RESONANT SPREAD WAVE FUNCTION IN PARABOLIC POTENTIAL
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In this paper, we consider the parabolic potential, which as a whole is subject to dipole or quadrupole action
(parametric resonance), which periodically changes with time, and the dynamics of the wave function of a particle.
Based on the solutions found for the nonstationary Schrodinger equation, algorithms for calculating the dynamics of
the wave function are constructed. The evolution of the wave function of a particle is analyzed. Asymptotic solu-
tions of the equation of motion are given, using which the main characteristics of the wave packet are obtained. For
selected types of potential perturbations, examples of the evolution of the wave function are given.
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INTRODUCTION

In NSC KIPT, work is underway to investigate the
influence of various types of irradiation on the proper-
ties of condensed media. The mechanism of changing
the properties of materials during irradiation is associat-
ed with the excitation of nonlinear localized oscillations
in the lattice [1, 2]. These oscillations in turn affect the
dynamics of particles in it. The structure and arrange-
ment of atoms in a single crystal significantly affect the
character of the motion of particles in a lattice [3, 4].
This paper presents the results of the study of the reso-
nant energy buildup, which reveal at the quantum me-
chanical level the physical essence of the arising pro-
cesses.

We consider the quantum mechanical problem of the
motion of a particle in a quadratic potential, which is
subject to a dipole or quadrupole effect, which varies
periodically with time. A similar formulation arises in
problems when a perturbation is a trajectory of a one-
dimensional or two-dimensional process that modulates
the potential change during the motion of a particle. A
similar situation is realized, in particular, when an elec-
tron moves along the crystalline axis [1, 2]. In this case,
the role of time in the problem is played by the depth of
particle penetration, and the function of perturbation,
describes the forced oscillations of the crystal lattice.
Another important example is related to the calculation
of the rate of chemical reaction near the localized an-
harmonic vibrations of atoms caused by thermal fluctua-
tions or external influence [3, 4]. In this case, due to the
large amplitude of localized anharmonic vibrations, the
position of the potential well in which the particle is
located can no longer be considered fixed, which re-
quires a review of the problem of calculating the wave
function taking into account the dynamics of the poten-
tial well.

The paper will consider the time evolution of a par-
ticle with the initial wave function

v (x,,0) = (n:zfaz)j exp(—n;;:)xgj- (1)

DIPOLE PUMP

First, we consider the time evolution of a particle
with the initial wave function in the potential

Vu¢)=%mwﬁx—uan2 (2)

where U(¢) is some square integrable function. This
kind of potential is a generalization of the parabolic
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potential with U(¢)=0 and }(x,¢)= %ma)zxz used,

in particular, in the analysis of the movement of chan-
neling charged particles [6, 7]. In this case, for the wave

function ¥ =W (x,#;x,,¢,), the Schrédinger equation
has the form [5]
£ o
LA Sl S S TS & TE)
i ot 2m ox~ 2
The physical content of the wave function V' is that

it describes the amplitude of the probability of transition
from state to moment ¢, = 0, characterized by a coordi-

nate X,, to a state at a moment [, characterized by a

coordinate x . Based on the parabolicity of the potential
(2), we will look for a solution to equation (3) in the
form

W(x,£:x,.t,) = explC, (1) + C, (1)x + C, ()x?),
with some functions C, (), C,(¢), C,(t). For them,

one can compose a system of three ordinary differential
equations with initial conditions. As a result, we find
that the solution of the Schrddinger equation (3) is as
follows [8]

meia}t 1/2
\P(X,t;xo,to):[mJ x
mo’

2h

><exp(—nz1;:)(x2 -x;)—i J;Uz(r)erx

. hop 2
xexp(zszY (r)dr +xY(t)—

ma it 2
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where
2
Y(r)=i m;o IOU(T') exp(—iwt +iwt")d7',
R(="¢ wm%meMﬂw.

m
The Gaussian form of expression (4) for the ob-
tained function W(x,t;x,,t,) (the Green function) is a

consequence of the parabolicity of potential (2). Func-
tion W(x,#;x,,t,) (4) satisfies the same equation as the

wave function /(x,,0), but with the initial condition

Y(x,t;x,,0) =0(x—x,).
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The value of the wave function ¥/ (x,¢) at the time
t >, can be determined by its given value ¥(x,,0)

at the moment t,=0:

w60 = [y (5,00 ¥(xtx,00dy, . ()

After calculating the integral (5) with the core
W(x,t;x,,0) (4) and the initial wave function y(x,,0)
(1), we obtain

y(x,0)= ('ZJ exr{—i ”;fJ —% [x-x (t)]QJ,

(6)

t
X(t)= o[ U(x)sin(et - o) dr,
0
where J is the phase incursion of the resulting wave
function

J = jUZ (r)d7 + L 2xj U(r)cos(o(t —7))dt +
0 mao 0

+ jdrjdr'U(r)U(r') sin(w(zr —1))cos(w(z' ~1)). (7)

If the particle at = 0 was in the ground state with
the wave function (1), then by the time / moment for

the probability density p(x,?) we find

p(x, 1) =w(x, t)|2 = (n;;j exp(—n;w [x-X@) ) (8)

Thus, if a particle experiences a temporal evolution
in potential (2) with U(7) = 0, then by the time instant

¢ the distribution of probabilities p(x,t) remains the
same as at the moment t,=0. The behavior of the

wave packet changes significantly if U(7)# 0 that

can be seen from the characteristics of the wave packet.
Quantum-mechanical averages — the first and second
moments of the density of the probability distribution

p(x,1)
(x(0)) =@ j U(r)sin(ot — o7)dr, )

AU
<x (t)> g +o° X
H (10)
x j j U(r)U(r")sin(@t — o7)sin(ot - or')dr dr’
00

experiencing swing.
If the modulation function U(¢) contains a stochas-
tic component, then <x(t)> and <x2 (t)> are also time-

dependent random variables.
Next we will consider the case of parametric reso-
nance, when

U(t)=gsin(awt), (11)
where g is the modulation index, rather small com-
pared to 1. In this case, we have
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(x(0)) = 1 ga)t(cos(a)t) — %?)t)j . (12)
@

2
EONUNE NS ISP _sin(a)t) ? 13
<x (t)>——2mw+4g w’t (cos(a)t) . ) ,(13)
<p(t)> = %ga)ztsin(a)t), (14)
<P2 (l)> = h_a)+l [gma)2 sin(a)t)]z. (15)
2m 4
As a result, we obtain for the average energy
_L 2 mo o/ 2\ _
E—2m<p >+2a)<x> a16)
2
= hTO) + %(@21‘2 + ot sin(2et) + sin”? (a)t))

The rate of increase in the average particle energy
over time is

E . .
== 1+g* (w2t2 + ot sin(2art) + sin’ (a)t)). (17)
0
The potential V' (x,¢) with the buildup of the form
(11) on the interval 0 <¢ <50 is shown in Fig. 1.

Fig. 1. Potential V (x,t); o=1,g=0.1

The temporal evolution of the probability distribu-
tion density over the interval 0 <¢ <50 is shown in
Fig. 2.

5
Fig. 2. The density of probability distribution p(x,t)
in the interval -8 <x <8, =1, g=10.1

As a result of the resonant buildup, the average en-
ergy of a particle increases with time according to a
parabolic law (Fig. 3).
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Fig. 3. The dependence of the average energy E (red
line) on the current time t, o= 1, g = 0.1. The blue line
is kinetic energy, green line — potential energy

QUADRUPOLE PUMP

The problem of the dynamics of the wave function
in a parabolic potential subject to periodic perturbations
was considered in [10]. In the present work, a more de-
tailed study of the wave packet dynamics has been car-
ried out. Below, we will consider the time evolution of a
particle with the initial wave function

v (x,,0) = (%wj exp(—%;lo)xgj (18)

in potential V' (x,,t) =mQ(¢)x. /2, where Q(¢) is
some given function. This kind of potential is a general-
ization of the parabolic potential V(x,f)=mw’x*/2
with a constant frequency @ . In this case, the Schro-

dinger  equation for the Green  function
Y =Y(x,,t;x,,t,) is
2 A2
no = _h_a_ij +lmQ2(t)xf‘I’. (19)
iot 2m Ox, 2

The paper will consider the case of parametric reso-
nance, when

Q=0 (1 +g sin(2a)t)) , (20)
where @ is the natural frequency, g is the modulation

index, rather small compared to 1.

In the case when the frequency is constant,
Q(t) = cons, for equation (19) it is possible to obtain
analytical expressions in quadratures. In the general
case of a frequency-dependent frequency €(7) for cal-
culating the dynamics of quantum-mechanical wave
functions in a perturbed potential, a recurrent algorithm
can be constructed. This is based on the fact that for any
t wave function y(x,,t;x,,¢,) has a normal appear-
ance with respect to X, and X;. Therefore, it is suffi-

cient to construct an algorithm for calculating the first
two of its moments. We use the explicit form of solving
the Schrodinger equation with a constant frequency @ :

it 1/2
Ll)j x @1

‘"Ij(xr’t;xmto) = (ﬂh(ezz(w‘ _
. )2J

mao

exXpl ———\X, — X)) —————7—
p( 2h ( t 0) ( 2iwt 1)
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and rewrite it for two points in time 7, ; and f, sepa-

rated by a sufficiently small interval 7 :

1/2
mq
‘{I(xk 5tk;xk,1,tk71) Z[W](_DJ X (22)
mQ me 2
exp(— th (x; —x,f,l)—m(xk —qu,H) J,

where g, = exp(iQkT), Q, =Q(t,) - the frequency
values at each of the time intervals.
The value of the wave function ¥(x,,?,) at the

time f, >, can be determined by the value given at
the time ¢, | of its value ¥(X,_,,f, ;) in accordance

with the ratio

px,t) = j_wl//(xk—lﬂtk—l) WOt Xt dry

Whence it is clear that one can use the property of
normality and limit oneself to the first two points. Since

<xk>=0 forall k,
!//(xk’tk):NJ.w exXp _Q(xk—lﬁxk ))dxk—l’ (23)

O(x;_y,x,) = h( P ( Xk
1 ’ mQ,

+ X + X,
252, 2n (o

4 Xk )2 +

- x/f,] )9

where N is the normalization, S,f_l is the dispersion of
the wave function at the moment 7, _, .

Our goal is to construct a recurrent relation connect-
ing the dispersions S,il and S,? of the wave function

for subsequent moments of time. Given that

<xk—1>=<xk>:0’ we get 57, = <xlf—1> and s, =<x,f>.
As a result of integration, we arrive at the following

. . . 2
recurrent expression relating the current variance S

. . . 2
with the previous variance §,_; :

2o Lsin(@r)+ in.s;  cos(Q,7)

; PR ., (24)
1, icos(Q,7)+ 1,5, ,sIn(2,7)

m m
e =—C E%Q(tk)'

h

Next, we will apply the rule of frequency modula-
tion €)(¢) at a potential with time according to relation

(20). Denoting &,
expression on the basis of (23)

pa— 2 pu—

fog, - 2rlodh) 20, L) oy
i Q,

Since at small modulation index g we have

(Qk+1 —Qk)Qk+1 ga)rcos(Za)t )+ O(g?), then go-
ing to the limit 7 — 0, getting

dé& =—i Q(t)( - &2 )+ gé cos(2mt), (26)
$(0)=¢-

— 2 ;
=15, » we construct a difference
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To solve equation (26), we use the substitution
& =—itg(u). This gives

du

dt

On the right of this equation, we select the resonant
term, and reject the nonresonant term,

d( ¢ ,j 1 .
—|2u-2| Q"dt' |=—gwsinQu—-2wt), (28
| 2u-2f 0w)dr | = gosin@u—2en). 28)

then for the function Z = u —J.;Q(t')dt'+ Wt we

=Q()+ %ga) cos(2a)t) sin(2u). (27)

get the equation
d 1 . ( ¢ j
—(2Z)==gwsin| 2Z +2| Q(¢)dt' -2t |- (29)
22)="¢ [
Under the sine sign, the second and third terms have
order O(g). Taking into account the smallness of the
modulation index g, we find the first integral of the

equation (26)

to = tgp + th(/uo) , (30)
1— W tg(u )tg e
where
W= exp[g;)t + g’ sin® a)t), p= a)t+%sin2 ot - (31)
From here follows the desired dependence for the
mean-square size of the wave function:
2 .
$2() = 1 s (OzW itgp
n) 1—is"(0O)W tgp

Let us assume that at the initial moment the particle
is in the ground state with s*(0) =1. Based on expres-

32)

sion (31) for the dispersion s*(¢) of the wave packet

and the normality property, one can find the necessary
characteristics of the wave function.

The size of the wave packet in the coordinate and
momentum:

<x2>=277(1t)W(W2 cosz(p+sin2(p), (33)
<pz>=m(W2 sin” ¢ +cos” (p)- (34)

2w
Over time, the average energy is

R I YN (2 () gt 5. 2 35
E—E<p >+EQ(<X>—TCh T+g Sin a)t( )

The rate of increase in the average particle energy
over time is as follows

r =L _ i+ gsin(2an) ch(gz"”+ % sin’ a)tj- (36)

E
The0 expressions found allow for a known function
of frequency C)(f) and a given dispersion s; of the
initial wave function w(x,,0) to determine the se-
quence of sizes St2 of wave functions y(x,,t) for an

arbitrary number of periods of compelling oscillations.
Within each of their periods, the size of the wave func-
tion at the coordinate undergoes oscillations according
to (30), defined @ and g . Since the wave function

w(x,,t) has a normal form with zero mean and vari-

ance s°(t), the particle state is thereby completely de-
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termined. The average energy of a particle experiences
growth according to the law of hyperbolic cosine,
which, in contrast to [10], additionally still experiences
modulation with frequency 2w .

The potential V'(x,#) with the buildup of the form

(20) on the interval 0 <¢ <50 is shown in Fig. 4.

Fig. 4. Potential V (x,t); w=1,g=0.1
The time evolution of the probability distribution

density p(x,f)= ‘(//(x,z)‘2 over the interval 0<¢<50

for the values of the parameters @ =1 and g =0.1 is
shown in Fig. 5.

In Fig. 6 shows the dependence of the average ener-
gy E on the current time ¢ at @ =1 and g=0.1. It is

seen that the average energy E increases, while experi-
encing a modulation with a frequency of 2 @ . The am-
plitude of this modulation, in turn, is determined by the
index value g .

Fig. 5. Probability distribution density p(x,t)
on the interval —14< x<14; w=1,g=0.1

0 20 0

t
Fig. 6. The dependence of the total energy E (red line)
on the current time t; @ =1, g = 0.1. The blue line
is kinetic energy, green line — potential energy
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CONCLUSIONS

We consider the parabolic potential, which as a whole
is subject to a dipole or quadrupole effect (parametric
resonance), which varies periodically with time, and the
dynamics of the wave function of a particle in it. Based
on the nonstationary Schrodinger equation, analytical
expressions and algorithms for calculating the dynamics
of the wave function are constructed. The evolution of
the particle wave function is analyzed. The asymptotic
equations of motion are given, with the help of which the
main characteristics of the wave packet are obtained. For
selected types of dipole or quadrupole perturbations of
the potential, examples of the evolution of the wave
function and the average particle energy are given. Note
that the developed approach can be extended to the case
of a stochastic modulation perturbation.
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PE3OHAHCHAS PACKAYKA BOJTHOBOM ®YHKIIUU B TAPABOJIMYECKOM NOTEHIIUAJIE
A.C. Mazmanuwieunu

PaccMmoTpeH napaboanyecKuil MOTSHIMAT, KOTOPBIA KaK [EI0e MOBEPKEH JUMOILHOMY WU KBAJIPYHOJIHHOMY
BO3CHCTBUIO (ITapaMETPUIECKOMY PE30HAHCY), TIEPUOIMYECKH MEHSIOMEMYCsS ¢ TeUCHHEM BPEMEHH, W JTWHAMHKa
BOJIHOBOH (DYHKITMH YacTHIEI B HeM. Ha oCHOBe HaiileHHBIX pelIeHni HecTannoHapHOTo ypaBHeHus llpennnrepa
ITOCTPOCHBI ATOPUTMBI pacdeTa TUHAMUKHA BONHOBOH (yHKImHU. [IpoaHanm3mpoBaHa HBOJIONHS BOJTHOBOU (DYHK-
oun 9acTumpsl. [IpuBeneHBl aCHMITOTHYECKUE PEHICHHS YPaBHEHUS IBIKCHUS, C TIOMOLIHI0 KOTOPBIX HOJIYYCHEI
OCHOBHBIE XapaKTEPUCTHUKN BOJHOBOTO MaKeTa. [ BRIOpaHHBIX BHIOB BO3MYILECHHS TIOTEHIIMAA [TPUBEICHEI TIPH-
MepHI SBOIIOLIIHN BOJTHOBON (YHKIIUH.

PE3OHAHCHE PO3I'OiYBAHHS XBHJIbOBOI ®YHKIIIi B TAPABOJIIMHOMY IMOTEHIIIAJII
0.C. Masmaniweini

Po3risHyTo napabosiyHUK NOTEHLIAN, SKUH SIK [JIe CXMIbHUN AUNONFHOMY a00 KBaJIpyNoJbHOMY BIUIMBY (T1a-
PaMETPHYHOMY PE30HAHCY), 110 HEPIOUYHO 3MIHIOETHCS 3 IUIMHOM Yacy, i TUHAMIiKa XBHIBOBOI (DYHKIIIT YACTUHKH
B HbOMY. Ha OocHOBI oTpuMaHKiX po3B’s3KiB HecTalioHapHOro piBHsHHA lllpeninrepa nmoOynoBaHi arOPUTMHU PO3-
paxyHKy IWHaMiKH XBHIH0BOI (hyHKIi. [IpoaHanmi3oBaHO €BOJIOIIF0 XBIIHOBOI (DYHKINT YacTHHKU. HaBeneHo acu-
MITOTHYHI PillIcHHS PiBHSAHHS PYyXy, 332 JOIOMOTOI0 SKMX OTPHMaHi OCHOBHI XapaKTEPUCTHKU XBUIbOBOTO ITAKETa.
s oOpanux BUAIB 30ypeHHs MOTEHIIiaTy HaBeICHI IPUKIIAIN €BOIIOLIT XBHIHOBOT (PYHKITIT.
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