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INTRODUCTION 
Inhomogeneous Travelling-Wave Accelerating Sec-

tions (ITWAS) have been (and are) the workhorse of 
accelerating technology for more than half a century. 
Several thousand different sections were manufactured 
and used in linacs. Only one linac (SLAC) included 960 
sections [1]. ITWASs are in fact chains of coupled reso-
nators connected with two external waveguides. This 
apparent simplicity of structure is very deceiving. The 
reason is that the homogeneous periodic waveguide has 
the infinite number of eigen waves, most of which do 
not propagate (evanescent waves). Any inhomogeneity 
leads to the appearance such fields that decay exponen-
tially from the interface at which they are formed. In 
ITWAS there are many small discontinuities with small 
field disturbance. Developing an electrodynamic model 
that combines propagation and evanescence is not an 
easy task. This is proved by the fact that before “com-
puter age”, as we know, only one mathematical model 
that could rigorously describe characteristics of IT-
WASs was developed [2].  

Today, using various computer programs, we can 
simulate almost any accelerating sections (see, for ex-
ample, [3, 4]). However, the complexity of the results 
obtained, their strong dependence on the grid parame-
ters and impossibility of using approximate analysis still 
make the development and use of semi-analytical ap-
proaches actual. 

Two approximate approaches were mainly used to 
describe ITWASs: a coupled cavity model [5 - 17] and a 
waveguide approximation [18 - 25]. While the first ap-
proach is based on the strict physical and mathematical 
foundation, the necessities of use many eigen modes, 
difficulties of coupling coefficient calculation and tak-
ing into account the losses in walls made the definition 
of parameters of coupled cavity models very approxi-
mate. Nevertheless, these models were useful in practice 
and together with developer skills gave good results.  

The second approach is based on assumption that 
there are such slow parameter changes under which 
there are no practical differences between equations of 
homogeneous and inhomogeneous waveguides. Under 
such assumption, we can transform the definition for 
homogeneous waveguide 2

0 /serR E P  ( serR   serious 
impedance, 0E   amplitude of the principal space har-

monic) into an equation 2
0( ) ( ) / ( )serR z E z P z , which is the 

base of this approach. It was a useful assumption, but 
nobody knows accuracy of the obtained results.  

Smooth approximate models are widely used, espe-
cially in the study of beam current loading and transient 
effects, but so far the notion of spatial averaged electric 
field in the model equations (together with model equa-
tions) has not yet been rigorously defined.  

Approximate model equations are used with parame-
ters that are the slow functions of coordinate. Under 
assumptions of these models in the considered struc-
tures there are only two independent (forward and 
backward) waves which characteristics slowly change 
along the waveguide. Evanescent wave are ignored in 
these models. These features arise in mathematic phys-
ics when we use asymptotic expansions. It is obvious 
that approximate models are based on the several first 
equations of the asymptotic expansion chain of the solu-
tions of the exact equations (if such equations exist). 
But at what level: on the equations of the zero (Eikonal) 
or first (WKB) order?  

The possibility of using the WKB approach to de-
scribe the ITWAS gives not only a simplification of the 
calculation. It also allows the use of simpler physical 
models of transient processes. Using the traveling wave 
concept simplifies the understanding of pulsed-excited 
ITWAS transients and the development of methods to 
mitigate their effect on beam parameters.  

Difficulties in describing the ITWASs arise from the 
fact that there were not obtained closed and rigorous 
equations (except the Maxwell equations with boundary 
conditions) for parameters of the ITWAS from which 
we could obtain approximate models by using different 
mathematic methods.  

There are works that study waves in slowly varying 
band-gap media on the base of analyses of differential 
operators without assumption  that the wavelength is long 
compared with the size of the repeating cell (see, for ex-
ample, [26 - 30] and cited there literature). Results ob-
tained in these works cannot be used for description IT-
WASs as there are no suitable smooth differential opera-
tors. Taking into account this circumstance it was pro-
posed to use difference equations to describe ITWASs 
[31]. The first attempt was made on the base of the cou-
pled cavities model that was developed with using many 
eigen modes and rigorous calculation of coupling coeffi-
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cients, but without losses in the walls [16]. Obtained 
difference equations that connect the values of electric 
field in different points of resonators correctly describe 
the main waves but also contain different spurious oscil-
lations. The reason of appearance of spurious oscillations 
and its influence on the solutions are not quite clear. 

To explore other possibilities of using difference 
equations and approximate methods, we propose a sim-
ple but rigorous model of ITWAS [32]. This model is 
based on the method of Coupled Integral Equations 
(CIE) [33]. In paper we also present the results of the 
development of approximate methods for the analysis of 
this model. Using the theory of solving matrix equations 
[34, 35] and the decomposition method [36], we ob-
tained new matrix difference equations, on the basis of 
which various approximate approaches, including the 
WKB approach, can be developed. 

It is worth to note that the unknowns in the matrix 
difference equations are vectors which components are 
the moments of electric fields on the surfaces that divide 
the chain resonators. Determining these moments gives 
possibility to calculate electromagnetic fields in any 
point of resonator. Therefore, proposed equations are 
not direct equations for the electric field. This circum-
stance makes it difficult to analyze the foundations of 
the equations that are currently used.  

1. CHAIN OF THE FINITE NUMBER  
OF RESONATORS. BASIC EQUATIONS 
Consider a chain of cylindrical resonators with annu-

lar discs of zero thickness. The first and last resonators 
are connected through cylindrical openings to semi-
infinite cylindrical waveguides. The geometry of the 
chain is shown in Fig. 1. All resonators are filled with 
dielectric ( , 0i        ). We will consider 
only axially symmetric fields with , ,z rE E H  compo-
nents (TM). Time dependence is exp( )i t . In each 
resonator we expand the electromagnetic field with the 
waveguide modes 
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[0, ], [0, ]k kz d r b  .   
In the waveguides the electromagnetic field can also 

be decompose in terms of TM modes ( 1, 2k  ) 
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The boundary conditions at the interface kz z  require 
the continuity of the tangential magnetic fields across 
the apertures at kz z  ( 2,3,... Rk N ) 
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Substituting ( )
,
k

s   from (4), we get 
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We will use the Moment Method to solve the system 
of coupled equations. Multiplying the right and left 
sides of this relation by a testing function 

 / , 1, 2...,s k mr a s N     and integrating with re-
spect to r  from 0 to ka , we get mN  equations 
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For the first and last resonators we have 
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Fig. 1. Chain of resonators with two waveguides 

 
Using the same procedure, we get 
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The tangential electromagnetic field ( )( , )k
r kE r z d  we 

expand in terms of a set of basis functions  /s kr a  
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The boundary condition for electric field at the junc-
tion kz z  can be written as 
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Using the completeness and orthogonality of Bessel 
functions  1 /sJ r b , we obtain ( 1, ... , Rk N ) 
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where 
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Consider the case when the dimensions of two 
waveguides are chosen such that only the dominant 
mode 01TM  propagates, and the higher-order modes are 
all evanescent. We will suppose that there is an incident 
wave that travels from z    with amplitude (1)

1 1G   
( (1) 0, 2sG s  ).  

Then the boundary condition for electric field at the 
junction of the first waveguide and the first resonator 
( 1z z ) gives relations 

 

 

2
(1) (1,1) (1)1 1
1 ,12 2 (1)

1 1 ,1 1 ,1

2
(1) (1,1) (1)1

,2 2 (1)
1 ,1 ,1

1 2 ,

2 .

m

m

N

s s
sw w

N
s

s s s s
ss w s w

a
G R C

J b b

a
G R C

J b b






 


 

 


 


  






  (25) 

Using the same procedure at the junction 1RNz z  , 

we get ( 1,2,..., ms N ) 
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For the case of one diaphragm between two circular 
waveguides we obtain  
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Substitution (25) and (26) into (27) gives such sys-
tem 
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2. COUPLED INTEGRAL EQUATION 
MODEL 

Substitution (23) into (15) gives ( 1RN  ) systems 
from  1RN   necessary systems1 of the CIE technique 
[33]. 
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From (19) and (20) we obtain two additional sys-
tems 

                                                        
1 We have ( 1RN  ) interfaces. 



ISSN 1562-6016. ВАНТ. 2021. № 3(133) 31 

 

 

,1(1,1) (1) (1,3) (2) ( ,1)
, , , ,1

1 1 1 1

( 1,4) ( ) ( 1,2) ( 1)(2)
, , ,

1 1

,

0,

m m

m m
R R R R

N N
w w

s s s s s s s s
s s

N N
N N N N

s s s s s s s s
s s

b
T W T C R

a

T C W T C

 


 

    
  

  
    

  

  

  

 

 
(32) 

where 
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The reflection and transmission coefficients are 
given by  

 
2

(1) (1,1) (1)1 1
1 ,12 2 (1)

1 1 ,1 1 ,1

1 2
mN

w s s
sw w

aR G R C
J b b


   



    ,  (35) 

 

2
1 1 ( 1,2) ( 1)(2)

1 ,12 2 (2)
1 1 ,2 1 ,2

2 m
R R R

N
N N N

w s s
sw w

a
T G R C

J b b


 
  

 


    .(36) 

Electric field in the k-th resonator can be calculated 
by summing the relevant sequences  
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Therefore, the set of systems (in matrix form) of the 
CIE Model are ( 2,3,..., ,Rk N ) 
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where ( ) ,kT W  are  m mN N  complex matrices, 
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We can rewrite  (39) as 
T C R   ,                         (40) 

where T  is a block-tridiagonal matrix, 
 ( 1)(1) (2), ,..., RNC C C C   . Block tridiagonal systems 

of linear equations are of great interest since they are 
encountered in a wide variety of problems, in particular, 
in discrete differential equations (see, for example, [37] 
and the literature cited there). 

3. NUMERICAL IMPLEMENTATIONS  
OF THE MODEL  

In our models we have to make several choices: the 
kind and the number mN  of the basis functions n  and 
the testing functions n , and the upper limit mL  of 
summation in the sums for calculation of matrix ele-
ments ,s sT  . 

In this work we used the entire-domain basis and 
testing functions. We considered several sets that give 

analytical expressions for the Hankel transform (24) 
(coefficients ( )R  ). The simplest case (J-J) is the use 
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In this case the edge behavior of electric field is not 
incorporated into the algorithm. The second case (M-J) 
is the use the Bessel functions as the testing functions 

1( ) ( ), [0,1]s sx J x x    and the complete set of func-
tions that fulfil the edge condition on the diaphragm 
rims as the basis functions (the Meixner basis). We use 
such Meixner basis [38] 
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There exist useful integral for our consideration  

   
1

1 2 1 2 0.5
0

( ) ( )
2s s st J x t tdt j x J x

x


    , (46) 

1
( ,1)
, 1 2 1 0.5

0

1
( ,1) 1
, 1 2 1 0.5

1 1 10

( ) ,
2

( ) .
2

k k m k m k k m
m m m m m

k k k m k

k k m k m k k m
m m m m m

k k k m k

a a b a
R x J xdx j J

b b a b

a a b aR x J xdx j J
b b a b





   




   




    


    

  

     
       

     
     

       
     





(47) 

 

The third case (M-M) is the use the Meixner basis as 
the basis and testing functions.  

The simplest geometrical configuration that can give 
estimations about the “quality” of the chosen sets of 
functions is the one thin diaphragm in the cylindrical 
waveguide. Few calculations were performed to obtain 
the characteristics of the scattering TM waves on the 
circular diaphragm [40 - 43], so we studied the numeri-
cal convergence of the results that was obtained with 
using the Moment Method. It is known that the Moment 
Method can lead to ill-conditioned systems of linear 
equations (see, for example, [44 - 47]).  

We studied diffraction of 01TM  wave on the circular 
diaphragm (frequency f  2.856 GHz, waveguide ra-
dius 1 2w wb b  4.2 cm, aperture radius a  1.5 cm). 
From calculation results we can make such conclusions: 

- there is a wide range of parameters for which the 
system of linear equations (39) is not ill-conditioned and 
we can get results with acceptable accuracy; 
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- using all three sets of functions gives similar re-
sults; 

- accuracy of J-J sets is worse than M-J and M-M; 
- accuracy of M-J sets is the same as M-M sets; 
- accuracy of amplitude calculations in the fourth 

sign and hundredths of a degree in phase is achieved at 
mN = 2 and mL = 500 for the M-J and M-M cases. 
The correctness of the calculation results is con-

firmed by comparison with the experimental results 
[40]. 

Bellow we will be use the M-J representation with 
mN = 2 and mL = 500.  
Analysis of more complicated system (wave diffrac-

tion on the two coupled resonators 
1 2 1 2w wb b b b    4.2 cm, aperture radius a  1.5 cm) 

shows that chosen values of the number of functions 
give acceptable accuracy of field calculation too.  

4. TRANSFORMATION OF THE BASIC 
EQUATIONS 

Matrix equations (39), that describe the finite chain 
of resonators, we can rewrite as: 
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1

1 1

(2,1) (2,2) (2) (2,3) (3) ( ,4) (1)

( 1) ( ,4) ( 1) ( ) ( )

( ,1) ( ,2) ( ) ( ,3) ( 1) ( ,4) ( 1)

( 1,4) (

,

0,

, 3,4,..., 1,

0,R R R R R R R

R

w w

k

k k k k k
R

N N N N N N N

N N

b
T W C T C R

a

T T C T C T C

C T C T C k N

T T C T C T C

T C

 




 

 



  

   

   

   

 

 ) ( 1,2) ( 1)(2) 0,R R RN NW T C    

(48) 

where 
( ) ( ,1) ( , 2)

( ) ( ,3) 1 ( )

( ,4 ) ( ,3) 1 ( , 4)

,

,
.

k k k

k k k

k k k

T T T
T T T
T T T





 








                     (49) 

We separated the equations for the first two and the 
last two resonators from the others, since when the 
waveguides are matched to the chain, the first and last 
resonators can be very different from the rest. 

WKB asymptotic approximation theory (see [48] 
and the literature sited there) was developed for a class 
of almost-diagonal (‘asymptotically diagonal’) linear 
second-order matrix difference equations  

( 2) ( ) ( 1) ( ) ( ) 0k k k k kC A C B C    ,       (50) 
by transforming them into the form 

( 2) ( 1) ( ) ( ) ( )2 0k k k k kC C C G C     .  (51) 
We shall transform (50) into the other form 

( 2) ( ) ( 1) ( 1) 0k k k kC C G C     .         (52) 
We use the procedure similar to that was used in 

[35]. 
In equation ( 3,4,..., 1Rk N  ) 

( 1) ( ,4) ( 1) ( ) ( )k k k k kC T C T C                      (53) 
we put ( 2,3,..., Rk N ) 

( ) ( ) ( )k k kC C   ,                               (54) 
with invertible matrices ( )k . 

Suppose that the matrices ( )k  satisfy the equation 
( 2) ( 1,4) ( )k k kT    ,                           (55) 

with (2) (3) I    , I  the unit matrix. 

Solution of equation (55) is ( 2,3,....n  ): 
(2 ) (2 1,4) (2 1) (2 ,4)

2 2
, .

n n
n s n s

s s
T T 

 

                (56) 

Equation (53) takes then the form 
( 3,4,..., 1Rk N  ) 

( 1) ( 1) ( ) ( ) ,k k k kC C T C                            (57) 

where ( ) ( 1) 1 ( ) ( )k k k kT T      
As the equation (57) is of the second order, we rep-

resent the solution of the matrix difference equation (57) 
as the sum of two new vectors [36] ( 2,3,..., Rk N ) 

( ) ( ,1) ( ,2) .k k kC C C                             (58) 
By introducing two new unknowns ( , )k iC  instead of 

the one ( )kC , we can impose an additional condition. 
This condition we write in the form ( 2,3,..., 1Rk N  ) 

( 1) ( ,1) ( ,1) ( ,2) ( ,2) ,k k k k kC M C M C                  (59) 
where ( , )k iM  are the arbitrary invertible matrices. 

Using (58) and (59) we can rewrite (57) as 
( 2, 4,..., 2Rk N  ) 

    
  

    
  

( 1,1) ( 1,2) ( 1,1) ( 1) ( 1,2) ( ,1) ( ,1)

( 1) ( 1,2) ( ,2) ( ,2)

( 1,2) ( 1,1) ( 1,2) ( 1) ( 1,1) ( ,1) ( ,1)

( 1) ( 1,1) ( ,2) ( ,2)

,

.

k k k k k k k

k k k k

k k k k k k k

k k k k

M M C T M M I C

T M M I C

M M C T M M I C

T M M I C

    

 

    

 

    

  

    

  

 

 

 

 

(60) 

Let's choose matrices ( , )k iM ( 1, 2i  ) so that they 
satisfy quadratic matrix equations ( 2, 4,..., 2Rk N  ) 

 ( 1) ( 1, ) ( 1, )k k i k iT M M I    .                   (61) 

It should be noted that these equations do not define 
(2, )iM . As ( , )k iM  can be chosen arbitrary, we shall take 
(2, ) (3, )i iM M . 
Then (60) transforms into 

   
   

   
 

( 1,2) ( 1,1) ( 1,2) ( 1,1) ( 1,1) ( 1,2) ( ,1)

( ,2) ( 1,2) ( ,2) ( ,1) ( 1,1) ( ,1)

( 1,1) ( 1,2) ( 1,1) ( 1,2) ( 1,2) ( 1,1) ( ,2)

( ,1) ( 1,1) ( ,1) ( ,2) (

k k k k k k k

k k k k k k

k k k k k k k

k k k k k

M M M C M M C

M M C M M C

M M M C M M C

M M C M M

     

 

     

 

   

   

   

   

 



 

  1,2) ( ,2).kC

,(62) 

It can be shown that in our case2 the matrix ( )kT  is 
nondefective, and can be decomposed as 

( ) ( ) ( ) ( ) 1,k k k kT U U                               (63) 
where ( )kU  is the matrix of eigen vectors and 

( ) ( ) ( ) ( )
1 2( , ,..., )

m

k k k k
Ndiag     , ( )k

i   eigen values. 
Then the solutions of quadratic equations (61) are 

( , ) ( ) ( , ) ( ) 1k i k k i kM U U   ,                     (64) 
where ( , ) ( , ) ( , ) ( , )

1 2( , ,..., )
m

k i k i k i k i
Ndiag      and ( . )k i

s  are 
the solutions of the characteristic equations 

                                                        
2 The infinitive uniform disk-loaded waveguide has 2 mN  differ-

ent independent solutions (waves). We can expect that this property 
will be correct for inhomogeneous waveguide too, at least for the case 
of slowly varying parameters. 
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( , )2 ( ) ( , )

2( ,1) ( ) ( )

2( ,2) ( ) ( )

1 0,

/ 2 / 2 1,

/ 2 / 2 1.

k i k k i
s s s

k k k
s s s

k k k
s s s

  

  

  

  

  

  

                (65) 

The matrices ( , )k iM  have the same eigen vectors, 
therefore they are commutative. As ( ,1) ( ,2) 1k k

s s   , the 
matrices ( , )k iM  satisfy the condition  

( ,1) ( ,2)k kM M I .                           (66) 
Using these properties we transform (62) into 

( 2, 4,..., 2Rk N  ) 

   
 

   
 

( 1,1) ( ,1) ( ,1) ( 1,1) ( ,1) ( 1,1) ( ,1)

( 1,1) ( ,2) ( 1,2) ( ,2)

( 1,2) ( ,2) ( ,2) ( 1,2) ( ,2) ( 1,2) ( ,2)

( 1,2) ( ,1) ( 1,1) ( ,1)

,

,

k k k k k k k

k k k k

k k k k k k k

k k k k

C M C M I M M C

M M M C

C M C M I M M C

M M M C

  

 

  

 

    

 

    

 

  



  



(67) 

where  

 
 

    
    

1( ,1) ( ,2) ( ,1) ( ,2) ( ) ( ,1) ( ) 1

1( ,2) ( ,1) ( ,2) ( ,1) ( ) ( ,2) ( ) 1

11( ,1) ( ,2)2 ( ,2)2
1

11( ,2) ( ,1)2 ( ,1)2
1

,

,

1 ,..., 1 ,

1 ,..., 1 .

m

m

k k k k k k k

k k k k k k k

k k k
N

k k k
N

M M M M U U

M M M M U U

diag

diag

 

 

 








     

     

   

   

 

 





(68) 

As ( 1,1) ( 1,2)k kM M I    , then from (67) we get 
( 1) ( 1,1) ( 1,2) ( ,1) ( ,1) ( ,2) ( ,2) .k k k k k k kC C C M C M C          (69) 
This matches the condition (59). 
If elements of matrices ( , )k iM  vary sufficiently 

slowly with k , then the differences ( 1, ) ( , )
, ,
k i k i

s m s mM M   are 
the small values and we can neglect them (Eikonal ap-
proximation) 

( 1,1) ( ,1) ( ,1)

( 1,2) ( ,2) ( ,2)

,

.

k k k

k k k

C M C
C M C









 
 

                      (70) 

If we neglect only nondiagonal terms in (67) we get 
the WKB approximation 

  

  

( 1,1) ( 1,1) ( ,1)

( 1,1) ( 1,1) ( ,1) ( 1,1) ( ,1)

( 1,2) ( 1,2) ( ,2)

( 1,2) ( 1,2) ( ,2) ( 1,2) ( ,2)

,

.

k k k

k k k k k

k k k

k k k k k

C M C

M M M M C

C M C

M M M M C

 

  

 

  

 

  

 

  

 




 



  (71) 

Finally, we can wright the transformed system 

   

   

,1(1,1) (1) (1) (1,3) (2,1) (2,2) ( ,1)
1

1 1

(2) (2,1) (2,2) (2,3) (3,1) (3,2) (2,4) (1)

,

0,

w wb
T W C T C C R

a

T C C T C C T C

 


   

    

 

   
(72) 

 
 

( 1,1) ( 1,1) ( ,1) ( 1,1) ( ,2) ( 1,2) ( ,2)

( 1,2) ( 1,2) ( ,2) ( 1,2) ( ,1) ( 1,1) ( ,1)

2,3,..., 2,

,

,

R

k k k k k k k

k k k k k k k

k N

C M C M M M C

C M C M M M C

   

   

 

  

  

   

   

(73) 

 
 
 

 

( ) ( ) ( 1,1) ( 1,1) ( 1,2) ( 1,2)

( ,4) ( 1) ( 1,1) ( 1,2) ( ,3) ( 1)

( 1,4) ( ) ( 1,1) ( 1,1) ( 1,2) ( 1,2)

( 1,2) ( 1)(2)

0,

0.

R R R R R R

R R R R R R

R R R R R R

R R

N N N N N N

N N N N N N

N N N N N N

N N

T M C M C

T C C T C

T M C M C

W T C





   

   

    

 

  

    

  

  

 

 

 
 (74) 

Electric field in the k-th resonator can be calculated 
by summing the relevant sequences ( 0 ,k kz d  ) 

( ) ( ) ( ) ( ) ( 1)
,1 ,2

1 1
( , 0) ,

m mN N
k E k k E k k

z k s s s s
s s

E z r T C T C 

 

    (75) 

where 
( ) ( ,1) ( ,2) ( ) ( ,1) ( ) ( ,2)k k k k k k kС С С С С      .  (76) 

As in the WKB and Eikonal approximations the ma-
trix equations (70) and (71) have the analytic solutions, 
we can greatly simplify the system (72). Under this, it 
should be borne in mind that one part of the field is de-
scribed by growing solutions when moving in the posi-
tive direction of the waveguide axis; therefore, it is nec-
essary to calculate the field by moving in the negative 
direction. It is also convenient to use vectors ( , )k iC  as 
they determine the values of electric field (see (75)). 

Such simplified system of equations is 
( 1,1) ( ,1) ( ,1)

( ,2) ( 1,2) ( 1,2)

, 2,3,..., 2,

, 2,...,3, 2,

k k k
R

k k k
R

C C k N
C C k N



 

   

   
      (77) 

where 

 
( ,1) ( 1) ( 1,1) ( ) 1

1
( 1,2) ( ) ( 1,2) ( 1) 1

,

.

k k k k

k k k k

M

M

  


   

   

   



           (78) 

Boundary values of vectors  ( ,1) (2,1)kC C  and 

 ( 1,2)( ,2) RNkC C   are defined by equations 

 

 
 

(1,1) (1) (1) (1,3) (2,1)

,1( 1) 1 ( 1,2)(1,3) ( ) ( ,1)
1

1 1

(2,4) (1) (2) (2,3) (3,1) (2,1)

( 1) 1 ( 1,2)(2) (2,3) (3,2) ( )

,

0,

R R

R R

wN N w

N N

T W C T C

b
T M C R

a

T C T T M C

T T M M C



 




  

  

  

  

   

   

    (79) 

 
 

( ) ( ) ( 1,1) ( ,4) ( 1) ( ) (2,1)

( ) ( ) ( 1,2) ( 1) 1 ( ,4) ( 1,2)

( ,3) ( 1)

( 1,4) ( ) ( 1,1) ( ) (2,1)

( 1,4) ( ) ( 1,2) ( 1) 1 ( 1,2)

((2)

0,

R R R R R

R R R R R R

R R

R R R

R R R R R

R

N N N N N

N N N N N N

N N

N N N

N N N N N

N

T M T M C

T M T C

T C
T M M C

T M C

W T







  

   



  

    

   

    

 

 

   

  1,2) ( 1) 0,RNC  

(80) 

where  

 
1 3 1

( ) ( ,1) ( ) ( ,2)

3 1

, .
R

R

N
k k

k k N
M M M M

 
 

  

            (81) 

This system of equation is more suitable for simula-
tion as we have to solve a system of linear equations 
which dimension is fixed and equals to 8. This makes 
possible to consider any number of resonators RN . 
Comparison of results of calculation by using this sys-
tem and the one based on the solving the full system of 
linear equations (72) - (74) in the WKB approximation 
shows their good coincidence (error is up to 1.E-7)  

5. INFINITE HOMOGENEOUS CHAIN 
If we omit the presence of boundaries for the uni-

form chain of resonators ( kb b , ka a ), we obtain 
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the equations describing an infinite homogeneous disk-
loaded waveguide 

( 1,1) (1) ( ,1)

( 1,2) (2) ( ,2)

,

.

k k

k k

C M C

C M C









 
 

                           (82) 

For the uniform chain of resonators matrices 
( )k I   and  ( , ) ( , )k i k iC C  . 

It can be shown that the general solutions of the dif-
ference matrix equations (82) are 

( , ) ( ) ( )

1

mN
k i i i k

s s s
s

C B U


 ,                     (83) 

where ( )i
sB   are constants, s  (characteristic or Floquet 

multipliers) are the solutions of the characteristic equa-
tions 

2 1 0s s s     ,                           (84) 
with s  and sU  that are eigen values and eigen vectors 
of matrix T  

s s sTU U .                                (85) 
From (84) it follows that  

,1 ,2 1s s   .                                 (86) 
This property of the Floquet multipliers (along with 

the assumption that 0  ) guarantees that problem 
(72) - (74) is well-conditioned, at least in the case when 
matrix elements are slowly changing [48]. 

Analysis of the solution (83) shows that representa-
tion (58) is not a trivial decomposition into forward and 
backward waves. Decomposition (58) with the  condi-
tions (59)  and (61) divide the solution of matrix differ-
ence equation (57) into two parts  each of which is  gen-
eralization of concepts forward and backward waves, 
especially in the case of inhomogeneous waveguides. 

Starting from the mN -dimensional system, in the 
case of homogeneous waveguide we can obtain the dif-
ference equation that describes the behavior of one 
component of the variables ( )kC , say ( )

1
kC . The above 

solution of equation for ( )kC  (83) shows that the charac-
teristic equation of this difference equation must have 
roots that coincide with the 2 mN  eigenvalues s . 

The general form of this equation can be prompted 
by considering the simplest case 2mN   in system (48) 
for infinite chain 

 
 

( 1) ( 1) ( ) ( )
1 1 1,1 1 1,2 2

( 1) ( 1) ( ) ( )
2 2 2,2 2 2,1 1

,

.

k k k k

k k k k

C C T C T C

C C T C T C

 

 

  

  

 

  .          (87) 

We introduce the commutative operators iL


 

,i i iL T    
    ,                       (88) 

where  ( ) ( 1)k kb b      and  ( ) ( 1)k kb b       
are shift operators. From (87) we can get such  equation 

1 1,2 ( )
1

2,1 2

det 0kL T
C

T L
 

   

 
 ,                 (89) 

where the operator det


 is defined on the base of rules of 
common determinants3 

                                                        
3 We have deal with commutative matrices. 

1 1,2
1 2 1,2 2,1

2,1 2

det .
L T

L L T T
T L

 
    

              (90) 

It can be shown that in general case we get the equation 

1 1,2 1,

( )2,1 2
1

,1 ,1 2

...

... ...
det 0

... ... ... ...
...

m

m m m

N

k

N N N

L T T

T L
C

T T L

  
 
   

 
   






,  (91) 

with the characteristic equation  
2

1,1 1,2 1,

2
2,1 2,2

2
,1 ,1 2 ,

1 ...

1 ... ...
0

... ... ... ...
... 1

m

m m m m

N

N N N N

T T T

T T

T T T

   

  

   

   

  


   

.(92) 

Numerical calculations show that (84) and (92) give 
the values of s  which coincide with good accuracy. 

It can be shown that equations for other components 
of vector ( )kC  are the same as (91).  

6. FINITE CHAIN OF RESONATORS 
We wrote two computer codes. The first is based on 

the system (39), the second – on the transformed system 
(72) - (74). All results that are given bellow were calcu-
lated with 2mN  4, 500mL  . These codes give prac-
tically the same results. It is confirmed by results of 
calculation that are presented in Fig. 2 ( =15), where 
differences between amplitudes of electric fields at the 
centers of resonators calculated on the base of systems 
(39) and (72) - (74) for homogeneous and inhomogene-
ous waveguides with 60 resonators are given 
( 1 60d   3.4989 cm, 2 59b    4.16595 cm, 

1 60b b  4.19825 cm, 1 61a a   1.7661 cm, 
f  2.856 GHz, changes in the size of the apertures are 

shown in Fig. 3). Here and below we consider the 
propagation of an incident 01TM  wave with a unit am-
plitude through the disk-loaded waveguide (DLW), 
shown schematically in Fig. 1.  
 

 
Fig. 2. Differences between amplitudes of electric fields 

at the centers of resonators calculated on the base  
of systems (39) and (72) - (72) for two DLW:  

homogeneous (1) and inhomogeneous (2) 

                                                        
4 Taking such value we include in consideration one propagation 

wave and one evanescent oscillation. 
5 If Im 0   the differences become greater, but less than 1.E-6. 
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Fig. 3. Dimensions of the apertures considered 

waveguides 
 

 
Fig. 4. Comparisons of electric field amplitude distribu-

tions calculated on the base of  the initial system (39) 
and WKB approximation (71) - (1), the initial system 

(39) and Eikonal approximation (70) - (2) 
At the selected frequency and for a homogeneous 

DLW with 2 59a   1.3 cm (the first disk aperture dis-
tribution (1) in Fig. 3) the phase shift per cell6 in the 
DLW equals 2 / 3 , the reflection coefficient is R   
7.86E-04 (T  0.9999). 

 
Fig. 5. Comparisons of electric field phase distributions 

calculated on the base of  the initial system (39) and 
WKB approximation (71) - (1), the initial system (39) 

and Eikonal approximation (70) - (2) 
Consider the accuracy of WKB approximation in the 

case of IDLW with the geometric dimensions indicated 
above (the second disk aperture distribution (2) in Fig. 3). 
Parameters of this IDLW change along the waveguide at 
a moderate gradient. Results of comparison of electric 
field distributions calculated on the base of systems (39) 

                                                        
6 In the first propagation zone.  

and (71) are presented in Figs. 4 and 5  (1). We also 
present a comparison of the electric field distributions 
calculated on the base of systems (39) and (70) (see 
Figs. 4 and 5 – (2)). 

Results of comparisons show that for moderate gra-
dient of IDLW parameters the WKB approximation 
gives suitable accuracy, while the results of the Eikonal 
approximation differ from the exact ones more signifi-
cantly, especially in the phase distribution. 

CONCLUSIONS 
The presented approach to the description of inho-

mogeneous resonator chains (inhomogeneous disk-
loaded waveguides) can be a useful tool in studying the 
properties of slow wave system. On its basis, various 
approximate approaches have been developed, including 
the WKB approximation. 
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МОДЕЛЬ КОНЕЧНОЙ НЕОДНОРОДНОЙ ЦЕПОЧКИ РЕЗОНАТОРОВ  
И ПРИБЛИЖЕННЫЕ МЕТОДЫ ЕЕ АНАЛИЗА  

Н.И. Айзацкий 

Предложен новый подход к описанию неоднородной цепи связанных резонаторов (неоднородных диа-
фрагмированных волноводов). Получены новые матричные разностные уравнения, основанные на технике 
связанных интегральных уравнений и методе декомпозиции. Разработаны различные приближенные подхо-
ды, включая приближение WKB.  

МОДЕЛЬ КІНЦЕВОГО НЕОДНОРІДНОГО ЛАНЦЮГА РЕЗОНАТОРІВ 
І НАБЛИЖЕНІ МЕТОДИ ЇЇ АНАЛІЗУ 

М.І. Айзацький 

Запропоновано новий підхід до опису неоднорідного ланцюга зв'язаних резонаторів (неоднорідних діаф-
рагмованих хвилеводів). Отримані нові матричні різницеві рівняння, які засновані на техніці зв'язаних інтег-
ральних рівнянь та методі декомпозиції. Розроблені різні наближені підходи, включаючи наближення WKB. 

 


