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The generalization of the transformation of the linear differential equation into a system of the first order equa-
tions is presented. The proposed transformation gives possibility to get new forms of the N-dimensional system of
first order equations that can be useful for analysis of the solutions of the N-th-order differential equations. In par-
ticular, for the third-order linear equation the nonlinear second-order equation that plays the same role as the Riccati

equation for second-order linear equation is obtained.
PACS: 02.30.Hq

INTRODUCTION

It is well known that the N-th order differential equa-

tion
P+ [ @O e O+ [(O+ (=0 (1)

can be converted into an N-dimensional system of first
order equations. There are various reasons for doing
this, one being that a first order system is much easier to
solve numerically as the most differential equations we
encounter in physics, economics and engineering do not
have exact solutions.

The most common method is introducing a number
of new variables

y"=y, m=12,.,N-1 (2)
and representing (1) as
Y'=MY+H, 3)
where H=(0,0...,—f(t))T, Y =(¥ e Yyt )T,
0 1 o .. O
0 0 1 .. 0
M=|. . T B @)
0 0 0o .. 1
So Ko S Sa

This system of equations can be subjected to further
transformations (see, for example, [1 - 5]).
For the second order differential equation
Y+ L@y + 0y =0, )
there is a set of transformation that reduce this equation
to the form ([6])

V'=Pt)y+0t)z, 2'=R(t)y+S®)z,  (6)
where z(¢) is an additional unknown function. In the
simplest case P(¢) =0, O(¢t) =1 we obtain the described

above transformation (3).

All these transformations assume that along with the
unknown function y(¢), (N —1) additional functions
are introduced.

There is another kind of transformation that consists
in presentation of the solution y(z) of the equation (1)
or its derivatives as the sum of the N new unknown
functions multiplied by the known functions'. By intro-
ducing N new unknowns y,(f) instead of the one

y(t), we can impose (N —1) additional conditions.

! Usually, they are the WKB functions.
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Such approach can give new form of the N-dimensional
system of first order equations, equivalent to the equa-
tion (1). For the case N =2 it is widely used in a theory
of electromagnetic waves in stratified media (see, for
example, [1, 7-9]). It also was used for developing new
solution methods of wave problems from the turning
points [10]. In this work we propose some generaliza-
tion of this transformations® [11].

1. TRANSFORMATION
OF THE N-th-ORDER LINEAR
DIFFERENTIAL EQUATION

We represent the solution of the equation (1) as the
sum of new functions

y@=2mm- (7)

By introducing N new unknowns y, (¢) instead of
the one y(t), we can impose additional conditions.
These conditions we write in the form

V=Y g,0,0),

y'= Z; 2,0y, (@), ®

N
Y= gy, 0,0,
n=l1

where g, (f) are the arbitrary continuous functions

having continuous derivatives.
If

1 1 . 1

llt l2l th
D)= gi.() g, gy 0 o

En-11 ®) En-i2 @) En-in @)

then the representation (7)-(8) is unique. Indeed, from
(7) and (8) we can uniquely find y (¢) as a linear com-
bination if y(¢) and its derivatives. Equations (8) can be

rewritten as

% For the case N =2 there are some other transfor-
mations of the equation (5) (see, for example, [4]).
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y'= Zy,i (t)= Zgl,n (), @),

y=(n) = g0y, O+

n=1

+Zg1,,(f)y (t) Zgz L)y, (),

n=1

v =(y") = Zgé,n(t)yn )+

n=l1

+Z g, (Y1) = Z 2, (O, (),

n=l1

P = () Zgw(t)yﬂ(m

+ZgN 3rl(t)yn(t) Zgzv 2. (DY, (D),

n=1

P = () ng,l(t)yn(m

+Z Sy 2, DY) = Z Ey1, )y, ().

n=1
The final system of the ﬁrst order difference equa-
tions has the form

Zyn Zglnyn,

n=l1

Zg,,, WV —Z(gmﬂ,n ~g,, )V, 1Sm<N=-2,(10)

n=1

Zngl,ny' = ZLnyn -1 @),
n=1 n=1

where
L = _g;v-l,;z _fN—lgN—l,n _fN—ZgN—Z,n —=fo@® . (11)
In matrix form
Y'(t)=M71FY+M7]H, (12)
T T
where Y =(y,¥,,...¥y) »H =(0,0....—f (1)) ,
1 1 1
811 812 &
M = . , (13)
En-21 En-2 En-a N
En-11 En-12 En-in
81 82 8in
&1 _gll,l IP%) _g;,z &N _gl',N
F=l.. ' o ' . (14)
8-~ 8v-21 8n-12 " 8n-22 o Enan T &n-an
L L L

1 2 ‘N

We would like to emphasize that g, ,(¢) are arbi-
trary functions that fulfill the condition (9), and we do
not demand that these functions separately are the solu-

tions of the equation (1), but their sum must be the solu-
tion of this equation.
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2. TRANSFORMATION OF THE SECOND-
ORDER LINEAR DIFFERENTIAL
EQUATION

Represent the solution of the equation

V' L@+ L0y + f()=0 (15)
as the sum of two new functions
()= »@)+y,(1). (16)
Additional condition we write in the form
y':g1(1)y1(t)+gz(t)y2(t)- 17)

Making transformations that are given in section 2
we can write such system of equations
, X, X
. SN W
(8-2) (&8-2) (&-2) as)
e S S
& _gz) (gl _gz)

X

y;=y2g2+yl( _ )+y2(

1 2
where

x =g +fg+f+g

X =gt figtfites
The system (18) is the basis of the proposed trans-
formation in the case of the second-order linear differ-
ential equation (15).
Let’s consider several cases when special choosing
of g,(¢t) and g,(¢) gives useful results.

(19)

If we choose

g2 =P, (20)
where p,, are the solutions of the characteristic equa-
tion

P+ 1P+ fr(1) =0, 21
then the system (18) takes the form
NEIATAG, /jlpz) BV /izpz) (n i[,02) ’
, , (22)
Y2 =Pyt h 2 +, £ + -
(pl_p2) (pl_pz) (pl_pz)

For the case f,(#)=0, f(t)=0

|7 L S
yl_(lfo 4fo} y24f09

(23)
__[l Jo+ fo ] ylf_0~

47y 47y
This is the well-known system that is a basis for a
coupled wave model and WKB approximation [2, 3,
12 - 16]. We would like to note again that y,(¢#) and
»,(t) separately are not the solutions of equation (15).

Neglecting the second terms on the right-hand side
of the equations (23), we obtain the well known WKB

result
M2 :yl,z(t1)[§z)((t;))j exp[iij: fodt'} (24)

If g,(¢#) and g,(¢) are the two different solutions of
the Riccati equation [17, 18]
gL+ h&,+ 1 +g12,2 =0,
the system (18) transforms into
ISSN 1562-6016. BAHT. 2019. Ne4(122)

(25)



S
8~ & ’
A
1782 .
For the homogeneous equation ( f(¢)=0)

yl' =& -
(26)

yz' =&, t

Yip = Vin (ﬂ)exp[_[gl,zdfj . (27)

4
The derivative of the Wronskian of these functions
equals

W':yl(tl)yz (tl)x

X[(gz ~g) +(&: -8 )} exp U(gl +8, )dt'}. %)

Inserting the derivatives of g, from (25) into this
expression, we obtain
W'=-f, (t)W, (29)
that proves the linearly independence of the functions
Yia-
From the Riccati equations (25) we can find that

(&) #g,)
1 '
(g-2) =-(g +&)-£i- (30
8 —&
Denoting the difference of functions g, and g, as

( g - ) 2iq , 31

then from (30) and (31) we obtain
1
8, =%ig———q' A (32)

2q 27
The solutions (27) can be rewritten in the form that
is commonly used in the phase-integral method [19, 20]

=y )[q(( ))j em{ﬂ!qdﬂ—%!ﬁdﬂ].(%)

Inserting (32) into the Riccati equations (25), we
find the equation for the ¢ function

g1’,2 +f1g1,2 +/ +g12,2 =

' 2
=_Lq”+ 3 ’2+ _i_f;

3 e (34)
2q 4q2 (q) Jo=a 2 4

= O’
which for f (t) = ( takes the well-known form [20]

g (q-]/z )" +£_2_1 =0 (35)

If g,(¢) and g,(¢) are the solutions of the system of
nonlinear differential equations
gi+fig+/+2:8 =0,
g +/g+/f+8g =0,
then the system (18) transforms into the “strong” cou-
pling system

(36)

y],:ngz_m’
1f 2 (37)

V=gt

2 181 ( l_gz)
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The system (36) can be transformed into the Riccati
equation

+{f1 —Cexp(—j‘fldﬂﬂgl +fi+gl=0 (38)

and the relationship between g, and g, is

j[fldfj.

&

88 :Cexp[— (39

C # 0 is the arbitrary constant.

3. TRANSFORMATION OF THE THIRD-
ORDER LINEAR DIFFERENTIAL
EQUATION

Following the section 2, we represent the solution of
the third-order linear differential equation (results of
detail study of its solutions see in [21])

V' LOY+ L0y + LDy + f@)=0  (40)
as the sum of three new functions
y(&) =y, () + y, (D) + y5 (1) (41)
Additional conditions we write in the form
V= gl,l(t)yl )+ 8 Dy, () + 813 )5 (), @)

y'= 8.1 Oy () + 822 (D), (1) + &,5() y5(0).
Applying transformations that are given in section 2,
we obtain a system of the first-order linear differential
equations

Y1 =08, D_f(g13 glz)x

2
Xyl[ &2~ g23 gll ) 8137 82 x4+g1_1g271)}+

(43)

+yz[ 82~ gz% glz ) 8137 812 x5+g1,2g2.2) +

glz ) 8137812 xo+g1,3gz,3):|s
Dyz :yzgl.szf(gu 7g|,3)x

| (s =) (5 () )~ (210 00) o+ ) |

+J’z|:(g23 &2, ( g1°

+J’z|: 822~ g23

(44)

2

) g1~ 813 x+g1.2g2,z) +
2

+y3[(g21 g21( g13 ) gll g13 x6+gl.3g2<3):|’
Dy, :y3gl,3D7f(gl,2 7g1‘1)><

o (a1 02) (5 (20 )~ (22— 0)(x ) [+
] (= 0) 2= (12) )~ (1= )+ 100 |+
+9; [(gz,l -8, )(x3 ~(g.) ) —(212 =20 ) (%6 + 815825 )},

where the following notations were introduced
X, =(g2, -g)s

L =(822-815)-

1= (820 -80):

c=(gh+ g+ figu+ 1)

=

o=

(45)

(46)

g22+f2g22+fg12+fo)

gz3+f2g23+fg13+fo)
Ifwechoose
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&in = P>

(47)
gz,n = pj: n= 132939
where p, are the solutions of the equation
P+ L0p° + 1 (p+ f,(H) =0, (48)

then the system (45) takes the form

, ' 1 1 , 1 1
yl:ylpl_y]pl{ + j_yzpz[ + J_
PP PP PP Ps— P
, 1 1 Py =
_y3p3( + ]_fps pz’
Pi=Ps PP D

' , 1 1 , 1 1
yZ:yzpz_y1p1[ + ]_yzpz[ + j_
Pr=Pr Py= P Pr=P Pr=Ps (49)

, 1 1 -
7)’3;03( + J*f PPy >
Pi=Ps PP D

/ ' 1 1 , 1 1
y3=y3,03—ylp.( + nyzpz[ + ]7
Pi=Ps Py P Pi=Pr P Ps

_ ' 1 1 _ PP
y3p3(p3_pl+p3_p3] / D’
where D:(p3_p1)(p3_pz)(pz_p1)'

coincides with the one that was obtained in [2] by an-
other method. In the WKB approximation

This system

. S| 1 1 pi—p
i :y1p1_y1p1[ + j_f : 2,
P=Ps PP D
, , 1 1 -
Y2 :yzpz_%pz( + J_fpl ,03’ (50)
Pr=P PP D
, , 1 1 -
V3 =V305 —y;p{ + j_fpz £ .
PP P3P D

These equations have the solutions which coincide
with results of asymptotic analysis (see, for example,

(4D

If we choose the functions g, , that are the solu-
tions of the following equations

X = (gz,l _gl',l ) = glz,l’

X, =182 _g{,z ) = g12,2’

X3 :(g2,3_g1/,3):g12,3» (51)
Xy = (g;,l + 1,8, + /181 +fo) ==81.1821>
X5 = (g;,z + 1,8, + /1815 +fo) ==812822>
Xe = (gé,s +f2g2,3 +f1g1,3 +f0) =—813823
the system (45) takes the form
, 813~ &
N =y1g1,1_f—13D = s
' 88,
V2 :ylgl,z_fM’ (52)
D
, 82" &,
Vs = V3813 _f%

From (51) it follows that functions g, , are the three

different solutions of the system of the first-order non-
linear differential equations

g1 +g12,n — 8., =0,
g;,n +<f‘2g2,n +«f;gl,n +f£) +gl,ng2,n = 0'

This system can be written as the second-order non-
linear differential equation

(53)
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81+ 81, (381, + )+ figa 1o+ o8l + 81, =0.(54)
For the simplest case f, =0, f, =0,

8, + 8,38, + &, + =0 (55)

In contrast to the Duffing equation (see, for exam-

ple, [22]), the equation (55) has no linear term propor-
tional to g, .

For the third-order linear equation the equation (54)
(or system (53)) plays the same role as the Riccati equa-
tion for second-order linear equation.

t
The functions y, :exp( I gwdt’] are linear inde-

pendent, and the general solution of the homogeneous
equation (40) ( f=0)is

y(t)= Zyn (tl)eXp[ [t } :

There are other forms of system of the first order
equations that can be obtained from the system (45) by
choosing functions g, .

(56)

CONCLUSIONS

We presented a transformation of the linear differen-
tial equation into a system of the first order equations.
The proposed transformation gives possibility to get
new forms of the N -dimensional system of the first
order equations that can be useful for analysis of the
solutions of the N th order differential equation. In par-
ticular, for the third-order linear equation the nonlinear
second-order equation that plays the same role as the
Riccati equation for the second-order linear equation is
obtained. The new form of the system of first-order
equations can also be used for finding WKB solutions
of the linear difference equation with coefficients that
vary sufficiently slowly with index.
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O TPAHC®OPMAIIMU JUHEHXHOT' O JANOPEPEHIUAJIBHOT'O YPABHEHHU S
B CUCTEMY PABHOCTHBIX YPABHEHHWHU INEPBOT'O ITIOPAJIKA

H.U. Aiizaukui

[IpencraBneno o0oOmeHne MpeoOpazoBaHust IMHEHHOTO AN PEPEHIINAIBHOIO YPaBHEHUSI B CUCTEMY Pa3HOCT-
HBIX ypaBHEHHH mepBoro mnopsiyka. [IpennoxeHHoe npeoOpa3oBaHKe 1aeT BO3MOKHOCTh TIOJIyYUTh HOBBIE (DOPMBI
N-MepHOH cucTeMbl YpaBHEHHUII EPBOTO MOPS/IKA, KOTOPhIE MOTYT OBITh IOJIE3HBI JJISl aHalu3a pemeHuid audde-
PEHILMANBHBIX ypaBHEHHUH TPeThero nopsaka. B wactHocTy, aist nuHelHoro nuddepeHnnaisHoro ypaBHeHUs Tpe-
TBETO MOPSIIKA MOJyYeHO HelnHelHoe audepeHnnanbHOe YpaBHEHHE BTOPOTO MOPsAKa, KOTOPOE UIPaeT Ty Ke
PoJIb, UTO ¥ ypaBHeHHE PuKkaTH 1iist muHeitHOrO And pepeHInanbHOro0 ypaBHEHHS BTOPOTO TOPSAKA.

PO TPAHC®OPMAIIIO JITHIKMHOT O JUPEPEHIIAJIBHOT' O PIBHSAHHS
B CUCTEMY PI3BHUIIEBUX PIBHSHb IIEPHIOI'O TOPAAKY

M.I. Aiizaybkuii

[IpencraBneHo y3aranbHEHHS IEPETBOPEHHS JiHIHHOTO OH(epeHIiaJbHOTO PIBHAHHS B CHCTEMY Pi3HHIICBUX Pi-
BHSIHB TIEPIIOTO TMOPSAAKY. 3alpoloHOBaHA TpaHc(opMarlis Ja€ MOXKIUBICTD OTPUMATH HOBi (opMu N-BHUMipHOT
CHCTEMH PIBHSIHB MEPIIOTO MOPSAAKY, AKi MOKYTh OyTH KOPUCHUMH JUIS aHAJi3y PO3B'S3KiB qU(EpeHINiaIbHUX PiB-
HSIHb. 30Kpema, JUId JHIHHOTO JudepeHIiaJbHOr0 PIBHSHHS TPETHOrO HOPSAKY OTPUMAHO HeJliHiMHE piBHSIHHS
JPYroro MopsIKy, sIKE BIZIIrpae Ty K caMy poJib, IO 1 PiBHSHHS PikKaTi A JiHIHHOTO PIBHSHHS APYTOTO MOPSIIKY.
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