https://doi.org/10.46813/2021-134-043

INHOMOGENEOUS TRAVELLING-WAVE ACCELERATING
SECTIONS AND WKB APPROACH

M.I. Ayzatsky
National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
E-mail: aizatsky@kipt.kharkov.ua

The paper presents the results of a study of the possibility of using the WKB approach to describe Inhomogene-
ous Travelling-Wave Accelerating Sections. This possibility not only simplifies the calculation, but also allows the
use of simpler physical models of transient processes. Using the traveling wave concept simplifies the understanding
of pulsed-excited ITWAS transients and the development of methods to mitigate their effect on beam parameters.
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INTRODUCTION

To explore possibility of using difference equations
and approximate methods, we have proposed a simple
but rigorous model of Inhomogeneous Travelling-Wave
Accelerating Sections (ITWAS) [1]. This model is
based on the method of Coupled Integral Equations
(CIE) (see, for example, [2]). Using the theory of solv-
ing matrix equations (see [3, 4] and the literature cited
there) and the decomposition method [5], we obtained
new matrix difference equations, on the basis of which
various approximate approaches, including the WKB
approach, can be developed. In this paper we present the
results of using proposed approach to study the proper-
ties of different accelerating sections.

1. MODEL OF ITWAS. BASIC EQUATIONS

In this section, we present the basic equations of the
model, the derivation of which is presented in the work
[1]. We consider the chain of N, cylindrical resonators
that couple through cylindrical openings in the thin dia-
phragms. End resonators through cylindrical openings
are connected to the cylindrical waveguides. The reso-
nator volumes are filled with a dielectric, the dielectric
constant of which has an imaginary part ¢=1+ig".
With this choice one can take into account the losses
and preserve the orthogonality of the waveguide cylin-
drical functions.

Electric field in the k-th resonator is determined as

EX(z,.r=0) =
. T . . T .
(TIEM) (Zk )) c® —(TzE(") (Zk )) Cc |>’
where 0<z, <d,,I*"(z,),7/" (z,),C" are the
complex N, — dimensional vectors (see their definition

in [1]). Vector C*) determines the electric field on the
opening of the k -th diaphragm
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where @, is a set of basis functions. We used the com-

plete set of functions that fulfil the edge condition on
the diaphragm rims as the basis functions (the Meixner

basis). We use such Meixner basis [6]
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where P (x) are Legendre functions (or spherical

functions) of the first kind [7].
Making special decomposition' [1, 5]

c® —z® (é(k,w n C(m)) (4)
we get the system of difference matrix equations:
CU+LD {M(k+l,l) L &L (M(k,l) _M(k+l,l))} CHED 4
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where k=2,3,..,N,—-2, M are complex N xN, ma-
trices (see their definition in [1]).

If elements of matrices M“" vary sufficiently
slowly with &, then the differences |M B0 — M0
are the small values and we can neglect some of them

and get:
Eikonal approximation

Skl _ g kD) Ak
C =M"C,

é(k+l,2) :M(k,z)é(kl) (6)
WKB approximation
Gkth Zﬁ(l\'ﬂ,l)c(k,l) _
_ {M(k+l,l) 4 7D (M(k,l) _M(k+l,l))} C*D
(7

Ck+12) =A:4(k+l,2)c~v(k,2) _
_ {M(k+l,2) v ) (M(k,z) _ D )} C

Electric field in the % -th resonator can be divided
into “forward” and “backward” parts:
E® = gt 4 pk2) _

_ |:(TE(k) )T =0 Gk _(TE(k+l) )T :-(k+l)C~v(k+l,l):|+ ®)
1 = 2 =

+|:(TE(k) )T :-(k)é(k,Z) _ (TE(k+l) )T :-(k+l)C~v(k+l,2):|
1 — 2 — :

In the case of homogeneous waveguide (C*? =0

travelling wave regime)

b

1 . .. .

This decomposition can be considered as general-
ized decomposition into “forward” and “backward” so-
lutions.
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E® (z+dk,r =0) =

K . ©)
— QT(Z) (M(l)) COD = QT AV 1O
where 0<z<d, Q=T"(z2)-M"Tf(z), U is the
matrix of eigen vectors, A" = diag(ﬂq“),/lz(”,...,/l,(vl'))

and A" are the solution of the characteristic equation
of homogeneous waveguide (see [1]).

From (9) it follows that we take into account N, ei-
gen waves, including the evanescent ones. Indeed, if
C™" is a superposition of N, eigen modes

N,
C® =>"BU,, wehave

s=1

Nm
EX(z+kd,r=0)=Q" > BA™U, .

s=1

2. SMOOTH TRANSITION BETWEEN
TWO DISK LOADED WAVEGUIDES

To demonstrate the correctness and capabilities of
the proposed rigorous model and approximate ap-
proaches, let us consider the classical problem of con-
necting two homogeneous waveguides using a smooth
transition between them.

Consider the chain of resonators in which the aper-
ture radii and resonator radii vary as

(10)

L Gtay gy arctg{a(k—ky)}

k 2 2 aretg{a(3-ky)} (1)
k=3,.,N, -1,

p bitby b =by arcig {a(k,—k)}

k 2 2 arcglatk,-3)}  (12)
k=3,.,N, -2,

where N, =2k, —1=201, a,=0.99 cm, b, =4.08896 cm
(ﬁg’, =v,, /¢ =0.022)
b,=4.03934 cm (S

g1

and a, =0.65 cm,
/¢=0.0065) are the aper-

ture radii and resonator radii of two homogeneous disk-
loaded waveguides. At frequency f =2.856 GHz these

waveguides have phase shift per cell ¢, =27/3. All

= Ve

resonators have the same length 4 =3.4989 cm. The
sizes of couplers (a,,b, and a, ,,b, ) were chosen

Np+12
from the condition of matching homogeneous disk-
loaded waveguides with cylindrical waveguide with
radius b, =4.2 cm.
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Fig. 1. The dependences of the aperture radii
and resonator radii on the cell number
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Fig. 2. Electric field distribution for smooth transition
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Fig. 2. The “forward” and “backward’ parts
of electric field distribution for smooth transition

In this section we will consider the lossless case
&" =0. The dependences of the aperture radii and reso-
nator radii for the considered two values of parameter
o are presented in Fig. 1.
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Fig. 3. Electric field distribution for a steeper transition

For smooth transition (¢ =0.1) the exact and ap-
proximate (WKB) solutions practically coincide (see
Fig.2, E® = E®(d /2 +dk,r =0)).
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Fig. 4. The “forward” and “backward’ parts of electric
field distribution for a steeper transition

The same is true for “forward” and “backward” parts
of electric field (Fig. 3). The detailed analysis shows
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that they are indeed “forward” and “backward”, as their
phases change in different directions.

For a steeper transition (o = 0.5) there are differ-
ence between the exact and WKB solutions (Fig. 4) as a
reflected wave arose in the region before transition
(Fig. 5).

The presented above results show that the WKB
model correctly describe the considered cavity chain
with a slow change in the parameters.

3. INHOMOGENEOUS TRAVELLING-
WAVE ACCELERATING SECTIONS

The ITWASs have a unique property. Nobody
knows the geometric sizes of resonators in the real sec-
tion with sufficient accuracy’. Only the sizes of cou-
pling holes have definite values. There are several rea-
sons for it. The first reason is associated with the diffi-
culty to conduct numerical modelling with an accuracy
of fractions of a micrometer. The second — take into
account all brazing peculiarities. But the main reason is
that their knowledge does not give us useful information
about the distribution of the main ITWAS characteristic
— the electric field. Therefore, after preliminary selec-
tion of the resonator dimensions, fabrication and braz-
ing, a tuning procedure is used to obtain the required
electric field distribution. For today, there are two most
using tuning methods: phase Ph-method and S-method.
In the first method the phase shifts between resonators
are tuned to the desired values by slight changing of the
cavity radii (see, for example, [8]). In the second
method the combinations of field meanings in some
points of several cells are reduced to the desired values
by the same actions [9]. For the ITWASs with phase
shift ¢ =27 /3 the tuning condition has a form

‘Re(S(k) )‘ = min, (13)
where
E*D L E® LRGD
a SBE®
For tuned homogeneous waveguide S* have zero
real parts

§® = (14)

S =iad,
where « is an attenuation coefficient.

For more details of the S method and its restriction,
see [10, 11].

The ITWASSs can be divided into three groups: with
weakly [12, 13, 14], medium [1, 15] and strong [16, 17]
inhomogeneity. There are sections with very fast
changes (sections with a quasi-constant gradient) [18,
19]. In this work we shall consider the properties of
sections with medium and strong inhomogeneity.

First, we consider the properties of waveguides that
can be base for the constant gradient section. It is
known that for constant electric field strength the RF
power must change linearly with distance [8]. A law of
variation of the aperture radii was chosen so that the
group velocity linearly drops from f,, =0.022 to

(15)

? Excluding sections that were assembled using dif-
fusion bonding, requiring no tuning in the case of cor-
rect choosing of resonator frequencies.
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B, =0.0065 along a chain of 81 resonators. The se-

lected values of group velocity are similar to those in
the SLAC section [8].
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Fig. 5. The dependence of the aperture
on the cell number for the constant gradient section

Earlier, the results of the study of tuning methods
[11] were obtained without taking into account losses of
the RF field. We introduce losses by filling the resona-
tors with media which permittivity is complex
€ =1+ie". The value of losses (&"=10"") was chosen
from the condition of constant amplitude of the axial
electric field at the resonator centers. To eliminate the
influence of couplings on the calculation results, we
placed 10 identical resonators before and 10 after the
inhomogeneous chain (Fig. 6).
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Fig. 6. Amplitudes of the axial electric field
in the middle of resonators (S-method)
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Fig. 7. Phase deviation in the middle of resonators
from the 27k /3 law (S-method)

Characteristics of axial electric field distributions
(we remind that E* = E® (d /2 +dk,r = 0) ) after tun-

ing by S-method are presented in Fig. 7, 8. Tuning
process was started from the end cells.
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Fig. 8 Amplitudes of the axial electric field
in the middle of resonators (Ph-method)

From these results it follows that the WKB approach
correctly (except for small phase deviations) describe an
IT WAS that is similar to the SLAC section.
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Fig. 9. Phase deviation in the middle of resonators from
the 27k /3 law (Ph-method)
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Fig. 10. Deviation of resonator radii from some smooth
distribution b, , as a function of cell number. For clar-

ity, the brown curve has been shifted down by 5 pum

When using Ph tuning methods, we get the same
amplitude distribution (Fig. 9) and slightly better phases
(Fig. 10). However, WKB approach cannot be used in
this case (see Figs. 9, 10), as it diverges. This diver-
gence is not related to the presence of a turning point.
The reason for the divergence of the WKB method is
the nonsmoothed distribution of the resonator radii
when using a phase tuning. Indeed, from Fig. 11 it fol-
lows that there are small but fast oscillations of the
resonator radii.

It is interesting to note that if Re(S‘k )) change sig-

nificantly when tuning (see Fig. 12), in Im(S‘k)) virtu-

ally no change occurs (see Fig. 13). This parameter has
no physical meaning in nonuniform waveguides, since it
follows from Fig. 13 that it can even be negative (com-
pare with (15)).
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Fig. 11. Re(S(k)) after tuning
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Fig. 13. Amplitudes of the axial electric field
in the middle of resonators (S method)
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Fig. 14. Phase deviation in the middle of resonators
from the 2k /3 law (S method)

Let's reduce the number of non-uniform cells in the
chain from 81 to 31 with the same sizes of the end cells.
For such waveguide S and Ph tuning methods give the
same amplitude distributions (compare Figs. 14 and 16)
and different phase distributions (compare Figs. 15 and
17). Ph method gives smaller phase deviations.
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Fig. 15. Amplitudes of the axial electric field
in the middle of resonators (Ph-method)
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Fig. 16. Phase deviation in the middle of resonators
from the 2k /3 law (Ph-method)
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Fig. 17. Deviation of resonator radii from some smooth
distribution b, ,

Using the WKB approach for describing such sec-
tion become problematic — for the S tuning method
there is discrepancy in phase distributions, for the Ph
tuning method the WKB method is diverges. In this case
the divergence is much stronger because the cell radii
undergo larger oscillations (Fig. 18)

CONCLUSIONS

What does the divergence of the WKB method indi-
cate? It indicates that the transients in this case will dif-
fer from those that arise in waveguides with smooth
changes (a forward wave with a front moving with the
group velocity). There will be multiple reflections from
irregularities. For SLAC-type sections the oscillations
of the resonator radii are small and the effect of multiple
reflections on the transients will also be small. How-
ever, for short sections with strong inhomogeneity mul-
tiple reflections can significantly change the transients.

To avoid this, it is recommended to use tuning
methods that give the required amplitude and phase dis-
tributions together with a smooth variation of the reso-
nator frequencies. This is not an easy problem. To date,
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there is no tuning technique that could guarantee such a
distribution of resonator frequencies.
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HEOJIHOPO/JHBIE YCKOPSIOIIUE CEKILIUU HA BEI'YIIEN BOJIHE U BKB-IIPUBJINKEHUE
H.U. Aiizaukuii

[pencraBneHbl pe3ynbTaThl HCCISTIOBAHUS BO3MOXXHOCTH Hcmonb3oBanus BKB-momxona mis omucanus Heoj-
HOPOJIHBIX YCKOPSIOIIMX CEKIIMil Ha Oeryiell BojHe. DTa BO3MOKHOCTh HE TOJBKO YIPOIIAET PacyeT, HO M IMO3BO-
JISIET UCIIONIb30BaTh OoJiee MPOCThIe (PU3MIECKHIE MOJIENH IIEPEXOIHBIX MPOIECCOoB. Vcrnonp30Banue KOHIEINH Oe-
ryiiedl BOJHBI YIPOIIAeT MOHUMaHUE MEPEXOAHBIX MPOLECCOB B CEKIUAX C UMITYILCHBIM BO3OY)KICHHEM H pa3pa-
OOTKY METOIOB YMEHbBIICHHS UX BIMSHHUS Ha APaMETPhI MyUKa.

HEOJIHOPIJIHI TPUCKOPIOIOUI CEKIII HA XBWJII, IO BI’)KUTh, I BKE-HABJINKEHHSI
M. 1. Aiizaubkuii

[pencraBneHo pe3ynbTaTH JOCTIHKEHHS MOXIUBOCTI BUKopuctaHHs BKB-mimxomy st omucy HeoqHOpIIHUX
MIPUCKOPIOIOYMX CEKITiil Ha XBHJII, IO O1KUTH. L[ MOXKIIUBICTh HE TUIBKU CIPOIIYE PO3PAXYHOK, a i T03BOJISIE BUKO-
pHUCTOBYBaTH OUIBII TPOCTi (Pi3MYHI MOJENI MEepexiHUX MpoleciB. BUKOpUCTaHHS KOHIENIT O1KHOT XBHIII CIIpO-
I[ye PO3YMIHHS MEPEXiTHUX MPOIECIB Y CEKINAX 3 IMIYIbCHUM 30y/DKCHHSIM 1 PO3pOOKY METOJIB 3MEHIICHHS 1X
BIUIMBY Ha MapaMeTpH ITy4Ka.
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