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The paper presents the transition to the regime of induced radiation of a system of oscillators in the classical and
the quantum cases. This transition occurs due to synchronization by the integral field of the phases of a small part of
oscillator-emitters. In the quantum analogue of this model, it is shown that the formation of an induced (and, there-
fore, coherent, as noted by Ch. Towns) pulse of the field is due to the interference of nutation of population inver-
sion in different regions of the system of oscillators. The law of spatial variation of the field intensity is determined
by the dispersion characteristics of the system and the level of absorption or output of the radiation energy. Only a
small fraction of oscillators provide induced radiation: 8% in the classical case and half as much in the case of a
quantum system, where a change in the sign of population inversion in the regions of the highest field values signifi-

cantly affects the limitation of the radiation intensity.
PACS: 05.45.Xt, 52.40.Mj

INTRODUCTION

In the famous work [1] R.H. Dicke considered the
interaction of oscillators or emitters that are close to
each other and believed that they were actually merged
into one quasiparticle. Note that in the quantum case it
is not about phase synchronization of oscillators, as in
the classical consideration, but about an increase in the
probability of radiation, which actually leads to the
same result. In this case, their wave functions overlap
and the probability of spontaneous emission of this qua-
siparticle increases in comparison with the probability
of emission of individual oscillators or emitters. How-
ever, if the oscillators or emitters are spaced apart in
space, the overlap of their wave functions becomes ei-
ther weak or imperceptible in general. In most existing
lasers, the density of active particles is such that the
distances between them are quite significant and one
should not expect overlapping of wave functions.

Indicative in this sense is the velocity distribution of
free electrons in semiconductors [2], if, of course, the
density of these electrons are sufficiently small, for ex-
ample, at low temperatures. In this case, their distribution
is in fact Maxwellian, and their temperature is approxi-
mately equal to the temperature of the atomic system.
And the thing is that the Fermi distribution is possible
only if the wave functions of electrons overlap, which can
be observed in metals, where the number of free elec-
trons is comparable with the number of atoms. That is,
the distance between free electrons in metals is so small
that overlapping of their wave functions occurs.

How do electrons of active atoms interact in lasers?
Their interaction is due to electromagnetic radiation
fields. In the quantum case, when the phases of the oscil-
lator and the field are not determined, only the relative
orientation of the radiating dipole and the electric field is
indicated, that is, only the projections of the dipole mo-
ment on the direction of the electric field are known, the
role of the Rabi frequency can be determining.

Many authors note that the Rabi frequency deter-
mines the oscillatory nature of the change in the popula-
tion inversion of a system of radiating dipoles (nuta-
tion), which have ground and excited energy levels and,
generally speaking, is proportional to the probability of
induced emission and absorption of field quanta [3, 4].
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Below it is shown that it is precisely the quasi-periodic
changes in population inversion in different areas with
the Rabi frequency, which depends on the local field
intensity in these areas, lead to an increase in the inten-
sity of the integral field in the system. Also, as in the
case of the classical description of an open system of
oscillators [5]. In the quantum analogue of this problem
one can see that only a small part of the oscillators are
involved in the creation of an induced field.

1. EXAMPLE OF CLASSICAL
DESCRIPTION OF RADIATION
OF A ONE-DIMENSIONAL SYSTEM
OF OSCILLATORS

In the one-dimensional case, we consider the pro-
cesses of generation of electromagnetic waves by a sys-
tem of oscillators with fixed centers [5]. Let the fre-
quency of the wave and the frequency of the oscillators
coincide and be equal w. Wave vector of oscillations
k = (0,0,k), field components E = (E,0,0), B =(0,E,0)
and E = E|-exp{—iot+ikz+ip}. Oscillators are lo-
cated along the axis OZ in quantity N at the wavelength
27 / k. The mass of the oscillator is equal m, the charge
is equal —e. The initial oscillation amplitude of the os-
cillator is equal to a,. We assume that the oscillator
moves only in the direction of the axis X. In this case,
the influence of the magnetic field of the wave on the
oscillator dynamics can be neglected.

The equations describing the excitation of a field by
an oscillator current in such a one-dimensional repre-
sentation j =—eaw, - Cos(ayt—y)-5(z—z,) whose co-

ordinates can be written as 7 = (a-Sin(@,t —y),0,z,)
OE, 10D, 4ndJ,
oz* & or

T
i C 6l (l)
= c—’feaaf Sin(wt —y)-8(z - z,).

We will seek a solution for the amplitude of the
electric field of the wave in the form
E_=E-exp{—ioyt+ikz}. For the slowly varying in
space amplitude of the radiation field, the equation
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6ZX =eaw’M expliy —ikz,} - 6(z—z,) = 2
=1-8(z-z,),

whose solution

E=C+1-0(z-z,), 3)
where C is a constant to be defined.
The dispersion equation for emitted radiation by the
oscillator is D(w,k) = (w’¢, —k*) =0, the roots of which
k, =t(wReg,/c)(1+Img, /Reg)) =
=~ t(we, / c)(1+i0),
for a wave propagating in the direction z>z,, the wave
number k =k >0 and the value of the constant C

should be equal to zero, in order to run away from the
unlimited growth of the field at infinity. For a wave
propagating in the direction z < z,, the wave number is
k=k, <0, a constant value for the same reasons should be

chosen equal —A . The amplitude of the electric field
while
E, = reaw,M ¢ exp{—iot +iy} x
x[explik,(z—z,)-U(z—z,)+ @)
+exp{-ik(z—z,)-U(z—z,)},
where U(z)=1 at 220 and U(z)=0 at z<0, here-
with M =nyb, nis the density of particles in a unit
of volume, & is the length of the considered space in
the longitudinal direction. For one particle in such a
volume of a single section and length b, M it is numeri-
cally equal to one. You can find the Rabi frequency
value for a single dipole system for this case.
Q =4r’a’Moc ' . (5)
Generally speaking, this is the inverse time of the
inversion change (in the absence of relaxation processes
due to interaction with the external environment), or in
this case, this value may have the meaning of the radia-
tion probability of the excited dipole quantum [3]. In-
deed, multiplying the field energy density in the one-
dimensional case (E’/4r) by the volume occupied by

the emitted radiation in two directions over time €,

(since M is numerically equal to one), we obtain the
quantum energy

(E’ /4zr)ci =Mhw/ 27 . (6)
: Q,

That is, the reciprocal of the Rabi frequency Q,™', in
this case, is numerically equal to the time during which
one energy quantum is emitted (or, which is the same,
the probability of aunpromptedemission of a quantum
by a classical oscillator, which corresponds to the sense
of the probability of spontaneous emission. Note that
the phase of the radiation field and the phase of the os-
cillator are obviously consistent, for this is its own field.

In the general field of many particles in z; € 0..b,

the equation of motion for a separate oscillator take the
form

(d*r/de* +alr) = —%Ex (2,1). (7)
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Using the expressions below
E:L’ 7[€2M - A _ k()as
maya,y  2mc
M =nyb; 2nZ =k,z, T=Y)L;
B, =t 2
mayya, by,

= ax /a();

75

kya,

3
0 o= %(koao)z,

we present a system of equations describing the process
of forming an integral field in a system of oscillators in
a dimensionless form [6]

d el
EA,. =E,Cos{27Z, -y }—-(N) 1Z;AS><

XCosi-y, +27(Z,-Z)+y JU(Z, - Z,)+
Cos{-y, ~22(Z,~ 2+ WU(Z,~ Z,)]

(®)
dy )
A[—L-a(4 -4 )]=E,Sin{27Z, —y,} -
J dT J J J J
(NS A ©

s=1

X[Sin{~y, +27(Z,-Z)+y JU(Z, - Z )+
+Sin{~y, -27(Z, - Z)+y JU(Z, - Z,)],

where 0=5/y,>1, y*, =ze’M /2me, and y=y*, /5,
the term proportional « takes into account the weak
relativism of the oscillator mass. By the way, in the the-
ory of cyclotron generators such nonlinearity is a conse-
quence of the so-called negative mass effect. Account-
ing for such nonlinearity may be significant, since in [7]
noted, that in the system of linear oscillators the genera-
tion efficiency is insignificant.

The field slowly varying in time, generated by oscil-
lators inside and outside the area occupied by them, has
the form

E(Z,7)= %Z A expliy }exp{27i(Z-Z,)} x (10)

xU(Z=Z,)+exp{=27i(Z - Z)}U(Z, - 2)],
that is, expression (10) is a slowly varying envelope of
the HF field oscillations. Note that due to the removal of
energy from a small active zone, the field does not ac-
cumulate in its volume.

For the number of oscillators N =10*, the average
integral field |E| of a system of oscillators with a ran-
dom distribution of the initial phase (which in the clas-
sical case can be considered spontaneous) is 100 times
smaller than the maximum possible field value in the
case when all oscillators are phase-locked. That is, for
fields of spontaneous and absolutely coherent induced
radiation, the relation is satisfied 107 :1. For squares
of amplitudes |E |2 , this ratio takes the form 107 :1.
Below we will discuss the results of solving the system
(8), (9), carried out previously with D. Litvinov [5].

The greatest value of the field in the opposite direc-
tion of the propagation of the external wave side of the

system |E|~0.23...0.25 and |E[*~ 0.08 . The external
stabilizing field is small E; =0.05 at the same time.

And since in the case of fully phased emitters |E[’=1,

the degree of coherence in this case is 8%. Numerical
analysis of system (8) - (10) showed that a significant
ISSN 1562-6016. BAHT. 2019. Ne4(122)



number of particles practically do not participate in the
generation of a coherent field (Figs. 1, 2).
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Fig. 1. The amplitude of oscillators at different points
along Z at the moment, when the field reaches

a maximum (AZ =1, a =1) [5]

1

0,95 -

R

0,85 -

0.8

0,75 -

0.7

0,65 -

0.6 -

0,85 -

0.5

1) g iU iE 50 25 éO éﬁ ;0 45
Fig. 2. The normalized total energy of the particles
as a function of time. AZ =1, =1 [5]

Although the coherence level of 8% is quite signifi-
cant, because the intensity of this field is proportional

0.08-N?, which is 800 times greater than the intensity
of spontaneous emission, understood in the classical
analogue of superradiance considered here as the sum of
the intensities of individual uncorrelated emitters. Obvi-
ously, with a larger number of particles, this difference
between superradiance and spontaneous emission of
particles with random phases will only increase.

2. SEMICLASSICAL MODEL
OF RADIATION

If the quantum system is in the waveguide medium,
then the semiclassical theory should be used to describe
the generation processes, in particular, used previously
in the works of Yu.L. Klimontovich and colleagues [8,
9]. The system of one-dimensional equations of the
semi classical theory for the amplitudes of the perturba-
tions of the electric field, polarization, describing the
excitation of electromagnetic oscillations in a two-level
active medium represent as follows:

2 2
OE GOE_LOE__, &P
ot ot ox? ot?
o’P drw|d , |
o +‘02P:_%#E, (12)

to which you need to add an equation for population
inversion that slowly changes with time
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o _dz gl (13)
ot  ho ot
We assume that the frequency of the transition be-
tween energy levelscorresponds to the field frequency,
the line width in the equation for polarization and the
inversion relaxation due to external causes are neglect-
ed.

Let be 6 — the decrement of field absorption in the
medium, d_, — the matrix element of the dipole mo-
ment (or rather its projection on the electric field direc-
tion), the difference populations y=n-(p,—p,) per
unit volume, p and p, relative populations of levels
in the absence of a field. Fields are represented by
E=[E(t)exp{—iot}+ Ex(t)exp{iwt}]/2 and

=[P(t)exp{—iowt}+ Px(t)expliot}]/2,
<E*>=E@®)] 2.

For slowly varying field amplitudes and polariza-
tions, the following equations are valid:

and

agf) +6-E()+v, EU ( ) —2imoP(t). (14)
OP(t E(t
DO a, b emmn=. as
In the homogeneous case, you can get the equation
’E E ir’w|d,
86t2(t)+5665t): To|d, | LE() . (16)

From which it follows that the field in the absence of
losses can grow with increment

ir’w|d, |
=(—— (17)
Since in this case, (13) can be rewritten in the form

du d
4 +0= (dt+25)Nk’ (18)
where in o we take into account the inversion losses
associated with spontaneous radiation, N, = E |* /2he
is the number of field quanta per unit volume.

Taking into account the field energy loss in the sys-
tem without active particles with a decrement equal &
to when O >y leads to the fact that equations (14) and

(15) imply the relation

2 2
5aévk:8w\;1a,,| “y
t
2 2 2 (19)
a2 ld TTEl  Qy
A ey

This case corresponds to the classical analogue con-
sidered above with§ =2v, /b, where b is the longitudi-

nal size of the system. We will first interest in the be-
havior of population inversion. For sufficiently large
losses of field energy in the medium o >y , from equa-

tions (18) and (19) we get
2

0
= 2iodu=o0, (20)
87° |d
where Q, = [%|E| 1”* is the Rabi frequency,

which has the meaning of the inverse time of the change
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in the inversion and the probability of the induced radia-
tion under the influence of the field [3, 4]. It is im-
portant to note that the Rabi frequency increases in pro-
portion to the magnitude of the increasing electric field
described by equation (19), that is, the rate of change of
the inversion is accelerated. Consequently, the increase
in the probability of radiation of excited dipoles at each
point in space in the semiclassical description occurs
under the influence of the integral electric field. On the
other hand, the energy output from the system leads to a
decrease in the initial integral level of population inver-
sion. Let us discuss this phenomenon in the simplest
model used above for the classical description of the
system of oscillators above.

It is of interest to find out the nature of the change in
population inversion in space. Consider a limited unit
volume with a longitudinal size equal to the length of
the electromagnetic wave, assuming that the configura-
tion of the field intensity distribution does not change
(since it is determined only by the properties of the
waveguide system and the nature of the energy output
from it). We use the following expression

dro|d, |2 2 N,(?)
— ), =
h Ho
value of the relative number of quanta is small
N(0)=0.001. The distribution of the field in a unit vol-

ume will be presented for each spatial interval in the

T=yt=1 =N, and the initial

longitudinal direction in the form N, =2.N-Cos’ {27 é},
where 0< j<S, so that the sum 20032{2;;%} ofall jis

equal to unit. In each interval j, the value of the initial

relative  value of the population inversion
;00 1 3 o
Mj(o):fTZE, where Z} #,(0) =, is the value of
0 J=

the inversion in the whole volume. Equation (20) can be
written for each spatial interval in the following form

d’M, 200 J
1 =-N,M, =-2N Cos {Zﬂ'E}Mj. (21)
For the field, you can, using (18), write the equation
S
N=—ldSy 3, (22)
Odr'm

where 0=5/y>1, X=0/(5-14,).

The solution of the system of equations (21), (22) is
shown in Figs. 3-6 with the number of layers § =100,
0 =3 is the level of energy output, the initial condi-
tions X =N(0)=0,0001, M, (0)=1/S, Z;(0)=-6-10",
A7 =0,05 is  the
Z,(0)=—-0[Z+N(0)]/S .

The inversion values M; in each segment of the sys-
tem are oscillatory damped (due to output or energy
loss). This character is similar to the known optical nu-
tation of an open two-level system.

The greater the field intensity in the segment, the
greater the frequency of population inversion oscilla-
tions (Rabi frequency) in this local region. The interfer-
ence of these oscillations in different spatial regions
(segments) of the system leads to changes in the integral
field. In Fig. 3 shows the population inversion distribu-
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calculation  step, where

tion along the system at a time instant, in particular, cor-
responding to the maximum field amplitude (see Fig. 4).
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Fig. 3. Inversion levels M; along the system
at the moment of maximum field (t =22.1)
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Fig. 4. The behavior of the relative number of quanta
in the system with time
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Fig. 5. The behavior of the integral value of inversion
s

in system ZM ;
J=1

Attention should be paid to negative values of inver-
sion in the areas of greatest field intensity. Note that in
these areas, the processes of induced absorption of the
field energy dominate. The negative values of inversion
in the areas of greatest field intensity limit the growth of
the field in the system.

A decrease of the inversion in these areas occurs both
due to the nutation of the local inversion (see Fig. 6), and
due to absorption (radiation from the system) of the field
energy. As in the classical case discussed above, the total
energy supply in the system (here, the integral inversion
of populations) decreases (see Fig. 5 and compare with
Fig. 2). In this case, less than 4% of atoms contribute to
the induced radiation at the maximum of the field pulse,
which is almost two times less than in the classical ana-
logue discussed above.
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Fig. 6. The change in inversion in different parts
of the system with time: 1 — My, 2 — Mys;, 3 — My,

CONCLUSIONS

Thus, in the classical case, the transition to the in-
duced mode and, as noted by C. Towns, is largely co-
herent radiation [10], Occurs due to synchronization by
the integrated field of the phases of a part of oscillator-
emitters. In the quantum case, the formation of an in-
duced field pulse occurs due to the interference of nuta-
tion of population inversion in different regions of space
of the oscillator system (where the dispersion character-
istics of the system and the level of absorption or output
of the radiation energy determine the law of spatial var-
iation of the field intensity).

As the population inversion decreases, the number
of radiated field quanta increases. If the inversion in-
creases, the induced absorption of quanta by a two-
level system increases accordingly. On the other hand,
the absorption or output of the radiation energy leads
to a decrease in the field intensity in the active zone.
The competition of all these processes leads to the fact
that the Rabi frequency (as well as the probability of
induced radiation with a positive inversion or induced
absorption with its negative value) changes, and non-
uniformly over the space of the active zone. These pro-
cesses form a pulse of coherent radiation. We note a

small fraction of oscillators that provide induced radia-
tion: 8% in the classical case and half as much in the
case of a quantum system. The change in the sign of
population inversion in the regions of the highest field
values in the system significantly affects the limitation
of the radiation intensity.

In conclusion, I consider it my duty to express my grat-
itude to D.N. Litvinov and E.V. Poklonsky for assistance
in numerical calculations, V.A. Buts, V.I. Karas’ and V.V.
Yanovsky for discussing the materials of the work.
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O NPUPOJE KOTEPEHTHOCTHU B CUCTEME OCHHUJISATOPOB
B.M. Kyknun

[IpencraBieH nepexo B PEKUM MHAYLHPOBAHHOTO M3IyYEHHS MOJOOHBIX CHCTEM OCLIILIATOPOB B KJIACCHYECKOM U KBaH-
TOBOM ClIy4asX. DTOT Iepexo]l NPOMCXOAUT U3-3a CHHXPOHHM3ALUK UHTETPaIbHBIM 110J1eM (a3 HeOObIION YaCTH OCLMILIATOPOB-
n3Tydareneid. B kBaHTOBOM aHasore 3TOH MOJENH MOKAa3aHO, YTO (OPMHPOBAHHE HHAYIHUPOBAHHOTO (a CIIEAOBATEIbHO, KOTe-
peHTHOrO, Kak otMedai enie Y. TayHzc) UMITyiIbca IOt MPOUCXOUT U3-3a HHTEp(EePEeHIMN HyTalluii HHBEPCHH HACEJICHHOCTEeH
B pa3HBIX 00JIACTSAX NMPOCTPAHCTBA CHCTEMBI OCIHIJUIITOPOB, TA€ 3aKOH HMPOCTPAHCTBEHHOTO M3MEHEHHs WHTEHCHBHOCTH OIS
OIIpeeIIseTCs JUCIePCHOHHBIME XapaKTEePUCTHKAMU CHCTEMBI H yPOBHEM ITOTJIONIEHHS WM BBIBOJA SHEPTHHU M3ITydeHus . JIumb
HeOoJbIIast oM OCHMIIIATOPOB 00eceYrBacT HHAYLUPOBAaHHOE U3NydeHHe: 8% B KIACCHYECKOM ClIydae U BJBOE MEHbIIE B
Cllyyae KBAaHTOBOM CHCTEMBI, I'JIe Ha OTPAHWYCHNE HHTEHCHUBHOCTH M3Iy4EHHMS CYIICCTBEHHO BIMACT M3MEHEHHE 3HAKa HHBEPCHH
HACeJeHHOCTeH B 00acTsIX HaNOONBIIMX 3HAUSHHH IT0JIS B CUCTEME.

PO MPUPOAY KOI'EPEHTHOCTI B CUCTEMI OCIIMJISITOPIB
B.M. Kyknin

[IpexncrasiieHo nepexiy y peXUM iHIYKOBAaHOTO BHIIPOMIHIOBAHHS IOJIOHHX CHCTEM OCHMIIITOPIB Y KIACHYHOMY 1 KBAaHTO-
BoMy Bumanakax. Lleit mepexin BinOyBaeTbCcst dyepe3 CHHXPOHI3AIil iHTErpaJbHIM T0JIeM (a3 HeBEIMKOI YaCTHHH OCLMIATOPIB-
BUIIPOMIHIOBaYiB. ¥ KBAaHTOBOMY aHaJIO3i Hi€l MOJeli MOKa3aHo, Mo (OPMyBaHHS IHIYKOBAaHOTO (@ OTXKe, KOT€PEHTHOro, SK
Bim3Hauas e Y. Taynnc) iMmynecy nosst BinOyBaeThest depe3 iHTepdepeHnito HyTarii iHBepcil 3aceneHocTi B pi3HUX 001acTsX
MIPOCTOPY CUCTEMH OCLMIISATOPIB, A€ 3aKOH IPOCTOPOBOi 3MIiHH IHTEHCHBHOCTI HOJISI BU3HAYAETHCS JUCHEPCIHHUMH XapaKTepHc-
TUKaM{ CHCTEMH 1 piBHEM INOTJIMHAHHA a00 BUBEACHHS CHEprii BUNIPOMIiHIOBAaHHA. JIMIe HeBelIMKa 4acTKa OCUMIATOPIB 3a0e3-
nevye BIMYIIEHE BUIMPOMIHIOBAaHHS: 8% y KIaCHYHOMY BHIAJKY 1 BJBIUi MEHIIE B pa3i KBAHTOBOI CHCTEMH, ¢ Ha OOMEXEHHS
IHTEHCHBHOCTI BUIIPOMiHIOBaHHS iCTOTHO BIUIMBA€ 3MiHa 3HAKY 1HBEPCIi 3aCENICHOCTI B 00JIACTAX MaKCUMAaJIbHUX 3HAUEHb IOJIS B
CHCTeMi.
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