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The use of a two-stage mechanism for the acceleration of charged particles is proposed. The principle of acceler-
ation is based on the use of the fractal properties of the wave spectrum of a corrugated plasma waveguide with su-
perconducting walls. The first stage provides for the excitation of a corrugated plasma waveguide by short electron 
bunches in the direction of motion (the length of the bunch is significantly less than the period of the corrugation). 
On the second stage the test charged particles accelerates in an infinite number of harmonics of the electric field 
exited by an electron bunches. Calculations show that with the implementation of such an acceleration mechanism, 
the average speed of a non-relativistic test particle can increase several times, and its acceleration length can be up 
to one meter. 

PACS: 52.40.Fd; 52.40.Mj 
 

INTRODUCTION 
The term wakefield acceleration indicates that Che-

renkov radiation [1], propagating behind the particle in 
a medium or a slowing structure, is used to accelerate a 
low-current bunch to higher energies [2]. 

Currently, this method of acceleration is the subject 
of intensive research (see, for example, [3, 4]) and in 
this direction quite encouraging results have been ob-
tained. 

However, the investigations of the wakefield accel-
eration in periodic plasma waveguides (for example, 
corrugated sinusoidally) remain an open question con-
cerning accounting of the full set of radial and longitu-
dinal electric fields harmonics. 

Typically, one or more resonant [2] eigenmodes are 
taken into account from an infinite number them, and 
the rest is neglected because of assumptions about their 
weak interaction with the accelerated particles. 

In fact, unaccounted waves, despite their small con-
tribution to the acceleration of charged particles, can 
greatly change the dispersion of the plasma waveguide 
[5, 6]. 

Therefore, the study of taking into account of the 
full spectrum of a superconducting corrugated wave-
guide with plasma filling to accelerate charged particles 
is, as before, a very topical issue. 

The task is to indicate the plasma and corrugated 
waveguide parameters, which would ensure the acceler-
ation of charged particles over the shortest interaction 
length. 

To solve this problem, it is necessary, first, to study 
the dispersion properties of the waveguide structure, 
which takes into account absolutely all eigenmodes, 
and, secondly, to study their interaction with accelerated 
charged particles. 

When considering the latter issue, the problem of 
excitation of such waveguides, for example, by charged 
particles, is to be solved and then the excited wave spec-
trum utilization for the acceleration of the test charged 
particles may be proposed. 

According to the method of excitation of a longitu-
dinal electric field in a plasma, the proposed method of 
acceleration can be referred to as the bunch method [2].  

Therefore, we restrict ourselves to considering just 
such an acceleration scheme: we describe the dispersion 
properties of corrugated plasma waveguides, investigate 
the possibility of their excitation by electron bunches, 
and finally consider the possibility of using such sys-
tems to accelerate test charged particles. 

1. FEATURES OF THE DISPERSION 
PROPERTIES OF CORRUGATED PLASMA 

WAVEGUIDES 
The study of the dispersion properties of waveguides 

with an ideally conducting metal wall, corrugated ac-
cording to the law 0( ) (1 cos( ))H z a k za= +  and filled 
with plasma (here 00 2 kL π=  is a corrugation period, 

b
a

a =  is a corrugation parameter; b is a corrugation 

depth, 2a is a transverse size of the waveguide) showed 
the formation of a dense wave spectrum [7 - 9]. 

This means that in the phase space at any deliberate-
ly selected point with coordinates ( )0 0,qω , where: 

0ωω = , 03 qk =  both the frequency and the longitudi-
nal wave number, there exists an infinite number of 
waves. 

In this case, a charged particle that moves in such 
medium with a velocity 0V , will resonantly interacts 
with an infinite number of longitudinal waves, that sat-
isfy the requirement of phase matching 0 0 0V qω= , and 

are characterized by both longitudinal 0q  and trans-

verse 
2

lk
a a
π π

⊥ = +  wave numbers (case of flat geome-

try, 0; 1; 2;...,l K= ± ± , K − integer). 
Although the excited waves are polarized due to the 

discrete nature of the wave spectrum (their phase veloci-
ty is equal to фV , and the group wavelength is zero), 
the presence of the transverse component of the wave 
vector gives them the character of Cherenkov waves [1]. 
Moreover, the velocity of the particle must satisfy the 

condition: 0
0 ф

q
V V

k⊥

> . 
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The resonant nature of particles interaction with the 
waveguide eigenwaves requires that the parameter m∆  
introduced in [10 - 13] should be considered zero. In 
addition, depending on which of the forbidden bands of 
the corrugated plasma waveguide the frequency 0ω  
falls, it is necessary to take into account the correspond-
ing decrement 0( )d ω , which is proportional to the depth 
of the corrugation a (in the opacity band, the amplitude 
of wave A decays according to the law dteAA −= 0 ). In 
this case, the reactive bunch instabilities [10 - 12] may 
change to dissipative [11, 14], which is non-threshold, 
and is characterized by smaller values of increments. 

Thus, to study the acceleration of charged particles 
in corrugated plasma waveguides with superconducting 
walls, it is necessary to study the problem of the reso-
nant interaction of charged particles with a plasma in 
the presence of a dense wave spectrum. 

2. ANALYSIS OF THE EXCITED WAVE 
SPECTRUM OF A CORRUGATED PLASMA 

WAVEGUIDE 
Lets consider a two-step scheme for the acceleration 

of charged particles in an infinite corrugated plasma 
waveguide.  

The first step is the excitation of a corrugated plasma 
waveguide with a short electron bunch in the direction 
of the particles longitudinal movement (the length of the 
bunch is significantly less than the period of the corru-
gation). 

The second step is the acceleration of test charged 
particles in an electric field excited by an electron bunch 
of an infinite number of harmonics. 

Calculations of the dispersion properties of a flat 
plasma filled corrugated waveguide, carried out in [7 - 
9], allow us to imagine the strength of the longitudinal 
electric field .zE  in the form: 

( ) 3( , , )
ik z i tnE r z t a f r ez n nn

ω∞ −
= ⋅∑

= −∞
,    (1) 

where an  − harmonic amplitudes; ( )f rn  − membrane 

functions that describe the transverse distribution of the 
electric field strength and all are equal to 1 at 0r → ; 

3 3 0nk k nk= + ; 3k  − longitudinal wave number; ω − 
wave frequency. 

Let us consider the excitation of a field in the form 
(1) and determine the possibility of setting the coeffi-
cients na  necessary for acceleration. The method of 
incomplete numerical simulation can show that a short 
electron bunch which parameters correspond to the pa-
rameters of a very narrow forbidden band in a corrugated 
plasma waveguide (decrement 0( )d ω  is small compared 
to the bunch instability increment) excites wave (1), but 
with special conditions for the coefficients na : a suffi-
ciently large number of these coefficients coincide with 
each other (Fig. 1). This statement can be justified by a 
series of simple transformations of the expression for the 
field (1). As a result of such transformations, it is easy to 
obtain the following total δ-functional dependence of the 

electric field intensity on time: 

0 0(0, , ) ( )n
n

i tE z t E e t tz
ω δ

=−∞

∞−= −∑ ,         (2) 

where 0E  is the amplitude, generally weakly dependent 
on time. 

In expression (2), due to the smallness of the contri-
bution, the balance of the sum, which is determined by 
the coefficients of expression (1) remaining from the 
first sum, not equal to each other, is omitted. 

In Fig. 1 shows the temporal dynamics of the electric 
field strength at a particular point in space, obtained by 
the method of incomplete numerical simulation, similar 
to the calculations carried out in [2] and the sources cited 
there. It can be seen that the periodic amplitude pulsations 
are of sufficient magnitude to approximate them by a sum 
of δ-functional dependencies. 

 
Fig. 1. The temporal dynamics of the electric field 

strength at a single point in space ζ with the number  
of modes M = 100, the absorption index d = 0.01 
Thus, when a short electron bunch moves in a corru-

gated plasma waveguide, a spectrum (1) is excited, in 
which K harmonics can be equal to each other. From the 
mathematical point of view, this possibility arises be-
cause in the infinite determinant obtained in the study of 
the dispersion properties of a flat corrugated plasma 
waveguide, the term K coincides. In the case when 
K >> 1 (1 K − the multiplicity points of the intersection 
of the dispersion curves [8 - 10]), the infinite sum of 
harmonics can be represented as an infinite sum δ-
functions. In expression (2), the amplitude 0E  is the 
amplitude of K harmonics, nt − the time that determines 
the passage of the n-th period of the waveguide by the 
bunch. 

3. ANALYSIS OF THE CORRUGATED 
PLASMA WAVEGUIDE EXCITED  

WAVE SPECTRUM 
Now, after the accelerating field (2) is determined, 

let’s consider the motion of a test positively charged 
particle with the mass i em m= Λ ⋅  (where Λ >> 1) in 
this field. The change in time of its coordinates ζ near 
the axis of the waveguide is described by the equation: 

2
1 3 0 0

02
( / ) ( / )d i k k n ie

d n

ζ ζ ω τ
τ

e− ∞ + − Ω= Λ ∑
= −∞

, (3) 

where 0 0, ,t zkt ω z= =  0 0
0 2

0

2
,

e

ek E
m
π

ω
e =  0 iω ωΩ = − ∆ , 

0ω  − is the frequency at which the intersection of an 
infinite number of dispersion curves of a corrugated 
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plasma waveguide is observed, ω∆  − the width of the 
forbidden band, which corresponds to the frequency 0ω , 

3k  − is the longitudinal wave number. We assume that 
the decrement is small, and in the calculations should be 
assumed to zero. 

Equation (3) in a view as the above can be reduced 
to the form: 

3
2

1 0 0
02

( )
( ( ) 2 )

k
i i i

d ke n
nd

ωζ τ τ
ζ ω d ζ τ π
τ

e−

∆
− + ∞

=Λ −∑
=−∞

. (4) 

Let’s find a solution to this equation.  
First of all, we note that in the time intervals 

1k kτ τ τ +< < , where kτ  is determined from the equation 
( ) 2k kζ τ π= , the test particle moves with a constant 

velocity, the dimensionless value of which we denote as 

0k kV w V= , where kw  is a test particle’s velocity in 
the interval 1k kτ τ τ +< < , 0V  is the initial velocity of the 

test particle. At time kτ , the velocity abruptly changes 
from kV  to 1kV + . The relationship between these veloci-
ties can be obtained from equation (4) by performing its 
integration within 1, ( )k k k kτ ε τ τ εε  τ τ+− < < + << −  
and then directing the small parameter ε  to zero. As a 
result, one can get a recurrent relation that determines 
the test particle’s velocity at each of the acceleration 
intervals: 

1
0 3

0 0

2 2exp( ) cos( 2 ).1
kk kV V kk k V V k Vk k k

ω pp p
ω

e−Λ ∆
= + − ⋅ −+

     

In an infinite corrugated plasma waveguide, the pa-
rameter 3 0k k  can take any value less than one, i.e. it is 
determined by its fractional part (if the parameter 3 0k k  
is greater than one, then the integer part will be sub-
tracted due to the periodicity of the function, the argu-
ment of which it is). Therefore, in further calculations, 
we will assume this parameter to be less than one. 

Fig. 2 shows the graphs of the growth rate of a test 
positively charged particle’s velocity as a function of 
distance, measured by the number of periods of a corru-
gated plasma waveguide k. In the calculations, the fol-
lowing parameters of the accelerating system were cho-
sen: 1

0ε−Λ  = 0.15; 0ω ω∆  = 0.02. 

 
Fig. 2. Dependence of the positively charged test parti-

cle’s velocity at the distance 0L L k=  versus  
of the parameter value: 1 − χ =0.1; 2 − χ =0.3;  
3 − χ =0.5; 4 − χ =0.7; 5 − χ =0.9; 6 − χ =0.0  

(numbering of curves is located under  
the corresponding curves) 

It can be seen from the figure that acceleration is 
more efficient near one parameter value 0.3χ = . For 
other values of the parameter χ , either a lower acceler-
ation rate or a decrease in the initial velocity is ob-
served, i.e. there is a deceleration. 

Thus, the above example confirms the possibility of 
the two-step mechanism for the acceleration of charged 
particles in a plasma waveguides with a superconduct-
ing corrugated walls. In this case, the non-relativistic 
dimensionless velocity of the test particle may increase 
several times. 

4. THE INVESTIGATION OF THE TWO-STEP 
METHOD OF CHARGED PARTICLES 

ACCELERATION 
For a more detailed analysis of the proposed two-

step acceleration of charged particles, we use the meth-
od of incomplete numerical simulation, which has re-
cently been used to study the generation of electromag-
netic waves in plasma waveguides [10 - 14]. 

In our case, we will investigate the motion of parti-
cles of two types in the plasma in the presence of a large 
number of waves. In the longitudinal direction, we as-
sume the plasma is unlimited, and we exclude trans-
verse boundary from consideration due to a strong ex-
ternal magnetic field, which allows the use of a one-
dimensional description of the motion of charged parti-
cles. For this, it is necessary that the condition 

2 1/2
0 0(4 )e e e e eeH m c e n mω π= >> Ω = to be fulfilled 

where en0  is equilibrium plasma density; em  is the 
electron mass; 0H  is external magnetic field intensity;  
c is the speed of light. 

First, we define the type of electromagnetic field that 
will be excited, and then accelerate the particles. The 
wave packet in plasma is represented as the sum of a 
large number of waves that move with different phase 
velocities: 

( )
1

( , ) ( )sin
M

m m m m
m

E z t E t k z t tω φ
=

= − +  ∑ . (5) 

Here M >> 1 is a large number of modes that propa-
gate in the plasma; mmmm kE ϕω ,,,  are an ampli-
tude of electric field, frequency, wave number and 
phase of the m-th mode. 

We consider the electric field intensity in the form 
that takes into account only resonant harmonics. To do 
this, we assume that 0ωω ∆= mm , 0kmkm ∆=  

( 1...m M= ), where 0ω∆ , 0k∆  are the conditional size 

of the perturbation waveform partitioning; 0k∆  is cho-

sen in such a way that the relation 000 ω∆=∆ Vk  is 
fulfilled. Due to such transformations, we obtain the 
expression for the wave packet: 

( ) ( )0 0
1

( , ) ( )sin
M

m m
m

E z t E t m k z V t tφ
=

= ∆ − +  ∑ . (6) 

The system of equations that describes the time vari-
ation of the amplitudes and phases of the electric field 
(6) can be obtained by substituting the results of inte-
grating the equations of plasma particles motion into the 
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Poisson equation using the harmonic oscillation method 
[10 - 12]. 

Considering the above, we can write the equations 
(in dimensionless variables) which describe the interac-
tion between the wave spectrum of the corrugated plas-
ma waveguide and charged particles (electrons and 
positive charged test particles): 

1

1 sin( )
N

m
i m m

i

d
m d

d N
ξ φ

τ
ε ε

=

= ⋅ + −∑ ,    (7) 

1

1 cos( )
N

m
i m

im

d
m

d N
φ

ξ φ
τ ε =

= ⋅ +
⋅ ∑ ,    (8) 

where 1/3
0 0k V tt β= , 

2/3
0

4
m

m
ob

E k
en
b

π
e = , 1ob oen nb = <<  − 

is the ratio of the equilibrium density of the bunch and 
plasma, respectively. Charged particles are modeled 
using N layers moving with velocity 0V  (1 i N≤ ≤ , i − 
is the layer number), the coordinate of which is given in 
the form ( )0 0i ik z V tξ = ∆ − . 

The system of equations (7), (8) must be supple-
mented by equations that describe the motion of charged 
particles of a bunch (in dimensionless variables): 

12
1

2
1

1
1

sin( ), 1 ,

sin( ), 1 .

M

m i m
mi

M

m i m
m

m i N
d
d

m N i N

ξ φ
ξ
τ

ξ φ

ε

ε
=

−

=

− + ≤ ≤= 
Λ ⋅ + + ≤ ≤


∑

∑
    (9) 

Equations (9) describe the motion of electrons (up-
per expression on the right side of (9)) and positively 
charged test particles with mass Λ  and quantity 2N  
(lower expression on the right side of (9)). The total 
number of charged particles is N: 1 2N N N+ = . 

From the equations (7)-(9) in the absence of absorp-
tion can be obtained the integral I  which was helped us 
to control the accuracy of the numerical calculations. 
This integral has the following form: 

1 2

1 1

1

1 11

2 2

2 2

1 cos .

M M

e
m m

N N

i i N

N Nm mI V V
N N

d di i t
N d N d

e e

ξ ξ

tt

= =

= = +

= + −Λ ⋅ = +∑ ∑

Λ
+ ⋅ − =∑ ∑

    (10) 

System (7) - (9) satisfies the condition of the particle 
coordinate's periodicity − the equations do not change 
when replaced 2i i kζ ζ π→ + . In addition, there is the 
following symmetry of the amplitudes and phases of the 
field: ,m m m mφ φεε − −= − = − . 

The system of equations (7) - (9) was investigated 
numerically using the method of bunches particles mod-
eling by large particles [1, 10 - 12] with the following 
values of the counting parameters: the number of modes 
M = 50…100; the initial coordinates of the electron lay-
ers iζ  are distributed on the (0…2π) interval in the 
form of two large particles (the number of layers is N = 
2); the initial distribution of the amplitudes of the wave 
disturbances was set to be uniform with the initial val-
ues of the amplitudes 210mε −=  and phases 310mφ

−=  
for all values of m. 

5. NUMERICAL SIMULATION RESULTS 
Let us discuss the results of numerical simulation of 

the interaction of particles of two types with a plasma 
corrugated waveguide's dense wave spectrum. The 
choice of one decrement value for two types of particles 
in equation (7) indicates that we have chosen such sys-
tem parameters for which the interaction occurs in the 
same forbidden band. 

The ratio of the number of test particles in the 
bunch, which is accelerated, and electrons in the bunch, 
which generates oscillations in the waveguide, is deter-
mined by the parameter 1 2N Nθ =  [15]. First, as a test 
calculation, consider the acceleration of such test parti-
cles as positrons. Let the number of particles in bunches 
be: 1θ = .  

In Fig. 3 the time variations of the average velocity 

of the test particle V , electron bunch eV , and integral 
of the system of equations in the absence of absorption 
(d = 0) I  are shown. In the calculations it was assumed 
that the initial velocities of the particles are the same. 

 
Fig. 3. Dependence of the average velocities of the test 

particle V  and the electron bunch eV   
on the dimensionless time τ : 1 – d = 0,0; 2 – d = 0.2 

It can be seen from the figure that there is a syn-
chronous change in the average velocities of the test 
particle and the electron bunch. In the absence of ab-
sorption, the integral remains almost unchanged, which 
indicates the reliability of the obtained numerical re-
sults. 

Let’s now consider the acceleration of a heavy (Λ>> 1) 
positively charged particle. 

In Fig. 4 shows the temporal dynamics of the aver-
age velocities of particles which move in a corrugated 
plasma waveguide. 

In the numerical simulation, the following parameter 
values were specified: M = 50; N = 2; d = 0.2; 10Λ =  at 
the same initial particle velocities. 

It follows from the figure that at the beginning of the 
interaction, the average velocity of the accelerating par-
ticles increases more slowly than the main bunch loses. 
In the absence of absorption, the integral of the system 
changes by a relatively small value at 2.5τ ≤ , i.e. at 
such time intervals when acceleration of test particles is 
observed. 
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Fig. 4. Dependence of average velocities of a heavy test 

particle V  and electron bunch eV  on dimensionless 
time τ : 1 − d = 0; 2 − d = 0.2 

The difference between the energies of these bunch-
es is concentrated in the internal energy of the plasma 
and in the energy of the oscillations.  

The above examples of test particles acceleration are 
made for cases when the initial velocities of particles of 
two types are comparable. This explains the small value 
of the change in the average velocity of the test particle. 
If the initial velocity of the test particle is less than the 
initial velocity of the electron bunch, then the average 
momentum of the test particle may increase twice. This 
is indicated by numerical calculations, the result of one 
of which is shown in Fig. 5. 

 
Fig. 5. Dependence of average velocities of a heavy test 
particle V  and an electron bunch eV  on dimensionless 

time τ : 1 − d = 0; 2 − d = 0.02 
Calculations carried out for different values of the 

initial velocities of the test particle and the accelerated 
bunch, show that the greatest increase in the average 
speed of the test particle is observed at the initial speed 
of the test particle 

0
1.1d d

τ
ς τ

=
= − . The results of 

such a calculation are shown in Fig. 5. The same in-
crease in the average velocity was established in a test 
calculation for positrons. For large values of the initial 
velocity 

0
1.1d d

τ
ς τ

=
> −  the acceleration of the test 

particle is not observed. Smaller values of the initial 
velocity lead to a small change in the average velocity 
of the test particle. Accounting for the absorption of 
oscillations in the forbidden band (see Figs. 4, 5, curve 
2) increases the acceleration rate of the test particle. 

Let’s now estimate the length at which the accelera-
tion of the test particles is observed, and compare with 
the result of the analysis of the wave spectrum corrugat-
ed plasma waveguide. 

Based on the results of calculations shown in Fig. 1, 
one can estimate the acceleration length of the test par-
ticle. It is determined by the ratio 

1
1 0 0100 2 100L L kπ −≈ ⋅ = ⋅ ⋅ . On the other hand, the ac-

celeration distance of the test particle, obtained as a re-
sult of numerical calculations, gives the dimensionless 
acceleration time 9...10τ ≈ , which, in terms of the dis-
tance passed by the main bunch, gives the acceleration 
length 1

32 10 −⋅= kL . A comparison of these values 
makes it possible to state that the acceleration distances 
are of the same order already at the plasma density 

05.03/1 ≈β . 

CONCLUSIONS 
It is shown that in a corrugated superconducting 

plasma-filled waveguide, it is possible to use a two-step 
mechanism for the acceleration of charged particles. 
The first step is the excitation of a corrugated plasma 
waveguide with a short electron bunch in the direction 
of the longitudinal movement (the length of the bunch is 
significantly less than the period of the corrugation). 
The second step is the acceleration of test charged parti-
cles in an electric field excited by an electron bunch of 
an infinite number of harmonics. Calculations show that 
with the implementation of such an acceleration mecha-
nism, the average velocity of a test non-relativistic par-
ticle may increase several times. 

A system of equations which describes a two-step 
method of the charged particles acceleration is obtained. 

Test calculations show that the proposed accelera-
tion mechanism ensures complete transfer of the elec-
tron bunch energy to the energy of a test particle of the 
same mass, but with a charge of opposite sign. 

Numerical calculations have shown that the acceler-
ation length of the test particle can be up to one meter 
(under 0 02 /k Lπ=  cm-1) with a plasma density satisfy-
ing the condition 1/3 0.05β ≈ . 
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ФРАКТАЛЬНЫЙ УСКОРИТЕЛЬ НА ОСНОВЕ ГОФРИРОВАННОГО ПЛАЗМЕННОГО 
ВОЛНОВОДА СО СВЕРХПРОВОДЯЩИМИ СТЕНКАМИ 

И.В. Ткаченко, В.И. Ткаченко 
Предложено использование двухступенчатого механизма ускорения заряженных частиц. Принцип уско-

рения основан на использовании фрактальных свойств волнового спектра гофрированного плазменного 
волновода со сверхпроводящими стенками. Первая ступень обеспечивает возбуждение гофрированного 
плазменного волновода короткими в направлении движения электронными сгустками (длина сгустка значи-
тельно меньше периода гофра). Вторая ступень осуществляет ускорение пробных заряженных частиц в воз-
бужденном электронными сгустками бесконечном по количеству гармоник электрическом поле. Расчеты 
показывают, что при реализации такого механизма ускорения средняя скорость нерелятивистской пробной 
частицы может увеличиваться в несколько раз, а длина ее ускорения может составлять расстояние до одного 
метра. 

ФРАКТАЛЬНИЙ ПРИСКОРЮВАЧ НА ОСНОВІ ГОФРОВАНОГО ПЛАЗМОВОГО  
ХВИЛЕВОДУ З НАДПРОВІДНИМИ СТІНКАМИ 

І.В. Ткаченко, В.І. Ткаченко 
Запропоновано використання двоступеневого механізму прискорення заряджених частинок. Принцип 

прискорення заснований на використанні фрактальних властивостей хвильового спектра гофрованого плаз-
мового хвилеводу з надпровідними стінками. Перший ступінь забезпечує збудження гофрованого плазмово-
го хвилеводу короткими в напрямку руху електронними згустками (довжина згустку значно менше періоду 
гофра). Другий ступінь здійснює прискорення пробних заряджених частинок у збудженому електронними 
згустками нескінченному за кількістю гармонік електричному полі. Розрахунки показують, що при реаліза-
ції такого механізму прискорення середня швидкість нерелятивістської пробної частинки може збільшува-
тися в кілька разів, а довжина її прискорення може становити відстань до одного метра.  


