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The paper presents the transition to the regime of induced radiation of a system of oscillators in the classical and 

the quantum cases. This transition occurs due to synchronization by the integral field of the phases of a small part of 
oscillator-emitters. In the quantum analogue of this model, it is shown that the formation of an induced (and, there-
fore, coherent, as noted by Ch. Towns) pulse of the field is due to the interference of nutation of population inver-
sion in different regions of the system of oscillators. The law of spatial variation of the field intensity is determined 
by the dispersion characteristics of the system and the level of absorption or output of the radiation energy. Only a 
small fraction of oscillators provide induced radiation: 8% in the classical case and half as much in the case of a 
quantum system, where a change in the sign of population inversion in the regions of the highest field values signifi-
cantly affects the limitation of the radiation intensity. 
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INTRODUCTION 
In the famous work [1] R.H. Dicke considered the 

interaction of oscillators or emitters that are close to 
each other and believed that they were actually merged 
into one quasiparticle. Note that in the quantum case it 
is not about phase synchronization of oscillators, as in 
the classical consideration, but about an increase in the 
probability of radiation, which actually leads to the 
same result. In this case, their wave functions overlap 
and the probability of spontaneous emission of this qua-
siparticle increases in comparison with the probability 
of emission of individual oscillators or emitters. How-
ever, if the oscillators or emitters are spaced apart in 
space, the overlap of their wave functions becomes ei-
ther weak or imperceptible in general. In most existing 
lasers, the density of active particles is such that the 
distances between them are quite significant and one 
should not expect overlapping of wave functions. 

Indicative in this sense is the velocity distribution of 
free electrons in semiconductors [2], if, of course, the 
density of these electrons are sufficiently small, for ex-
ample, at low temperatures. In this case, their distribution 
is in fact Maxwellian, and their temperature is approxi-
mately equal to the temperature of the atomic system. 
And the thing is that the Fermi distribution is possible 
only if the wave functions of electrons overlap, which can 
be observed in metals, where the number of free elec-
trons is comparable with the number of atoms. That is, 
the distance between free electrons in metals is so small 
that overlapping of their wave functions occurs. 

How do electrons of active atoms interact in lasers? 
Their interaction is due to electromagnetic radiation 
fields. In the quantum case, when the phases of the oscil-
lator and the field are not determined, only the relative 
orientation of the radiating dipole and the electric field is 
indicated, that is, only the projections of the dipole mo-
ment on the direction of the electric field are known, the 
role of the Rabi frequency can be determining. 

Many authors note that the Rabi frequency deter-
mines the oscillatory nature of the change in the popula-
tion inversion of a system of radiating dipoles (nuta-
tion), which have ground and excited energy levels and, 
generally speaking, is proportional to the probability of 
induced emission and absorption of field quanta [3, 4]. 

Below it is shown that it is precisely the quasi-periodic 
changes in population inversion in different areas with 
the Rabi frequency, which depends on the local field 
intensity in these areas, lead to an increase in the inten-
sity of the integral field in the system. Also, as in the 
case of the classical description of an open system of 
oscillators [5]. In the quantum analogue of this problem 
one can see that only a small part of the oscillators are 
involved in the creation of an induced field. 

1. EXAMPLE OF CLASSICAL 
DESCRIPTION OF RADIATION  

OF A ONE-DIMENSIONAL SYSTEM  
OF OSCILLATORS 

In the one-dimensional case, we consider the pro-
cesses of generation of electromagnetic waves by a sys-
tem of oscillators with fixed centers [5]. Let the fre-
quency of the wave and the frequency of the oscillators 
coincide and be equal ω. Wave vector of oscillations 

(0,0, )k k=


, field components ( ,0,0)E E=


, (0, ,0)B E=


 
and | | exp{ }E E i t ikz iω ϕ= ⋅ − + + . Oscillators are lo-
cated along the axis OZ  in quantity N at the wavelength 
2 / kπ . The mass of the oscillator is equal m, the charge 
is equal e− . The initial oscillation amplitude of the os-
cillator is equal to 0a . We assume that the oscillator 
moves only in the direction of the axis X. In this case, 
the influence of the magnetic field of the wave on the 
oscillator dynamics can be neglected. 

The equations describing the excitation of a field by 
an oscillator current in such a one-dimensional repre-
sentation 0 0 0Cos( ) ( )xj ea t z zω ω ψ δ= − ⋅ − ⋅ −  whose co-
ordinates can be written as 0 0( Sin( ),0, )r a t zω ψ= ⋅ −


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(1) 

We will seek a solution for the amplitude of the 
electric field of the wave in the form 

0exp{ }xE E i t ikzω= ⋅ − + . For the slowly varying in 
space amplitude of the radiation field, the equation 
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whose solution 

0( ),E C z zλ θ= + ⋅ −                   (3) 
where C is a constant to be defined. 

The dispersion equation for emitted radiation by the 
oscillator is 2 2

0( , ) ( ) 0D k kω ω ε≡ − = , the roots of which 

1,2 0 0 0

0

( Re / )(1 Im / Re )
( / )(1 0),

k c
c i

ω eee 

ωe

= ± + ≈

≈ ± +  

for a wave propagating in the direction 0z z> , the wave 
number 1 0k k= >  and the value of the constant C 
should be equal to zero, in order to run away from the 
unlimited growth of the field at infinity. For a wave 
propagating in the direction 0z z< , the wave number is 

2 0k k= < , a constant value for the same reasons should be 
chosen equal λ− . The amplitude of the electric field 
while 

1
0

0 0 0

0 0

exp{ }
[exp{ ( ) ( )
exp{ ( ) ( )},

xE ea M c i t i
ik z z U z z

ik z z U z z

p ω ω ψ−= ⋅ − + ×
× − ⋅ − +
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(4) 

where ( ) 1U z =  at 0z ≥  and ( ) 0U z =  at 0z < , here-
with 0M n b= , 0n  is the density of particles in a unit 
of volume, b is the length of the considered space in 
the longitudinal direction. For one particle in such a 
volume of a single section and length b, M it is numeri-
cally equal to one. You can find the Rabi frequency 
value for a single dipole system for this case. 

2 2 2 1 1
1 4 e a M c hπ ω − −Ω = .                (5) 

Generally speaking, this is the inverse time of the 
inversion change (in the absence of relaxation processes 
due to interaction with the external environment), or in 
this case, this value may have the meaning of the radia-
tion probability of the excited dipole quantum [3]. In-
deed, multiplying the field energy density in the one-
dimensional case 2( / 4 )xE π  by the volume occupied by 
the emitted radiation in two directions over time 1

1
−Ω  

(since M  is numerically equal to one), we obtain the 
quantum energy 

2

1

2( / 4 ) / 2xE c Mhπ ω π=
Ω

.             (6) 

That is, the reciprocal of the Rabi frequency 1
1
−Ω , in 

this case, is numerically equal to the time during which 
one energy quantum is emitted (or, which is the same, 
the probability of aunpromptedemission of a quantum 
by a classical oscillator, which corresponds to the sense 
of the probability of spontaneous emission. Note that 
the phase of the radiation field and the phase of the os-
cillator are obviously consistent, for this is its own field. 

In the general field of many particles in 0...jz b∈ , 
the equation of motion for a separate oscillator take the 
form 

2 2 2
0( / ) ( , )x

ed r dt r E z t
m

ω+ = − .            (7) 

Using the expressions below  
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we present a system of equations describing the process 
of forming an integral field in a system of oscillators in 
a dimensionless form [6] 
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where 0/ 1θ δ γ= > , 2 2
0 / 2e M mcγ π= , and 2

0 /γ γ δ= , 
the term proportional α  takes into account the weak 
relativism of the oscillator mass. By the way, in the the-
ory of cyclotron generators such nonlinearity is a conse-
quence of the so-called negative mass effect. Account-
ing for such nonlinearity may be significant, since in [7] 
noted, that in the system of linear oscillators the genera-
tion efficiency is insignificant. 

The field slowly varying in time, generated by oscil-
lators inside and outside the area occupied by them, has 
the form 

1

1( , ) exp{ }[exp{2 ( )}

( ) exp{ 2 ( )} ( )],

N

s s s
s

s s s

Z A i i Z Z
N

U Z Z i Z Z U Z Z

τ ψ p

p
=

Ε = − ×

× − + − − −

∑       (10) 

that is, expression (10) is a slowly varying envelope of 
the HF field oscillations. Note that due to the removal of 
energy from a small active zone, the field does not ac-
cumulate in its volume. 

For the number of oscillators 410N = , the average 
integral field | |Ε  of a system of oscillators with a ran-
dom distribution of the initial phase (which in the clas-
sical case can be considered spontaneous) is 100 times 
smaller than the maximum possible field value in the 
case when all oscillators are phase-locked. That is, for 
fields of spontaneous and absolutely coherent induced 
radiation, the relation is satisfied 210 :1− . For squares 
of amplitudes 2| |Ε , this ratio takes the form 410 :1− . 
Below we will discuss the results of solving the system 
(8), (9), carried out previously with D. Litvinov [5]. 

The greatest value of the field in the opposite direc-
tion of the propagation of the external wave side of the 
system | | 0.23...0.25Ε ≈  and 2| | 0.08Ε ≈ . The external 
stabilizing field is small 0 0.05Ε =  at the same time. 
And since in the case of fully phased emitters 2| | 1Ε = , 
the degree of coherence in this case is 8%. Numerical 
analysis of system (8) - (10) showed that a significant 
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number of particles practically do not participate in the 
generation of a coherent field (Figs. 1, 2).  

 
Fig. 1. The amplitude of oscillators at different points 

along Z at the moment, when the field reaches 
 a maximum ( 1Z∆ = , 1α = ) [5] 

 
Fig. 2. The normalized total energy of the particles  

as a function of time. 1Z∆ = , 1α =  [5] 
Although the coherence level of 8% is quite signifi-

cant, because the intensity of this field is proportional 
20.08 ⋅ Ν , which is 800 times greater than the intensity 

of spontaneous emission, understood in the classical 
analogue of superradiance considered here as the sum of 
the intensities of individual uncorrelated emitters. Obvi-
ously, with a larger number of particles, this difference 
between superradiance and spontaneous emission of 
particles with random phases will only increase. 

2. SEMICLASSICAL MODEL  
OF RADIATION 

If the quantum system is in the waveguide medium, 
then the semiclassical theory should be used to describe 
the generation processes, in particular, used previously 
in the works of Yu.L. Klimontovich and colleagues [8, 
9]. The system of one-dimensional equations of the 
semi classical theory for the amplitudes of the perturba-
tions of the electric field, polarization, describing the 
excitation of electromagnetic oscillations in a two-level 
active medium represent as follows: 

2 2 2
2

2 2 24E E E Pc
tt x t

δ π∂ ∂ ∂ ∂
+ − = −

∂∂ ∂ ∂
,         (11) 

22
2

2

4 | |abdP P E
ht

πω
ω µ∂

+ = −
∂

,         (12) 

to which you need to add an equation for population 
inversion that slowly changes with time 

4 .PE
t h t
µ π

ω
∂ ∂

= < >
∂ ∂

               (13) 

We assume that the frequency of the transition be-
tween energy levelscorresponds to the field frequency, 
the line width in the equation for polarization and the 
inversion relaxation due to external causes are neglect-
ed.  

Let be δ − the decrement of field absorption in the 
medium, abd − the matrix element of the dipole mo-
ment (or rather its projection on the electric field direc-
tion), the difference populations ( )a bnµ ρ ρ= ⋅ −  per 
unit volume, aρ  and bρ  relative populations of levels 
in the absence of a field. Fields are represented by 

[ ( ) exp{ } ( )exp{ }] / 2E E t i t E t i tω ω= − + ×  and  
[ ( ) exp{ } ( )exp{ }] / 2P P t i t P t i tω ω= − + × , and 
2 2| ( ) | /2E E t< >= . 

For slowly varying field amplitudes and polariza-
tions, the following equations are valid: 

( ) ( )( ) 2 ( )g
E t E tE t v i P t

t x
δ πω∂ ∂

+ ⋅ + =
∂ ∂

,   (14) 

2( ) ( )| | (2 / )ab
P t E td h

t i
πµ∂

=
∂

.              (15) 

In the homogeneous case, you can get the equation 
2 22

2

4 | |( ) ( ) ( )abdE t E t E t
t ht

π ω
d µ∂ ∂

+ =
∂∂

.   (16) 

From which it follows that the field in the absence of 
losses can grow with increment 

2 2
1/24 | |

( )abd
h

π ω
γ µ= .                    (17) 

Since in this case, (13) can be rewritten in the form 

 ( 2 ) k
d d N
dt dt
µ σ d+ = − + ,                (18) 

where inσ we take into account the inversion losses 
associated with spontaneous radiation, 2| | /2kN E hω=  
is the number of field quanta per unit volume. 

Taking into account the field energy loss in the sys-
tem without active particles with a decrement equal δ 
to when δ γ>  leads to the fact that equations (14) and 
(15) imply the relation 

2 2

2 2 2
2

2

8 | |

| | | |
4 .

2

k ab
k

ab N

N d
N

t h
d E

h

π ω µ
d

π µ µ

∂
= =

∂
Ω

= =
            (19) 

This case corresponds to the classical analogue con-
sidered above with 2 /gv bδ = , where b is the longitudi-
nal size of the system. We will first interest in the be-
havior of population inversion. For sufficiently large 
losses of field energy in the medium δ γ> , from equa-
tions (18) and (19) we get  

2
2

2 0Nt
µ µ∂
+Ω =

∂
,                    (20) 

where 
2 2

2 1/2
2

8 | |
[ | | ]ab

N
d

E
h

π
Ω =

 
is the Rabi frequency, 

which has the meaning of the inverse time of the change 
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in the inversion and the probability of the induced radia-
tion under the influence of the field [3, 4]. It is im-
portant to note that the Rabi frequency increases in pro-
portion to the magnitude of the increasing electric field 
described by equation (19), that is, the rate of change of 
the inversion is accelerated. Consequently, the increase 
in the probability of radiation of excited dipoles at each 
point in space in the semiclassical description occurs 
under the influence of the integral electric field. On the 
other hand, the energy output from the system leads to a 
decrease in the initial integral level of population inver-
sion. Let us discuss this phenomenon in the simplest 
model used above for the classical description of the 
system of oscillators above. 

It is of interest to find out the nature of the change in 
population inversion in space. Consider a limited unit 
volume with a longitudinal size equal to the length of 
the electromagnetic wave, assuming that the configura-
tion of the field intensity distribution does not change 
(since it is determined only by the properties of the 
waveguide system and the nature of the energy output 
from it). We use the following expression 

2
1/2

0
4 | |

( )abd
t t

πω
t γ µ= =



, 
0

( )kN t
N

µ
= , and the initial 

value of the relative number of quanta is small 
(0) 0.001N = . The distribution of the field in a unit vol-

ume will be presented for each spatial interval in the 
longitudinal direction in the form 22 Cos {2 }j

jN N
S

π= ⋅ ⋅ , 

where 0 j S< ≤ , so that the sum 22Cos {2 }j
S

π
 
of all  j is 

equal to unit. In each interval j , the value of the initial 
relative value of the population inversion 

0

(0) 1(0) j
jM

S
µ
µ

= = , where 0
1

(0)
S

j
j
µ µ

=

=∑
 
is the value of 

the inversion in the whole volume. Equation (20) can be 
written for each spatial interval in the following form 

2
2

2 2 Cos {2 } .j
j j j

d M jN M N M
Sd

π
τ

= − = −     (21) 

For the field, you can, using (18), write the equation 

1

1
j

S

j

dN M
dθ τ =

= − −S∑ ,                  (22) 

where / 1θ δ γ= > , 0/ ( )σ δ µΣ = ⋅ . 
The solution of the system of equations (21), (22) is 

shown in Figs. 3-6 with the number of layers 100S = , 
3θ =  is the level of energy output, the initial condi-

tions (0) 0,0001NΣ = = , (0) 1/j SΜ = , 6(0) 6 10jZ −= − ⋅ , 
0,05τ∆ =  is the calculation step, where 

(0) [ (0)] /jZ N Sθ= − S + . 
The inversion values Mj in each segment of the sys-

tem are oscillatory damped (due to output or energy 
loss). This character is similar to the known optical nu-
tation of an open two-level system. 

The greater the field intensity in the segment, the 
greater the frequency of population inversion oscilla-
tions (Rabi frequency) in this local region. The interfer-
ence of these oscillations in different spatial regions 
(segments) of the system leads to changes in the integral 
field. In Fig. 3 shows the population inversion distribu-

tion along the system at a time instant, in particular, cor-
responding to the maximum field amplitude (see Fig. 4). 

 
Fig. 3. Inversion levels Mj 

along the system  
at the moment of maximum field (t = 22.1) 

 
0 

8 16 24 32 t 0 
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Fig. 4. The behavior of the relative number of quanta 

in the system with time 
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Fig. 5. The behavior of the integral value of inversion 

in system 
1

j
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j
M

=
∑  

Attention should be paid to negative values of inver-
sion in the areas of greatest field intensity. Note that in 
these areas, the processes of induced absorption of the 
field energy dominate. The negative values of inversion 
in the areas of greatest field intensity limit the growth of 
the field in the system. 

A decrease of the inversion in these areas occurs both 
due to the nutation of the local inversion (see Fig. 6), and 
due to absorption (radiation from the system) of the field 
energy. As in the classical case discussed above, the total 
energy supply in the system (here, the integral inversion 
of populations) decreases (see Fig. 5 and compare with 
Fig. 2). In this case, less than 4% of atoms contribute to 
the induced radiation at the maximum of the field pulse, 
which is almost two times less than in the classical ana-
logue discussed above. 
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Fig. 6. The change in inversion in different parts  
of the system with time: 1 – M30; 2 – M45; 3 – M50 

CONCLUSIONS 
Thus, in the classical case, the transition to the in-

duced mode and, as noted by C. Towns, is largely co-
herent radiation [10], Occurs due to synchronization by 
the integrated field of the phases of a part of oscillator-
emitters. In the quantum case, the formation of an in-
duced field pulse occurs due to the interference of nuta-
tion of population inversion in different regions of space 
of the oscillator system (where the dispersion character-
istics of the system and the level of absorption or output 
of the radiation energy determine the law of spatial var-
iation of the field intensity). 

As the population inversion decreases, the number 
of radiated field quanta increases. If the inversion in-
creases, the induced absorption of quanta by a two-
level system increases accordingly. On the other hand, 
the absorption or output of the radiation energy leads 
to a decrease in the field intensity in the active zone. 
The competition of all these processes leads to the fact 
that the Rabi frequency (as well as the probability of 
induced radiation with a positive inversion or induced 
absorption with its negative value) changes, and non-
uniformly over the space of the active zone. These pro-
cesses form a pulse of coherent radiation. We note a 

small fraction of oscillators that provide induced radia-
tion: 8% in the classical case and half as much in the 
case of a quantum system. The change in the sign of 
population inversion in the regions of the highest field 
values in the system significantly affects the limitation 
of the radiation intensity. 

In conclusion, I consider it my duty to express my grat-
itude to D.N. Litvinov and E.V. Poklonsky for assistance 
in numerical calculations, V.A. Buts, V.I. Karas’ and V.V. 
Yanovsky for discussing the materials of the work. 
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О ПРИРОДЕ КОГЕРЕНТНОСТИ В СИСТЕМЕ ОСЦИЛЛЯТОРОВ 

В.М. Куклин  
Представлен переход в режим индуцированного излучения подобных систем осцилляторов в классическом и кван-

товом случаях. Этот переход происходит из-за синхронизации интегральным полем фаз небольшой части осцилляторов-
излучателей. В квантовом аналоге этой модели показано, что формирование индуцированного (а следовательно, коге-
рентного, как отмечал еще Ч. Таундс) импульса поля происходит из-за интерференции нутаций инверсии населенностей 
в разных областях пространства системы осцилляторов, где закон пространственного изменения интенсивности поля 
определяется дисперсионными характеристиками системы и уровнем поглощения или вывода энергии излучения. Лишь 
небольшая доля осцилляторов обеспечивает индуцированное излучение: 8% в классическом случае и вдвое меньше в 
случае квантовой системы, где на ограничение интенсивности излучения существенно влияет изменение знака инверсии 
населенностей в областях наибольших значений поля в системе.  

ПРО ПРИРОДУ КОГЕРЕНТНОСТІ В СИСТЕМІ ОСЦИЛЯТОРІВ 
В.М. Куклін  

Представлено перехід у режим індукованого випромінювання подібних систем осциляторів у класичному і кванто-
вому випадках. Цей перехід відбувається через синхронізації інтегральним полем фаз невеликої частини осциляторів-
випромінювачів. У квантовому аналозі цієї моделі показано, що формування індукованого (а отже, когерентного, як 
відзначав ще Ч. Таундс) імпульсу поля відбувається через інтерференцію нутації інверсії заселеності в різних областях 
простору системи осциляторів, де закон просторової зміни інтенсивності поля визначається дисперсійними характерис-
тиками системи і рівнем поглинання або виведення енергії випромінювання. Лише невелика частка осциляторів забез-
печує вимушене випромінювання: 8% у класичному випадку і вдвічі менше в разі квантової системи, де на обмеження 
інтенсивності випромінювання істотно впливає зміна знаку інверсії заселеності в областях максимальних значень поля в 
системі.  
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