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The consideration is based on the study of the spectral profile of the synchrotron radiation (SR) line of a relativ-
istic electron orbiting in a circular orbit in the uniform magnetic field. Fast stochastic fluctuations accompanying the
motion of the electron during emission of SR quanta lead to the formation of spectral contour of each SR harmonic
and it’s broadening. It is shown that the joint broadening of the set of harmonics causes broadening of the SR spec-
trum as the whole. The results of numerical calculations on the formation of the final SR spectral density of a rela-
tivistic electron are presented. In order to obtain precision characteristics, the formation of SR density in the fre-
quency range exceeding the critical frequency has been studied.

PACS: 29.20.-c, 41.60.Ap, 29.27.Fh

INTRODUCTION

It is known [1, 2] that in problems of quantum elec-
trodynamics there are not so many examples that have a
complete and exact solution. At the same time, the prob-
lem of finding the photon field emitted by a classical
current, for example, a relativistic electron in a circular
orbit in a uniform magnetic field, is an example of a
completely solvable physical problem. A large number
of works are devoted to synchrotron radiation (SR) of
an ideal electron [3, 4]. There are known expressions
describing the spectral properties of SR. The properties
of SR of relativistic electrons, first of all, include its
unconditional reproducibility and metrological calcula-
bility. Practical use of SR as a calibration radiation
source makes it necessary to study both the reasons that
can distort the ideal SR density and the degree of distor-
tion. The paper considers fast fluctuations accompany-
ing the motion of an electron during emission of SR
quanta and leading to the formation of a contour of each
SR harmonic and its broadening. The joint broadening
of the set of harmonics causes broadening of the SR
spectrum as a whole. An example of the numerical cal-
culation for the formation of the final SR spectral den-
sity of a relativistic electron with energy of 100 MeV is
presented.

THEORETICAL MODEL

Below we will consider the field of photons emitted
by an essentially classical distribution of electric cur-
rent, which does not undergo a reverse reaction during
radiation. Such a current can be represented as a vector

function of coordinates and time J (7,7) .

Unlike the ideal case of circular motion of an elec-
tron in a uniform magnetic field with the Larmor fre-
quency @,, the real motion will never be monochro-
matic. In the ideal case the Hamiltonian H , of the first
Larmor's harmonic of the field will have the form

H, Zha’laf(f)al(f), 1)
and the time-dependent field operators a, (f) and
a, (t) are specified in the absence of perturbations

through the time-independent operators ¢, and @, :
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a,(t)=a,exp(—iot), a/(t)=a exp(iog).
Here we assume that the influence of interactions
that violate the harmonic behavior of the oscillating
field can be taken into account by adding to Hamilto-

nian H, (1) a teem H,, =7f(¢)aa,, which de-
pends on a random function of time. Then, for the total
Hamiltonian H , of the first radiation mode, we obtain
H ,=H,+H,,. Since the stochastic Hamiltonian
H, , commutes with £, , we can consider the Schrdd-
inger equation [1]

LU= fOaaU, 0 @
for the unitary operator U (¢,¢') that obeys the initial
condition U ,(#',¢") = 1. His solution is

U t,0)= exp{— iafaljf(f)df} . 3)

If, due to the classical nature of the current j(7,?),
the field at the initial moment of time ¢ =0 was in co-
herent state ¢, , then at the moment of time ¢ this state
will be

Ia1>=aoexp%wlt—ij;f(r)dr». @)

Here we assume that the random function f(7) isa

stationary Gaussian process with O -shaped time corre-
late operator. Let us find the spectral density w,(®) of
the average number of photons in the Larmor's mode
2 .
w (@)= |O£1| J.dT exp{— i(w—o)r—J, },
L:oc ®)
Jy= Jdn [dn(f @)/ w)
0 0

From (5) it follows that the main contribution to the
broadening of the line contour will come from that

£7(t) part of the process f(¢) for which its correlate

operator contains the ¢ -function
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(1 unf W) =200 -1),  ©
where p is the diffusion coefficient. Property (6) is

possessed, in particular, by such stochastic processes as
the scattering of electrons with each other, as well as
fluctuations caused by the emission of SR quanta [3].
For the latter, you can get

2 2
(7 t)f @) Z%%f«;} N&(t,~1,)> )
where p is the orbital densification coefficient, E is
the electron energy, R is the radius of curvature of the
orbit, <R> is the average radius, <8§> is the average
square of the energy of the emitted quanta, ¢t is the

damping coefficient of synchrotron oscillations, N is
the frequency of emission of quanta. From here we can
write
2 2
2437 (R) (1-m)(3-4n)

where ¥ is the relativistic factor, A is the Compton

wavelength of the electron, 7 is the decay rate of the
guiding magnetic field. Now, for the spectral density of

the average number of photons W, (@) in the Larmor's

mode, after integration into (5), we obtain the Lorentz
line contour

we="t— L)
7 (a)_a)]) +(/Ja)])
in which w, is the total number of photons in the mode.
The contour (9) of the first mode has a width
Aw, = o, proportional to diffusion coefficient 1 .

In the absence of stochastic perturbations of the
ideal equilibrium orbit of an electron, the spectral line
profile of the first Larmor's mode has zero width. From
(9) it follows that phase fluctuations leave the total ra-

diation power W, in the Larmor mode unchanged, hav-

ing a noticeable effect on its spectral composition. Simi-
larly to the spectral analysis of the first mode, one can
consider the contour of the 71 -th harmonic of the radia-

tion. We write the Hamiltonian /, of the m -th har-

monic of the field in the form
H, =ho, a (Ha, )1+ (1)), (10)
where @, =ma@, is the central frequency of the m -th

mode. Then, for coherent state |Ocm>, we write

t
o, ) =t exp{» imat —imJ.O f(r)dr}>, (11)
which leads to the integral for the spectral density
2!0’7 exp{— (o—mo)r—-J, },

w,(0)=a,

m2 T T (12)
Sy == Jdndn{ 1) f©)
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Note that in (12) the quadratic in the mode number
m is due to the normal property of the considered noise
f(¢) . After transformations, we get

2
W, (@) =2 £

% (Co_ma)l)2 +(:uw1m2)2 ’

(13)

where W, is the number of quanta stored in the m -th
mode. In (13), the Lorentz contour of the 771 -th mode is

concentrated around the frequency @, = ma®, and has
a linewidth Aw,, = /,ta)]m2 . With the average number

of quanta W, in the mode, they are statistically inde-
pendent and distributed according to Poisson's law.
In the ideal case t — 0, the spectrum of the SR

photon flux is described by a set of a large number of
harmonics with zero width each. Their multitude ex-
tends to the region of harmonics with a critical number

m, =3;/3/ 2 and further, which corresponds to the

critical frequency @, =m @, . Since m, >>1, to de-
scribe the ideal SR spectrum, it is customary to use a
function W (w) that describes the envelope of the

specified set of harmonics [3].
In the presence of perturbations, the resulting spec-

trum W, (@) of the SR photon flux should be the result
of the convolution of an ideal spectrum W (@) with an
inhomogeneous Lorentzian kernel
W, (0)= BJ.;J.dx exp(— zcosh x)><
0%

(14)
y cosh(5x/3) pwm’z’

(0-0,2)" +(uom?z*)*’

where B is a factor depending on the parameters of the
system. Result (14) can be written in a form, in which
the integral contribution of the broadening of all modes
spectral contours to the resulting SR spectrum is more
clearly seen,

cosh x

W, (0)= BJ-@J-dx exp(—u cosh x)x
0o o (15)
y cosh(5x/3) um,u’
coshx (u-w/w)*+(umu’)’ '
In the absence of perturbation, by passing to the

limit ¢ — 0, we can obtain from (15) an expression
for the ideal SR spectral density W (@), which corre-
sponds to the set of all harmonics with a line contour of
the type &(—ma, ) cach,

W(w) =BJ.ex —ﬂcoshx)wdx. (16)
0 @, coshx

c

Let us present the result of a numerical calculation
of the spectral density of the number of emitted SR

quanta in the range of frequencies adjacent to @, , for
the N-100 KIPT electron storage ring [5]. Installation
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parameters: E =100 MeV, @,=94.8 MHz, ¥ =196,
R =50 cm, (R)=91 em, @, =1.07-10" Hz, n=0.27.
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Fig. 1. The ideal spectral density W (@) at u — 0
(dotted line) and the resulting density W# (w)
(solid line), B is taken equal to 1

The densities WW(w) and W, (@) are shown in
Fig. 1. At the frequency @ = @, , the resulting spec-
trum W, (@) is 74% of the spectrum W(w). At
higher frequencies (@ 23w,) W, (®) exceeds
W () due to Lorentz broadening (see Fig. 2).

In this case, the integral radiated energy to the SR
remains unchanged. The asymptotic behavior W, (@)

of the frequency can be approximated by the depend-

ence @ >, which follows from (15).

Note that additional averaging of the spectrum
W (w) over the energy distribution of electrons in the
beam will not change the exponential decay of the pho-
ton spectrum in the threshold region @ 2 @, .
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Fig. 2. Ratio of ideal spectral density W ()
to density W, (@)
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DISCUSSION

The relativistic electron emitting in a magnetic field
can be associated with the model of a multimode regular
resonator, in which the number of modes is large reach-
ing 7/3 or more. The energy &, of the emitted quantum

and the moment ¢, of its emission are not related in any

way. Therefore, these quantities can be considered as
independent random variables. They satisfy the re-
quirements of the central limit theorem [3, 6]. In this
case, the mechanism for the formation of the spectral
contour of the radiation in the first mode was developed
[1, 2] and can be extended for a mode with an arbitrary
number, as well as their combination.

CONCLUSIONS

The orbital revolution of electrons is accompanied
by fast fluctuations arising from the emission of SR
quanta. This leads to the broadening of the contour in
the Larmor mode and in each of the SR harmonics. The
result of joint broadening of the set of harmonics causes
distortion of the spectrum, that is, broadening of the
synchrotron radiation spectrum as a whole in the fre-
quency range adjacent to and exceeding the critical ra-
diation frequency @, . The integral radiated energy to

the SR remains unchanged. Spectral density in the fre-
quency range @ < @, remains stable and stationary, in

the region @ =~ @, it decreases. In the range of fre-

quencies @, exceeding the critical one it increases.
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CTOXACTHYECKHWI MEXAHU3M YIIUPEHUS CIEKTPAJIBHOM IIJIOTHOCTH
CHUHXPOTPOHHOI'O U3JITYYEHUA PEJIATUBUCTCKOI'O JIEKTPOHA

A.C. Masmanuwmeunu

PaccMmoTpenue onupaercs Ha u3ydeHue (GOpMUPOBAHUS CIICKTPAIHLHOIO KOHTYpa JIMHUM CHHXPOTPOHHOIO HU3JY-
yenust (CH) persiTUBUCTCKOrO 3JIEKTPOHA, BPAIIAIOIIETOCs M0 KPYTOBOW OpOUTE B OMHOPOJHOM MArHUTHOM ITOJIE.
BricTprie cToxacTuueckue (IIYKTyalldH, COIPOBOXKIAIOIINE NBMKCHUE JIEKTPOHA TIpu dMuccuu kBantoB CU, mpu-
BOIAT K (DOPMHUPOBAHMIO CIIEKTPAILHOIO KOHTYpa Kakaoi u3 rapmonuk CU u ero ymmpenuto. [lokaszaHo, 4to co-
BMECTHOE YIIHPEHHE COBOKYITHOCTH TapMOHHUK OOyciaBiuBaeT ymupenue crekrpa CH B memom. IlpencraBieHs
Pe3yabTAaThl YUCICHHBIX PACUETOB MO (POPMUPOBAHHMIO MTOTOBOM CHEKTpabHOW MIOTHOCTH CH peaTHBHCTCKOTO
anekTpoHa. C HEJbo MOMy4YeHHs MPEHU3NOHHBIX XapaKTepUCTHK u3ydueHo (opmupoBanue riorHoctu CH B obiac-
TH YaCTOT, MIPEBBIMIAIONINX KPUTHYECKYIO YacTOTYy.

CTOXACTHYHMI MEXAHI3M PO3IIUPEHHS CHEKTPAJIBHOI IIIJIBHOCTI
CHUHXPOTPOHHOI'O BUTTPOMIHIOBAHHSA PEJIATUBICTCBKOI'O EJIEKTPOHA

0.C. Mazmaniweini

Po3risig cimpaeThesi Ha BUBUGHHS CHIEKTPAILHOTO KOHTYPY JIiHIT CHHXpOTpOoHHOTO BunpoMiHtoBanHs (CB) pe-
JISITUBICTCHKOTO €JIEKTPOHA, 10 00EPTAETHCS 110 KPYroBiii opOiTi B oJHOpinHOMY MarHiTHOMY modii. [IIBuaki croxa-
CcTHYHI (UIyKTYalii, sIKi CyIIPOBOIKYIOTh PYX €JIEKTpOHa 1pH eMicii kBaunTiB CB, npu3BoasiTh 10 (OpMyBaHHS CIIEK-
TPaJIBHOTO KOHTYPY KOXKHOI 3 TapMoHik CB i #ioro po3mmpennto. [lokazaHo, o CHijibHE PO3LUIMPEHHSI CYKYITHOCTI
rapMOHIK 00yMOBIIO€ po3uiupeHHst ciektpa CB y minomy. IlpencraieHi pe3ynbTaTiH YHCETBHUX PO3PAXYHKIB MO
(OpMyBaHHIO ITiICYMKOBOI CIieKTpasibHOI miiibHOCTI CB pensTHBICTCHKOro eNeKTpoHa. 3 METOI OTPUMAaHHS Ipe-
LUU3IHHMX XapaKTepUCTHK BUBUEHO (opmyBaHHs miiybHOCTI CB B 00macti 4acTor, Mo NMepeBUIyIOTh KPUTUYHY
9acToTy.
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