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The paper presents the results of a study of the possibility of using the WKB approach to describe Inhomogene-
ous Travelling-Wave Accelerating Sections. This possibility not only simplifies the calculation, but also allows the 
use of simpler physical models of transient processes. Using the traveling wave concept simplifies the understanding 
of pulsed-excited ITWAS transients and the development of methods to mitigate their effect on beam parameters. 

PACS: 29.20.−c; 84.40.Az 
 

INTRODUCTION 
To explore possibility of using difference equations 

and approximate methods, we have proposed a simple 
but rigorous model of Inhomogeneous Travelling-Wave 
Accelerating Sections (ITWAS) [1]. This model is 
based on the method of Coupled Integral Equations 
(CIE) (see, for example, [2]). Using the theory of solv-
ing matrix equations (see [3, 4] and the literature cited 
there) and the decomposition method [5], we obtained 
new matrix difference equations, on the basis of which 
various approximate approaches, including the WKB 
approach, can be developed. In this paper we present the 
results of using proposed approach to study the proper-
ties of different accelerating sections.  

1. MODEL OF ITWAS. BASIC EQUATIONS 
In this section, we present the basic equations of the 

model, the derivation of which is presented in the work 
[1]. We consider the chain of RN  cylindrical resonators 
that couple through cylindrical openings in the thin dia-
phragms. End resonators through cylindrical openings 
are connected to the cylindrical waveguides. The reso-
nator volumes are filled with a dielectric, the dielectric 
constant of which has an imaginary part 1 i    . 
With this choice one can take into account the losses 
and preserve the orthogonality of the waveguide cylin-
drical functions.  

Electric field in the k -th resonator is determined as 
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1 2, ,E k E k k

k kT z T z C  are the 
complex mN   dimensional vectors (see their definition 
in [1]). Vector ( )kC  determines the electric field on the 
opening of the k -th diaphragm  
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where s  is a set of basis functions. We used the com-
plete set of functions that fulfil the edge condition on 
the diaphragm rims as the basis functions (the Meixner 
basis). We use such Meixner basis [6] 
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where  m
nP x  are Legendre functions (or spherical 

functions) of the first kind [7]. 
Making special decomposition1 [1, 5] 
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we get the system of difference matrix equations: 
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where 2,3,..., 2Rk N  , M  are complex m mN N  ma-
trices (see their definition in [1]). 

If elements of matrices ( , )k iM  vary sufficiently 
slowly with k ,  then the differences ( 1, ) ( , )

, ,
k i k i

s m s mM M   
are the small values and we can neglect some of them 
and get: 
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WKB approximation 
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Electric field in the k -th resonator can be divided 
into “forward” and “backward” parts: 
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In the case of homogeneous waveguide ( ( ,2) 0kC  , 
travelling wave regime) 

                                                        
1 This decomposition can be considered as general-

ized decomposition into “forward” and “backward” so-
lutions. 
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where 0 z d  , (1)
1 2( ) ( )E ET z M T z   , U  is the 

matrix of eigen vectors, (1) (1) (1) (1)
1 2( , ,..., )
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and (1)
s  are the solution of the characteristic equation 

of homogeneous waveguide (see [1]). 
From (9) it follows that we take into account mN  ei-

gen waves, including the evanescent ones. Indeed, if 
(0,1)C  is a superposition of mN  eigen modes 
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2. SMOOTH TRANSITION BETWEEN  
TWO DISK LOADED WAVEGUIDES  

To demonstrate the correctness and capabilities of 
the proposed rigorous model and approximate ap-
proaches, let us consider the classical problem of con-
necting two homogeneous waveguides using a smooth 
transition between them. 

Consider the chain of resonators in which the aper-
ture radii and resonator radii vary as 
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where 02 1RN k  =201, Ia =0.99 cm, Ib =4.08896 cm 
( , , /g I g Iv c  =0.022) and IIa =0.65 cm, 

IIb =4.03934 cm ( , , /g II g IIv c  =0.0065) are the aper-
ture radii and resonator radii of two homogeneous disk-
loaded waveguides. At frequency f =2.856 GHz these 
waveguides have phase shift per cell 0 2 / 3  . All 
resonators have the same length d =3.4989 cm. The 
sizes of couplers ( 1 1,a b  and 1 ,

R RN Na b ) were chosen 
from the condition of matching homogeneous disk-
loaded waveguides with cylindrical waveguide with 
radius wb =4.2 cm. 

 
 

 
Fig. 2. Electric field distribution for smooth transition 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. The “forward” and “backward” parts  
of electric field distribution for smooth transition 
In this section we will consider the lossless case 

0   . The dependences of the aperture radii and reso-
nator radii for the considered two values of parameter 
  are presented in Fig. 1. 

 
 
 
 
 

 
 
 
 
 
 

 

Fig. 3. Electric field distribution for a steeper transition 
For smooth transition ( =0.1) the exact and ap-

proximate (WKB) solutions practically coincide (see 
Fig. 2, ( ) ( )E ( / 2 , 0)k k

zE d dk r   ). 

 
Fig. 4. The “forward” and “backward” parts of electric 

field distribution for a steeper transition 
The same is true for “forward” and “backward” parts 

of electric field (Fig. 3). The detailed analysis shows 
Fig. 1. The dependences of the aperture radii  

and resonator radii on the cell number 
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that they are indeed “forward” and “backward”, as their 
phases change in different directions. 

For a steeper transition ( = 0.5) there are differ-
ence between the exact and WKB solutions (Fig. 4) as a 
reflected wave arose in the region before transition 
(Fig. 5). 

The presented above results show that the WKB 
model correctly describe the considered cavity chain 
with a slow change in the parameters.  

3. INHOMOGENEOUS TRAVELLING-
WAVE ACCELERATING SECTIONS  

The ITWASs have a unique property. Nobody 
knows the geometric sizes of resonators in the real sec-
tion with sufficient accuracy2. Only the sizes of cou-
pling holes have definite values. There are several rea-
sons for it. The first reason is associated with the diffi-
culty to conduct numerical modelling with an accuracy 
of fractions of a micrometer. The second  take into 
account all brazing peculiarities. But the main reason is 
that their knowledge does not give us useful information 
about the distribution of the main ITWAS characteristic 
 the electric field. Therefore, after preliminary selec-
tion of the resonator dimensions, fabrication and braz-
ing, a tuning procedure is used to obtain the required 
electric field distribution. For today, there are two most 
using tuning methods: phase Ph-method and S-method. 
In the first method the phase shifts between resonators 
are tuned to the desired values by slight changing of the 
cavity radii (see, for example, [8]). In the second 
method the combinations of field meanings in some 
points of several cells are reduced to the desired values 
by the same actions [9]. For the ITWASs with phase 
shift  2 / 3   the tuning condition has a form  

 ( )Re minkS  ,                      (13) 
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For tuned homogeneous waveguide ( )kS  have zero 
real parts 

( )kS i d ,                              (15) 
where  is an attenuation coefficient. 

For more details of the S method and its restriction, 
see [10, 11].  

The ITWASs can be divided into three groups: with 
weakly [12, 13, 14], medium [1, 15] and strong [16, 17] 
inhomogeneity. There are sections with very fast 
changes (sections with a quasi-constant gradient) [18, 
19]. In this work we shall consider the properties of 
sections with medium and strong inhomogeneity.  

First, we consider the properties of waveguides that 
can be base for the constant gradient section. It is 
known that for constant electric field strength the RF 
power must change linearly with distance [8]. A law of 
variation of the aperture radii was chosen so that the 
group velocity linearly drops from ,g I  0.022 to 

                                                        
2 Excluding sections that were assembled using dif-

fusion bonding, requiring no tuning in the case of cor-
rect choosing of resonator frequencies. 

,g II  0.0065 along a chain of 81 resonators. The se-
lected values of group velocity are similar to those in 
the SLAC section [8].  

 
Fig. 5. The dependence of the aperture  

on the cell number for the constant gradient section 
Earlier, the results of the study of tuning methods 

[11] were obtained without taking into account losses of 
the RF field. We introduce losses by filling the resona-
tors with media which permittivity is complex 

1 i    . The value of losses (   = 410 ) was chosen 
from the condition of constant amplitude of the axial 
electric field at the resonator centers. To eliminate the 
influence of couplings on the calculation results, we 
placed 10 identical resonators before and 10 after the 
inhomogeneous chain (Fig. 6).  

 
Fig. 6. Amplitudes of the axial electric field 

in the middle of resonators (S-method) 

 
Fig. 7. Phase deviation in the middle of resonators  

from the 2 / 3k  law (S-method) 
Characteristics of axial electric field distributions 

(we remind that ( ) ( )E ( / 2 , 0)k k
zE d dk r   ) after tun-

ing by S-method are presented in Fig. 7, 8. Tuning 
process was started from the end cells. 
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Fig. 8. Amplitudes of the axial electric field  

in the middle of resonators (Ph-method) 
From these results it follows that the WKB approach 

correctly (except for small phase deviations) describe an 
IT WAS that is similar to the SLAC section. 

 
Fig. 9. Phase deviation in the middle of resonators from 

the 2 / 3k  law (Ph-method) 

 
Fig. 10. Deviation of resonator radii from some smooth 
distribution ,0kb  as a function of cell number. For clar-

ity, the brown curve has been shifted down by 5 m  

When using Ph tuning methods, we get the same 
amplitude distribution (Fig. 9) and slightly better phases 
(Fig. 10). However, WKB approach cannot be used in 
this case (see Figs. 9, 10), as it diverges. This diver-
gence is not related to the presence of a turning point. 
The reason for the divergence of the WKB method is 
the nonsmoothed distribution of the resonator radii 
when using a phase tuning. Indeed, from Fig. 11 it fol-
lows that there are small but fast oscillations of the 
resonator radii. 

It is interesting to note that if  ( )Re kS  change sig-

nificantly when tuning (see Fig. 12), in  ( )Im kS  virtu-
ally no change occurs (see Fig. 13). This parameter has 
no physical meaning in nonuniform waveguides, since it 
follows from Fig. 13 that it can even be negative (com-
pare with (15)). 

 
Fig. 11.  ( )Re kS  after tuning 

 
Fig. 12.  ( )Im kS  after tuning 

 
Fig. 13. Amplitudes of the axial electric field  

in the middle of resonators (S method) 

 
Fig. 14. Phase deviation in the middle of resonators 

from the 2 / 3k  law (S method) 
Let's reduce the number of non-uniform cells in the 

chain from 81 to 31 with the same sizes of the end cells. 
For such waveguide S and Ph tuning methods give the 
same amplitude distributions (compare Figs. 14 and 16) 
and different phase distributions (compare Figs. 15 and 
17). Ph method gives smaller phase deviations.  
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Fig. 15. Amplitudes of the axial electric field  

in the middle of resonators (Ph-method) 

 
Fig. 16. Phase deviation in the middle of resonators 

from the 2 / 3k  law (Ph-method) 

 
Fig. 17. Deviation of resonator radii from some smooth 

distribution ,0kb  

Using the WKB approach for describing such sec-
tion become problematic – for the S tuning method 
there is discrepancy in phase distributions, for the Ph 
tuning method the WKB method is diverges. In this case 
the divergence is much stronger because the cell radii 
undergo larger oscillations (Fig. 18) 

CONCLUSIONS 
What does the divergence of the WKB method indi-

cate? It indicates that the transients in this case will dif-
fer from those that arise in waveguides with smooth 
changes (a forward wave with a front moving with the 
group velocity). There will be multiple reflections from 
irregularities. For SLAC-type sections the oscillations 
of the resonator radii are small and the effect of multiple 
reflections on the transients will also be small. How-
ever, for short sections with strong inhomogeneity mul-
tiple reflections can significantly change the transients.  

To avoid this, it is recommended to use tuning 
methods that give the required amplitude and phase dis-
tributions together with a smooth variation of the reso-
nator frequencies. This is not an easy problem. To date, 

there is no tuning technique that could guarantee such a 
distribution of resonator frequencies. 
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НЕОДНОРОДНЫЕ УСКОРЯЮЩИЕ СЕКЦИИ НА БЕГУЩЕЙ ВОЛНЕ И ВКБ-ПРИБЛИЖЕНИЕ  
Н.И. Айзацкий 

Представлены результаты исследования возможности использования ВКБ-подхода для описания неод-
нородных ускоряющих секций на бегущей волне. Эта возможность не только упрощает расчет, но и позво-
ляет использовать более простые физические модели переходных процессов. Использование концепции бе-
гущей волны упрощает понимание переходных процессов в секциях с импульсным возбуждением и разра-
ботку методов уменьшения их влияния на параметры пучка.   

НЕОДНОРІДНІ ПРИСКОРЮЮЧІ СЕКЦІЇ НА ХВИЛІ, ЩО БІЖИТЬ, І ВКБ-НАБЛИЖЕННЯ  
М.І. Айзацький 

Представлено результати дослідження можливості використання ВКБ-підходу для опису неоднорідних 
прискорюючих секцій на хвилі, що біжить. Ця можливість не тільки спрощує розрахунок, а й дозволяє вико-
ристовувати більш прості фізичні моделі перехідних процесів. Використання концепції біжної хвилі спро-
щує розуміння перехідних процесів у секціях з імпульсним збудженням і розробку методів зменшення їх 
впливу на параметри пучка.  


