (see Eq. (9)), O is the

matrix O with the refraction coefficient —y,, and T is

the matrix of the axisymmetrical gap between drift tubes
(see Eq. (5)). In general, the segment length, i.e. quad-
rupole, axisymmetrical, or idle one, can take on differ-
ent values for each segment in the section.

As has Dbeen pointed out, the condition
@, <y <2¢p_ determines the domain of particle cap-

ture for the channel under consideration and gives the
size of this domain the value of 3|¢)S| . At medium ener-

gy, the reference particle phase usually lies in the range
of —30°...—20°. So, we assume all the particles whose
phase lies in the range of —30°...+60° are localized in
the region where radial stability occurs. The condition
for radial stability is

1/2|Sp M| = |cos | =|(T;, + Ty, ) /2| <1
with Sp M denoting the matrix spur, cosu represent-

ing cosine of the radial phase incursion along the focus-
ing part, 7., and 7,, being the diagonal elements of the

combined matrix.

Next, setting the particles to be protons, the operat-
ing frequency to 350 MGz, the energy to 3 MeV, and
the maximum electric field strength to 180 kV/cm, and
using the expressions for the matrix 7 and the stability
condition, we can obtain the minimal gradient value that
ensures all the particles at the phase range of
-30°...+60° are localized in the radial stability area.
Fig. 2 presents the dependence of the radial phase incur-
sion on the particle transit phase over the focusing peri-
od at G, =220 kV/em’. It is clear from the figure, all the

particles at the mentioned above phase range and the
given value of the quadrupole gradient are located in the
radial stability region.
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Fig. 2. Radial phase shift calculated for the focusing
segment s matrix

RESULTS AND DISCUSSION

Notice that the “square wave” approximation has
been applied to calculate fields over the axisymmetrical
gaps and field gradients over the quadrupole ones. This
approach does not allow the real electrode configuration
to be accounted for and thus, a question “Is it possible to
obtain the necessary value for the quadrupole gradient
providing sufficient electrical strength of the quadrupole
gap?”’ remains open.

However, there is for any channel calculated by the
“square wave” approximation a corresponding channel
of actual configuration. And a quadrupole gap to be
equivalent in focusing terms to a quadrupole segment
matrix Q, the following condition

JG(Z) cos(27z/ Az = G,T, g,

q

(11)

must be satisfied.

Let us set up a problem as follows: It is required to
find out quadrupole electrode geometry and potential
difference between these electrodes in order (i) to satis-
fy the equivalence condition Eq. (11); (ii) to maximize
the channel aperture; (iii) to provide sufficient electrical
strength of the gap.

It is generally agreed that an accelerating gap fea-
tures electrical strength if the condition E, <(2..3)K,

is fulfilled. Here E_ is the maximal electric field inten-
sity on the electrode surface, K, is Kilpatrick criterion.

If we set the operation frequency to 350 MHz, then
K,=183 kV/em.

The optimization problem has been dealt with by
means of RFQFLD code which is a part of our software
environment to develop accelerating and focusing chan-
nels based on rf field focusing (see Ref. [10]). To calcu-
late fields in an actual structure, the code RFQFLD im-
plements a method of auxiliary charges. According to
this method, a quasi-static field potential is a superposi-
tion of elementary point charges placed outside the cal-
culated domain. Boundary conditions on the surface in
N points give the quantity to N charges. The charge
inside an electrode is specified by charge density. Fig. 3
depicts the field potential distribution in a quadrupole
gap cross-section for the given geometry. In the graph,
black dots correspond to the auxiliary charges while
circles represent observation points on the electrode
surface. It is obvious from Fig. 4 that the quadrupole
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gradient function G(z) describing the actual electrode

geometry reaches its maximum at 214 kV/em® in the
middle of the gap.
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Fig. 3. Electrode geometry and field potential
distribution in the gap cross-section
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Fig. 4. Quadrupole gradient function G(z) for geome-
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try on Fig. 3 and its ‘square wave’ counterpart G,(z)

The boundary conditions are as follows

% :O;a—(p =0; ¢ =00, =-025kV; 0, =625kV
ﬁz z=0 82 ::I‘/ o
with [~ being the quadrupole segment length,

r=+x"+y", @ and ¢, are the respective potentials
on the left and right drift tube.

The main parameters obtained in numerical calcula-
tions are: the quadrupole segment length
lq = /u/z =3.4 cm, the channel aperture is 0.75 cm,

outer radius of the drift tube equals to 3.2 cm, the ratio
of the quadrupole electrode radius to the minimal dis-
tance between the electrode and the channel axis
R, /R, =1, the distance between the ‘horned’ electrode

and the opposite drift tube end is 0.6 cm, and maximal
electric field intensity is 356 kV/em (=1.94 K ).

Hence, this demonstrates the feasibility of the rf
field focusing. It is also worth pointing out that the ac-
celerating segment used in calculations is very short and
measures SA/2 =3.4 cm. This means that the maximal

field is concentrated at the end of the ‘horned’ electrode.
With increase in particle velocity, the distance between
the quadrupole electrode and the opposite drift tube var-
ies ~f. This, in turn, allows the potential difference
across the accelerating gap to be increased along with
the channel aperture. The chosen limit for electrical
strength criterion of 2K, is usually applied in assess-
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ment of surface electrical field intensity in an initial part
of accelerator (IPA). The fact is that inside the IPA the
electrode surface becomes contaminated by ion source
operation resulting in impairment of electrode electrical
strength in due course. The next accelerator part, the
intermediate, is free from such problem and the criterion
limit can be increased up to 3K, .

In our calculations, the reference particle phase is
@, =+15° This choice is dictated by the following: the

quadrupole gap influence is proportional to cos¢ with
maximal effect taking place at ¢=0. If ¢ >0, the

stability area expands by shifting to negative reference
phases. This is valid for negligible changes in the phase
shift over the focusing period. But at small and medium
particle velocities, phase fluctuations can significantly
influence the radial motion.

Figs. 5 and 6 present the phase portrait and the phase
shift of radial oscillations for a monoenergetic beam
with zeroth reference phase at the quadrupole segments
calculated for different number of focusing gaps by
APFRFQO code (see Ref. [10]).
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Fig. 5. Phase portrait (a) and phase incursion
of particle radial oscillations (b) in the first focusing
period. Transverse particle oscillations
are included into consideration

1.0 2
1
o 1 = O'JW‘___,/"

[N N »n

= K o
[S=8 Q

, L 8 4

-1

0.95 -

-20 0 20 40 60 -20 0 20 40 60
Yo o
a b

Fig. 6. Phase portrait (a) and phase incursion
of particle radial oscillations (b). Four focusing
periods. Transverse particle oscillations
are included into consideration

As illustrated in Figs. 5 and 6, transverse and longi-
tudinal particle oscillation coupling over several focus-
ing periods results in “smoothing” of phase shift that
constitutes one of the conditions for minimal emittance
growth during acceleration process. It should be also
remarked that the angle of particle capture into the ac-

celeration process in this case is no less 3|¢S| as has

been calculated before.

The CRFF-based accelerating channel can also be
used as an initial part of linac. Due to the fact that the
frequency of phase oscillations is maximal at low veloc-
ities, the focusing section has the different pattern
ODFOOO (see Fig. 1,a,c) where focusing alternating
elements follow each other (contrary to the previous
pattern). By applying the built-up electric field across
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the accelerating gap and simultaneously reducing the
reference phase magnitude, it is possible to capture into
acceleration process no less 50% of beam particles with
transverse particle motion stability ensured. Fig. 7
shows the phase portrait and the phase shift of radial
oscillations for a monoenergetic A/q=4 (He") beam at

the end of the accelerating section.
1.056

2
. 1
o ———
o’ e = 09 7 AN
1 w
= S 8 AN/ N
, NS H
09—520 -10 0 10 20 “ 00 -50 0 50 100
o Yo
a b

Fig. 7. Phase portrait (a) and phase incursion
of particle radial oscillations (b) at the acceleration
section exit. Transverse particle oscillations
are included into consideration. Mass-to-charge ration
is A/q=4, output energy is 1 MeV/nucl

The main parameters in this case are: energy ranges
from 0.03 MeV/nucl. up to 1 MeV/nucl., the channel
length is 2 m, the number of accelerating gaps — 25, the
number of focusing segments — 5, the maximal field in-
tensity is 90 keV/ecm. As Fig. 7 states, the acceptance
angle is about 220°, the phase extent is no more than 30°
at the structure exit, and all the particles captured into
acceleration process lie the area of radial stability.

CONCLUSIONS

Performed the analytical and numerical studies into
radial-phase motion stability in the CRFF-based channel
have demonstrated that:

— the combined rf focusing is universal and can be
used for light as well as heavy particle acceleration at
medium energy;

— to accelerate charged particle bunches already
formed, the focusing structure with the double quadru-
pole gaps and the axisymmetrical accelerating segments
in-between is preferable. The example pattern for such
structure is FOOODDOOQOF. The accelerating and focus-
ing channel of this type can provide radial stability for all
the particles captured into the acceleration process, minor
emittance growth and smaller electric field strength on
the surface of the quadrupole electrodes if compared with
the channel of ODFOOQO pattern;

— the accelerating and focusing channel with
ODFOOOQO pattern is suitable for a charged particle
bunch formation and its acceleration without prelimi-
nary grouping. Such channel provides the acceptance
angle of about 220° for stable acceleration.
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C.C. Tuwxun, H.I'. lllynuka, O.H. Illynuka
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CTHII B KaHAJaX JIMHEIHBIX YCKOPUTENICH HOHOB ¢ KOMOMHUPOBAHHOW BRICOKOYACTOTHOM (hOKyCHpOBKOit. Ompezene-
HbI 3HAYCHUS T'PAAUCHTOB BBICOKOYACTOTHOT'O KBAaJAPYMNOJBHOTO MOJIA, IMPU KOTOPBIX 06ecnqu/IBaeTcs[ nonepeyHas
yCTOﬁ‘IHBOCTL JJId BCEX YacCTull, 3aXBAa4YCHHBIX B PCKHUM YCKOPCHHSA I10 (ba30130My JABHUXKCHUIO. HOKa3aHO, 4YTO OTH
3HAYCHHUA MOXHO OGCCHe‘II/ITL B KBaJIpYNOJIbHBIX 3a30pax Mpu COGJ‘IIO):[CHI/II/I 3HeKTqueCKOﬁ IMMPOYHOCTHU IJICKTPOIAOB.
Oco0o0e BHUMaHHUE YIIENEeHO IMOCTPOCHUIO YCKOPSIOMIe-(OKYCHPYIOMINX KaHAIOB ¢ MUHIMAJIFHBIM POCTOM SMHUTTaH-
ca ImydJka B IPOIIeCCe YCKOPCHMA.

CTIMKICTH PYXY IOHHUX ITYUYKIB Y KAHAJIAX, II[O TPUCKOPIOIOTH, JITHIMHUX
MMPUCKOPIOBAUYIB 3 KOMBIHOBAHUM BUCOKOYACTOTHUM ®OKYCYBAHHSAM
C.C. Tiwkin, M.I'. Hlynixa, O.M. Ilynixka

JocnimpkeHo nutaHHs 3a0e31edeHHsT OHOYACHOT MMOB3JOBKHBOI Ta MONEPEYHOi CTIKOCTI pyXy YaCTHHOK Y Ka-
HaJlax JIHIHHUX TPUCKOPIOBaYiB iOHIB 3 KOMOIHOBaHMM BHMCOKOYAaCTOTHMM (OKyCyBaHHSM. Bu3HaueHi 3Ha4YEeHHS
Ipa/li€HTIB BUCOKOYACTOTHOTO KBaPYIOJIBHOTO TI0JIsl, IPHU SIKMX 3a0e31e4y€eThCsl MonepeyHa CTiHKICTh JUIsl BCiX yac-
THHOK, 1110 3aXOIUICHI B PeXXUM MPUCKOPEHH: 10 (azoBoMy pyxy. [lokazaHo, 10 i 3HaUYCHHS MOXKHA 3a0€3IIEUUTH B
KBaJPYNOJILHUX 3a30pax NPH BUKOHAHHI YMOB €JIEKTPUYHOT MIiIHOCTI enekTpoxiB. OcobnuBa yBara npuijieHa mo-

OyZOBi KaHAIIB, IO MPUCKOPIOIOTH Ta (POKYCYIOTh, 3 MiHIMaJIbHAM POCTOM €MiTaHCa IMyYKa IIPHU MPUCKOPEHHI.
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