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INTRODUCTION 
Accelerating charged particles in a vacuum is an at-

tractive option. This is especially true for laser accelera-
tion schemes. There are many attempts to find such 
acceleration schemes. There are large number of works 
in which various scenarios of such acceleration are 
described. One of the last works in this direction is the 
work [1] (see also the literature cited therein). 

The main difficulty in constructing such schemes, 
which is noted by almost all authors, is the transverse 
(relative to the wave vector of the wave) dynamics of 
particles in the field of laser radiation. Therefore, the 
most common acceleration schemes contain a complex 
field structure, in which the longitudinal (relative to the 
wave vector of the wave) component of the wave field 
with a phase velocity lower than the speed of light can 
be distinguished. Such structures are created by external 
material elements (lenses, lattices, their combinations, 
and others). Already the presence of such elements 
limits the intensity of the laser radiation. As a result, the 
efficiency of such acceleration schemes is not high. 
Special attention should be paid to the existence of 
rigorous solutions of particle dynamics in the field of a 
transverse electromagnetic wave. After work 
D.M. Volkova [2] such solutions were obtained and 
analyzed in works [3 - 6]. Based on the solutions ob-
tained, several new acceleration schemes were pro-
posed. Note that, in these rigorous solutions, the particle 
momentum components were described by periodic 
functions of the wave phase. Therefore, the acceleration 
process was replaced by the deceleration process (see 
below the formulas of system (6)). The impression was 
created that particles in the field of a transverse elec-
tromagnetic wave in a vacuum can be effectively accel-
erated only in a limited region of space. 

In this work, it is shown that the existing exact solu-
tions describing the dynamics of particles in the field of 
a transverse electromagnetic wave and presented in [3 - 
6] do not exhaust all the features of the dynamics of 
particles in such fields. There are other solutions as 
well. This work is dedicated to them. It is shown that 
there is some analogy with the appearance of these new 
solutions and with the appearance of cyclotron reso-
nances. 

1. STATEMENT OF THE PROBLEM  
AND BASIC EQUATIONS 

Consider a charged particle that moves in the field of 
a plane electromagnetic wave, which generally has the 
following components: 
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where 0 0E E б ,  , ,x y zi  б   polarization 

vector of the wave. 
Vector equation of motion of charged particles: 
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Without loss of generality, one can choose a coordi-
nate system in which the wave vector of the wave has 
only two components xk

 
and zk . For the further, it is 

convenient to use the following dimensionless depend-
ent and independent variables: 
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c
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r r . 

The equations of motion in these variables will be as 
follows: 
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where  е б, 0( / )eE mc  ,   kr, k  
unit vector in the direction of the wave vector, 
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 is the dimensionless energy of the parti-

cle (measured in units 2mc ), p  is the momentum of 
the particle. 

Equations (2) have well-known integrals: 

   0
0 0Re Re =constiii e i e      p е k p k е . (3) 

Index "0" denotes the values of the initial variables. 
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2. EXACT SOLUTIONS 
 

Without loss of generality, it is convenient to choose 
such components of the particle momentum 

 , ,p  p p
 

.p  k  

Let us take into account that in this case 
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takes the form: 
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After dividing the left and right sides by the deriva-
tive of the wave phase ( /d d   ), system (4) can 
be rewritten: 
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Taking into account that in the case under considera-
tion   const C    , we easily find the follow-
ing solutions for the momentum components: 
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Such solutions come from the work of D.M. Volkov 
[2] and V.I. Ritus [3]. Within the framework of classical 
electrodynamics, they are presented in [4 - 6]. Such 
decisions are often called exact decisions. 

It can be shown that these solutions do not exhaust 
all solutions to the problem posed. There are other solu-
tions. To see this, let's go to the Cartesian coordinate 
system. In this system, the vector equation (2) takes the 
form: 
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where /p dp d .      
System of equations (7) also has rigorous solutions. 

To obtain these solutions, we direct the wave vector of 
the wave along one of the axes of the Cartesian coordi-
nate system. Then the solutions of this system will be 

solutions that coincide with the exact solutions (6). 
Indeed, let as an example the wave vector of an elec-
tromagnetic wave is directed along the z-axis. The wave 
vector has no transverse component ( 0; 1;x zk k 

 
0; 1; 0x z z  е ). Then the system of equations (7) turns into the 

system of equations, which was considered above (5). 
Thus, the exact solution is accurate only if the wave 
vector of the wave coincides with one of the compo-
nents of the momentum of the particle and one of the 
axes of the coordinate system can be associated with 
this component. 

In the general case, such a choice cannot be made, 
and there is no simple rigorous solution. It can be seen 
from the system of equations (7) that the presence of the 
transverse wave number of the wave does not allow one 
to obtain such simple solutions. This is due to the fact 
that in the presence of a transverse wave number, the 
expression   is no longer an integral. To find some 
analytical results of particle dynamics, it is convenient 
to use the new variables 

cosxp p  , sinyp p  , 2 2
x yp p p   , 

sin ,px  


 
  

,zp p   
cos .py  


 


(8) 

These new variables explicitly take into account the 
oscillatory dynamics of particles in the transverse direc-
tion. Transverse dynamics and phase dynamics in these 
new variables are described by the equations 
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For what follows, it is convenient to use the expan-

sion formulas (see, for example, [7]) 
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A fairly simple analysis of the dynamics of particles 
can be carried out at small values of the transverse com-
ponent of the wave vector of the wave 
(  1; 1 1x zk k   ). It turns out that new results 

can be obtained by taking into account the value xk  

only in the expressions for the phases. xk
.
Then the 

second equation (the equation for the phases) of the 
system (9) takes the form: 
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here 1  ,   zp const     .  
The main role in the sum will be played by those 

members in which the phase will not change. The condi-
tions for the stationarity of the phases will be resonance 
conditions. Let the term with 0n   be the stationary 
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member. Then the equation for the phase (10) can be 
replaced by the equation: 

 1 1 sin ,zv
p
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where  z     . 
The first bracket on the right side of equation (11) is 

positive. We will consider the relativistic case. In this 
case, it is small and only decreases with acceleration. If 
the transverse energy of the particles does not change, 
then equation (11) resembles the Adler equation in the 
theory of synchronization (see, for example, [8]). 

At p 
 
there is a stationary state ( 0m  ). If 

cos 0m  , then this stationary state will be stable. 
However, the dynamics of particles is described not 
only by Eq. (11), but also by equations for transverse 
and longitudinal momentum. They must be taken into 
account. 

So the equation for the longitudinal impulse is: 
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We will leave only the stationary term in the sum of 
the right-hand side. We will assume that the phase is 
stationary at 0n  . Then equation (12) is simplified: 

0 ( ) cosz m
pp J 

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Taking into account that in the considered approxi-
mation ~ 1xk  , we find that the value of the 
longitudinal impulse depends on time according to the 
law, which is characteristic of resonances: 
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Similar considerations that were used for the defini-

tion zp give: 
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The magnitude of the transverse momentum also 
grows linearly with time. However, the slope of this 
linear function has a small factor, which is proportional 
to the transverse wave number ( 1xk  ): 

(0) cos
2

x
m

kp p   
     
 

.        (16) 

When obtaining (16), we took into account what 
   1 1 0z z z x xv k v k v      and what can be esti-

mated the value of this bracket by the value xk . Thus, 
asymptotically there are such time dependences 

;z xp p k         .          (17) 
Let us now return to the phase equation (11). Taking 

into account the asymptotics (17), this equation can be 
rewritten: 
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Thus, asymptotically m const  . The set of results 
obtained from the analysis of equations (10) - (18) indi-

cate that, within the framework of the formulated condi-
tions, the resonant acceleration of charged particles 
(electrons) by the field of a regular transverse wave in a 
vacuum is realized. 

3. NUMERICAL ANALYSIS 
The analytical results obtained above are largely of 

an evaluative, asymptotic nature. To clarify the condi-
tions under which the resonant acceleration of particles 
by the field of a transverse electromagnetic wave in vac-
uum is realized, a series of numerical calculations of the 
system of equations (2) was carried out. We note right 
away that good qualitative agreement was obtained be-
tween the numerical and analytical results. Typical results 
of numerical calculations are presented in Figs. 1-3. 

 
Fig. 1. Dependence of the longitudinal impulse  
on time at: 2  =2; Pz=2; Px=0.5; 0.1   

Figs. 1, 2 show the results of numerical analysis for 
the values of the initial conditions and wave parameters 
that correspond to the onset of particle capture in reso-
nance acceleration. Unlimited acceleration of charged 
particles is seen. The value of the longitudinal impulse 
grows linearly throughout the counting time (see Fig. 1). 

 
Fig. 2. Dependence of the transverse momentum  

on time at: 2  ; Pz=2; Px=0.5; 0.1   

Moreover, the growth rate of the transverse impulse 
(see Fig. 2) is in accordance with formula (16), namely, 
it is 10 times less than the velocity of the longitudinal 
impulse. This is consistent with the fact that the trans-
verse wavenumber xk is 10 times less than the longitu-
dinal wavenumber ~ 0.1x zk k . Comparing formulas 
(14)-(18) with the results of numerical calculation, one 
can claim that there is a good qualitative agreement 
between them. The process of effective interaction 
breaks down when the value of the transverse wave 
vector is reduced by a factor of 10 ( ~ 0.01x zk k ). The 
dynamics of particles at these values of the parameters 
is shown in Fig. 3. 

This dynamics practically does not differ from the 
one described in [4]. Effective (resonant) acceleration 
does not occur in this case. Disruption of the capture of 
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particles into an unlimited resonant acceleration will 
also occur when its transverse momentum is greater 
than the wave force parameter  xp  . This situation 
corresponds to the case when the synchronization proc-
ess, which is described by the Adler equation (11), does 
not have stationary stable points. 

 
Fig. 3. Dependence of the longitudinal impulse  
on time at: 2  ; Pz=2; Px=0.5; 0.01   

Note that if the longitudinal momentum of the parti-
cle is large enough, then capture into resonance accel-
eration is possible even when the wave force parameter 
is less than unity. 

We also note that all the features of the dynamics of 
particles in the field of a wave with linear polarization 
are qualitatively similar to the features of the dynamics 
of particles in the field of a wave with circular polariza-
tion. 

CONCLUSIONS 
Let us note the most important results obtained in 

this work: 
1. In a vacuum, a transverse electromagnetic wave 

can effectively (resonantly) accelerate charged particles. 
Moreover, the acceleration is performed by both a circu-
larly polarized wave and a linearly polarized wave. 

2. Note that rigorous solutions of particle dynamics 
can be found only if the expression   is an integral. 

3. The larger е and (0)zp  the easier the capture of 
particles in the resonance acceleration mode occurs. 
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ОБ ЭФФЕКТИВНОМ УСКОРЕНИИ ЗАРЯЖЕННЫХ ЧАСТИЦ В ВАКУУМЕ 
 

В.А. Буц, А.Г. Загородний 
 

Изложены результаты исследования динамики частиц в полях поперечных электромагнитных волн 
большой амплитуды. Основное внимание обращено на описание обнаруженных условий, при выполнении 
которых возможна эффективная  передача энергии волны заряженным частицам в вакууме. 

 

ПРО ЕФЕКТИВНЕ ПРИСКОРЕННЯ ЗАРЯДЖЕНИХ ЧАСТИНОК У ВАКУУМІ 
 

В.О. Буц, А.Г. Загороднiй 
 

Викладено результати дослідження динаміки частинок у полях поперечних електромагнітних хвиль ве-
ликої потужності. Основна увага звернена на опис виявлених умов, при виконанні яких можлива ефективна 
передача енергії хвилі до заряджених частинок у вакуумі. 


