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The natural frequencies and the modes of the radial oscillations are computed by using the method of grids for 

the cylindrical claddings made with the thin protective coatings for the fuel rods of the nuclear reactors. It is 

received the values more than 150 kHz for first natural frequencies of the radial oscillations of the claddings of fuel 

rods of the WWER-1000 nuclear reactors. It is shown that the thin protective coatings lead to noticeable increasing 

of first natural oscillation frequency, but have negligible influencing on the second and higher natural frequencies as 

well as on the modes of the radial oscillations of the claddings of fuel rods. 
 

INTRODUCTION 

The claddings of fuel rods of nuclear reactors have 

the most worse operation conditions included the 

extreme irradiations of different physical natures, the 

chemical corrosive impacts from the surrounding 

mediums, the noticeable mechanical loadings as well as 

the significant heat flows, such that operability of the 

cladding significantly limits the operational time of the 

nuclear fuel assemblies in the core of a nuclear reactor, 

as well-known [1]. At present, operational conditions of 

the claddings of the fuel rods of the nuclear reactors are 

corresponded to the limit possibilities of the known 

modern wide-used structural materials and the general 

problem about developing the structural materials for 

claddings of fuel rods is of current interests in the 

modern nuclear science and machinery [2] and using the 

thin protective coatings is one of effective way to 

improve the operability of the claddings [3, 4]. 

All the influencing factors of the cladding of the fuel 

rods are naturally non-stationary and are significantly 

depended on the time during operation of the fuel 

assemblies in the core of the nuclear reactor. It is well-

known, that the non-stationary factors, influencing on 

the cladding of fuel rods, can be represented by the 

harmonic time dependencies included a lot of the 

summands with the different frequencies. It is well-

known also, that the harmonic time-dependent loadings 

can lead in some conditions to the more impacting on 

the mechanical systems than the stationary loadings of 

same intensities [5], as well as they can induce the 

specific damaging impacts like the fretting [6]. Due to 

these circumstances, the problems about oscillations of 

the fuel rods in assemblies are of current interests, as 

well as the theme of this research, which deals with the 

natural frequencies and the modes of the radial 

oscillations of the claddings of the fuel rods of the 

WWER-1000 nuclear reactor. The purpose of this 

research is to develop the approach for evaluating the 

natural frequencies and the modes of the radial 

oscillations for the fuel rod's cladding represented as the 

thick-walled cylinder considering with presence the thin 

protective coatings, as well as to obtain the quantitative 

assessments of these natural frequencies and modes of 

the radial oscillations for the fuel rod's cladding of the 

WWER-1000 nuclear reactor. These radial oscillations 

can have impacting on the width of the gap between the 

cladding and the nuclear fuel pellets and can lead to 

changes in the temperature state of the nuclear fuel 

pellets and of the cladding of the fuel rod [1]. 
 

MODELLING THE RADIAL FREE 

VIBRATIONS OF CYLINDRICAL 

CLADDINGS OF FUEL RODS 

CONSIDERING THIN PROTECTIVE 

COATINGS 

The cladding of fuel rods made as the long thick-

walled cylinder (Fig. 1) represents the typical design [1] 

which is widely used in the most of nuclear reactors for 

the power industry. The length L , the internal radius a , 

the external radius b  of the typical cladding for fuel 

rods are satisfied the conditions: 

28

1 ab
ab


 ,                               (1) 

bL  .                                             (2) 

For example, the cladding of the fuel rods used in the 

WWER-1000 nuclear reactors has the well-known sizes: 

mm3800L , mm9.3a , mm55.4b  [7], and it is 

easy to verify that the conditions (1), (2) are satisfied 

really. 

 
 

Fig. 1. Typical design of the cylindrical cladding  

of fuel rods for nuclear reactors 
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The inequality (1) represents the limiting condition 

on the sizes for the thick-walled cylindrical structures 

and it defines the application area for the equations of 

the theory of elasticity [8]. The condition (2) defines the 

area of application for the hypotheses of the plane strain 

problem well-known in the theory of elasticity [9]. 

Thus, modeling of the radial free oscillations of the 

typical cylindrical claddings of fuel rods for nuclear 

reactors can be reduced to the plane strain problem of 

the theory of elasticity for the cylinder with the side 

surfaces unloaded and free from any fixings. 

Due to the cylindrical shape of the cladding it is 

suitable to use the cylindrical coordinates, including the 

radial coordinate r , the circumferential coordinate  

and the axial coordinate z  with the corresponding unit 

vectors re


, e


, and ze


 as shown on the Fig. 2. The idea 

of the plane strain is to consider the stress-strain state 

far from the edges in the central cross-sections of the 

cladding because such consideration allows neglecting 

dependence of the stress-strain state on the axial 

coordinate z  due to the condition (2) and it simplifies 

consideration the problem. Besides, the axial symmetry 

of the cladding of fuel rods with unloaded side surfaces 

leads to independence of the strain-stress state on the 

circumferential coordinate   and as the result it leads to 

zero shear stresses and strains. Due to the hypotheses of 

the plane strain, the stress-strain state of the cladding 

under the radial axial symmetrical oscillations can be 

represented using only the radial displacement u , which 

is depending on the radial coordinate r  and the time t  

only: 

 truu , .                                         (3) 

It is well-known in the theory of elasticity [9, 10] that 

the radial displacement (3) of the thick-walled cylinder 

considering the plane strain hypotheses must satisfy the 

differential equation: 
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where   is the density of the material; 
21 


E

E  and 






1
 are the effective Young's modulus and the 

Poisson's ratio defined corresponding the plane strain 

hypothesis thru the values E  and   of the Young's 

modulus and the Poisson's ratio of the material of the 

cylinder representing the cladding of fuel rods. 

The differential equation (4) must be considered 

with the initial conditions, defining the state of the 

cylinder at some given moment 0tt   of the time t : 

        brarvtru
t

rutru 



 ,,,, 0000 ,        (5) 

where  ru0  is the given radial displacement field and 

 rv0  is given the radial velocity field in the cylinder 

representing the cladding of fuel rods at the initial 

moment 0tt   of the time. 

The boundary conditions required for considering 

the differential equation (4) must defining the states of 

the cylinder representing the cladding on the internal 

and external side boundary surfaces with coordinates 

ar   and br  . As was discussed above, in the case 

of the free oscillations of the cylinder representing the 

cladding of fuel rods the side surfaces are unloaded and 

free from any fixings. These types of the boundary 

conditions for the cylinders representing the cladding of 

fuel rods without the thin protective coatings is well-

known in the theory of elasticity and they are reduced to 

the condition that the radial stress at the side surfaces 

are zeroes [9, 10]. The boundary conditions for the 

cylinder representing the cladding of fuel rods which 

made with the protective thin coatings had been 

discussed in the [11] and can be represented in the next 

form: 
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where aE , ah , and 2aa haR   are the Young's 

module, the thickness and the middle surface radius of 

the internal coating; bE , bh , and 2bb hbR   are the 

Young's module, the thickness and the middle surface 

radius of the external coating. 
 

 
 

Fig. 2. The cylindrical cladding of fuel rods  

and corresponded cylindrical coordinates 
 

Summarizing, the mathematical model of the free 

axial symmetrical radial oscillations of the cladding 

with the thin protective coatings for fuel rods of nuclear 

reactor is proposed in the form of the partial differential 

equation (4) with the initial conditions (5) as well as the 

boundary conditions (6) and (7). 
 

FINDING THE NATURAL FREQUENCIES 

The solution of the problem (4)–(7) about the free 

radial oscillations of the cylinder representing the 

cladding of fuel rods can be represented using the 

imagine value 12 i  in the form [10]: 

      tierUtru , ,                            (8) 

where  rU  is the mode of the oscillation;   is the 

cyclic frequency and   is the initial phase of the 

oscillation. 

Substituting the solution of the form (8) into the 

equation (4) and into the boundary conditions (6), (7) 

allows to obtain the differential equation and the 
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boundary conditions for the mode of the oscillation 

corresponded to the given frequency: 

braU
r

U

dr

dU

rdr

Ud
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where 2
21







E
. 

Further, the method of grids [12] will be used for 

approximate solving the differential equation (9) with 

the boundary conditions (10), (11). Corresponding the 

idea of the method of grids, the solution represented by 

continuous function  rU  will be represented by the 

discrete nodal values of this function in the given nodes 

(points) of the researched domain bra  , which are 

defined as (Fig. 3): 

, , 0,1, 2, , , 1
1

k

b a
r a k r r k n n

n


      


,   (12) 

where n  is the count of the nodes satisfied the condition 

bra   (“internal”  nodes); r  is the step, defined by 

the distances between any two the nearest points. 

Using the grid (12), it is possible to define formally 

the unknown nodal values of the mode (see Fig. 3): 

  , 0,1, 2, , , 1k kU U r k n n   .          (13) 

To finding the nodal values (13) it is used the finite 

differences technique [12]; the follows finite differences 

are used for the internal surface boundary node ( 0k ), 

for the “internal” nodes ( 1, 2, ,k n ) and for the 

external surface boundary node ( 1 nk ) [12]: 
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Leading to the method of grids [12], the derivative (14) 

is substituted into the boundary condition (10), and the 

derivatives (15) are substituted into the differential 

equation (9), as well as the derivative (16) is substituted 

into the boundary condition (11). As the results of these 

substitutions, the next relations between the nodal 

values (13) are obtained: 

0201000  UUU ;                     (17) 

1 1 0, 1, 2,...k k k k k k kU U U U k n         ;   (18) 

011111   nnnnnn UUU ,         (19) 

where k , k , and k  are the values defines for all 

numbers of 0,1, 2, , , 1k n n   as follows: 
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Fig. 3. The cross section of the cladding, as well as the 

grid nodes and the nodal values of the vibration mode 
 

Using the relations (14) and (16) it is possible to 

represent the nodal values 0U  and 1nU  thru some of 

the “internal” nodal values: 
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Relations (21) allow excluding the nodal values 0U  and 

1nU  from the relations (15) and allow representing 

these relations (15) in the matrix-vector form as follows: 

  nnnn 0uIA  ,                 (22) 

where nA  is the some given matrix and nI  is the unit 

diagonal square matrix are with the size nn ; nu  is 

the nodal values vector and n0  is the zero vector are 

with the size n . 

The matrix nA  and the vector nu  from the relation 

(22) are defined as: 
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where 1 , 1 , n , and n  are the values defined 

taking into account the relations (20) as follows: 
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Relation (21) represents the homogeneous linear 

equations for defining the “internal” nodal values, 

which allow defining the “boundary” nodal values by 

the relations (21). The condition of existing of the non-

zero solution of the homogeneous linear equations (22) 

defining the “internal” nodal values of the radial 

oscillation mode has the follows form: 

  0det  nn IA .                    (25) 

The condition (25) represents the non-linear algebraic 

equation for defining the parameters   introduced in 

the differential equation (9); the count of these 

parameters   is equal to the number n  of the “internal” 

nodes of the grid (12). By using these parameters 

nk  ,,,,, 21  , it is possible to define the natural 

oscillation frequencies of the radial oscillations: 

 21 , 1, 2, ,k k

E
k n  




    .        (26) 

Solving the algebraic equation represented in the form 

(25) is well-known as the eigenvalues problem [13]. It is 

interesting that the matrix nA  defined in the relations 

(23) has the Hessenberg's form and the eigenvalue 

problem for such matrices can be approximately solved 

using the numerical QR-method directly without the 

required transformations for the common form matrices 

[13]. The well-known procedure HQR2 from the 

handbook [13] is used to solve numerically the problem 

(25) and to find approximately the eigenvalues and the 

eigenvectors required for computing the values (25) of 

the natural frequencies and the natural vibrations modes 

of the radial vibrations of the cladding of fuel rods. All 

necessary programs are developed using the FORTRAN 

programming language which is very suitable for 

scientific and engineering computing [14]. 
 

RESULTS FOR NATURAL OSCILATIONS 

FREQUENCIES AND MODES  

OF THE CLADDING OF FUEL RODS 

The mathematical formulation (9)–(11) allow us to 

consider the natural oscillations and modes of the radial 

vibrations of the cylindrical claddings of fuel rods made 

with and without the thin protective coatings. Really, 

influencing the thin protective coatings on the radial 

oscillations of the cladding is defined by the items with 

the multipliers 
a

aa

R

hE
 and 

b

bb

R

hE
 presented in the 

boundary conditions (10) and (11). The particular cases 

for the zeroes values 0aahE  and 0bbhE  are 

corresponded to the cladding without the internal and 

external coatings. These circumstances allow us to use 

the same computing software for evaluating the natural 

oscillations frequencies and modes both for the 

claddings with and without the thin protective coatings 

by the necessary choices of the computing input data. 

Thus, all possibilities are available for us to research 

influencing the thin protective coatings on the natural 

oscillations frequencies of the claddings of fuel rods of 

nuclear reactors. Next, the quantitative estimations 

about influencing the thin protective coatings on the 

natural frequencies and the natural modes of the radial 

oscillations of the claddings of fuel rods are presented 

for the WWER-1000 nuclear reactors made without the 

protective thin coatings and made with these coatings as 

possible. It is considered the typical cladding of the fuel 

rods of the WWER-1000 nuclear reactor with the next 

parameters: 

3.855 mm; 4.55 mma b  ; 

396 GPa; 0.33; 6500kg mE     .       (27) 

Influencing on natural oscillations frequencies and 

modes of the possible thin protective coatings made 

from the stainless steel like discussed in [4] with the 

next value of the Young's modulus: 

GPa210 ba EE .                          (28) 

Comparison between the natural oscillation frequencies 

and the modes for the cladding of fuel rods without the 

thin protective coatings and with these coatings of 

different thicknesses ah  and bh  is the methodology 

basis for estimating the influence of the protective thin 

protective coatings on the oscillation characteristics of 

the claddings. 

Using the approximate numerical solutions of the 

eigenvalues and eigenvectors problem (25) to evaluate 

the natural oscillations frequencies (26) and the modes 

of radial oscillations of the cladding of fuel rods 

requires substantiating the accuracy of obtained results. 

The accuracy of the obtained results for the natural 

oscillations frequencies and the modes depends on the 

count n  of the “internal” nodes of the grid (see Fig. 3). 

Increasing the count n  of the grid nodes leads to 

increasing the accuracy of the numerical solutions due 

to decreasing the approximations errors in the used 

finite differences (14)–(16) taking into account 

decreasing the grid step (12) with increasing the nodes 

number. Due to this depending, substantiating the 

accuracy of the numerical solutions of the eigenvalues 

and eigenvectors problem (25) is reduced to 

substantiating the number n  of the grid nodes providing 

the required accuracy of the results for the natural 

oscillations frequencies and modes of the cladding of 

fuel rods. Thus, the accuracy of the approximate 

numerical solutions of the problem (25) can be 

estimated by comparing the results obtained by using 

the different number n  of the grid nodes. This 

comparing (Table) shows that the results with 500n  

have the error about %100.2 5 , and it is possible to 

use these results in the further analyses. 

To represent the results for the natural frequencies 

(26) it is used the next values of frequencies: 

, 1, 2, , .
2

k
k k n





                        (29) 

The results were obtained for fist natural frequencies of 

the radial oscillations of the claddings made with the 

different thin protective coatings are presented on the 

Fig. 4. It is obtained the large value about 150 kHz of 

first natural frequency of radial oscillations for the 

cladding without protective coatings. The protective 

thin coatings lead to noticeable increasing the value of 

first natural frequency of the radial oscillations of the 

cladding of fuel rods. It is shown that the internal 

coating has the more effect on first natural frequency 

than the external coating, but effect of presence the both 

internal and external coatings is approximately equals to 
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superposition of the separate effects from the internal 

and external coatings. 

Convergence of the results for the natural oscillation 

frequencies with increasing the grid nodes count 

Count of the 

nodes, n  

Natural oscillation frequencies, Hz 

0 ba hh  ha = hb = 100 m 

3 154187.1211 193572.9636 

10 154608.6745 193873.0273 

500 154703.0281 193939.6472 

1000 154703.0681 193939.6752 

 

Continuation of the Table 

Count of the 

nodes, n  

Natural oscillation frequencies, Hz 

ha = 100 m  hb = 100 m 

3 178571.7676 171302.5818 

10 178904.0075 171671.3978 

500 178978.2469 171753.5551 

1000 178978.2763 171753.5910 

0**;0*  ab hh . 

 

 

Fig. 4. Influencing the thicknesses h of the coatings on 

the first natural frequency 1μ  of the radial oscillations 

of the cylindrical cladding of fuel rods 
 

Let denote 0 , 1, 2, ,k k n   the natural 

frequencies (29) of the radial oscillations of the cladding 

of fuel rods with design parameters (27) made without 

the thin protective coatings. To estimate and to 

represent the results for influencing the thin protective 

coatings on the higher natural frequencies of the radial 

oscillations of the cladding of fuel rods there are used 

the values of percentile increasing of the frequencies of 

the claddings with thin coatings comparing with the 

cladding without the coatings, which are defined as: 
0

0
100%, 1,2, , .k k

k

k

k n
 




              (30) 

The results of comparing for influencing the thin 

coatings on first and some higher natural frequencies of 

the radial oscillations of the cladding of fuel rods are 

presented on the Fig. 5 using the logarithm coordinates. 

Due to these results, it is seen (see Fig. 5) that the thin 

protective coatings are having significant influencing on 

first natural oscillation frequency only, but influencing 

on second frequency is ten times smaller than for first 

frequency and influencing on third frequency is about 

hundred times smaller than for first frequency. 

Let denote as  
, 1, 2, ,

k

n k nu  the vectors 

representing the solutions of the next homogeneous 

linear equations: 

   
, 1, 2, ,

k

n k n n n k n   A I u 0 .        (31) 

Equations (31) are the equations (22) with substituted 

values nk  ,,,,, 21   which are the solutions of 

the equation (25). Due to this circumstance, the linear 

systems (31) are having the nonzero solutions such that 

the components of any vector  
, 1, 2, ,

k

n k nu  are 

defined thru any one of their component. It is suitable to 

normalize the vectors  
, 1, 2, ,

k

n k nu  such as the 

absolute maximum component will be equaled to unit. 

These vectors 
 

, 1, 2, ,
k

n k nu  are representing the 

nodal values of the modes     , 1, 2, ,
k

U r k n  of 

the natural radial oscillations at the grid (12) (see Fig. 

3). Each of these natural oscillation modes corresponds 

to one of the natural oscillation frequencies (26) or (29). 
 

 
a 

 
b 

 
c 

Fig. 5. Influencing the thickness of the coatings on the 

natural oscillation frequencies of the cladding of fuel 

rods with the outer (a) and inner coatings (b) only as 

well as both the inner and outer coatings with the equal 

thicknesses (c) 

 

h, m 

h, m 

ha, m 

hb, m 
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Obtained results allow us to conclude that the thin 

protective coatings are having no noticeable influencing 

on the natural radial oscillation modes of the cylindrical 

cladding of fuel rods with design parameters (27). The 

results for some of the modes of the natural radial 

oscillations of the cladding of fuel rods are shown on 

the Fig. 6. The presented results are approved with the 

well-known fundamental properties [15] of the natural 

oscillations modes. Really, the each of modes has some 

number of the crossings with horizontal zero axis: the 

mode corresponded to first natural frequency has no 

crossing with zero axis, the mode corresponded to 

second natural frequency has one crossing with zero 

axis, the mode corresponded to third natural frequency 

has two crossing with zero axis and so on (see Fig. 6). 
 

 
 

Fig. 6. The modes of the natural radial oscillations of 

the cladding of fuel rods corresponded to the 

frequencies with the numbers k : 

1 – k = 1; 2 – k = 2; 3 – k = 3; 4 – k = 4 
 

DISCUSSION THE RESULTS 

It is obtained the large values about 150 kHz for first 

natural frequency of the radial oscillations of the typical 

design of cylindrical cladding of fuel rods. It is well-

known in the theory of vibrations [13, 14] that the 

natural frequencies of oscillations of the structure are 

defined by relation between the rigidness and the mass 

of this structure. It is well-known that the elastic 

cylinder representing the cladding of fuel rods has the 

high rigidness on the radial direction and it is this high 

rigidness is the reason for using the claddings with the 

cylindrical shape, because due to this shape the cladding 

with small wall thickness has no noticeable strains 

under the operational pressures from the gaseous fission 

products and the moving heat carrier. At the same time, 

the small thickness of the wall leads to the smaller mass 

of the cladding. Thus, the large values of the natural 

frequencies are due to the well-known high rigidness on 

the radial direction of the elastic cylinder representing 

the cladding of fuel rods with the small thickness of the 

wall. It is necessary to notice that the model of the thin 

protective coatings used to formulate the boundary 

conditions (22), (23) has no considering the inertia of 

the coating, but considering only the rigidness on the 

coatings. It seems that the inertia of the claddings is 

negligible due to the significantly smaller masses, but 

such neglecting the inertia of the claddings must be 

substantiated by quantitative results for the natural 

frequencies considering the inertia of the coatings in 

further researches. 

Obtained numerical results allow us to approve that 

the thin protective coatings lead to increasing the natural 

frequencies of the radial oscillations of the typical 

cylindrical claddings of fuel rods. Increasing first 

natural frequency of radial oscillations for the typical 

cylindrical cladding of fuel rods due to using the thin 

coatings is really noticeable, but increasing the higher 

natural frequencies is practically negligible comparing 

with increasing of first frequency. Increasing the natural 

frequencies due to using the thin protective coating can 

be explained by increasing the radial rigidness of the 

cladding through presence the circumferential forces in 

the coatings as it seen from the boundary conditions (6), 

(7) or (10), (11) considering the boundary surfaces of 

the cladding of fuel rods with the thin protective 

coatings. At the same time, the inertia of the coating is 

neglected in the boundary conditions (6), (7) modelling 

of the thin coatings and it is required the additional 

researches. 
 

CONCLUSIONS 

The natural oscillation frequencies of the radial 

vibrations of the cladding made with the thin protective 

coatings for the fuel rods of the WWER-1000 nuclear 

reactors are computed by using the method of grids. It is 

received the values about 150 kHz for first natural 

oscillation frequencies of the radial vibrations of the 

cladding for the fuel rods of the WWER-1000 nuclear 

reactors. It is shown that the thin protective coatings 

lead to noticeable increasing of first natural oscillation 

frequency, but have negligible influencing on the 

second and higher natural oscillation frequencies as well 

on the natural modes of the radial oscillations of the 

typical cylindrical cladding of fuel rods. 

The mathematical model proposed for the thin 

protective coatings and used for formulating the 

boundary conditions considering with influence of the 

thin coatings is not took into account the inertia of the 

coating, but it is took into account only the rigidness on 

the coatings. It is necessary to substantiate neglecting 

the inertia of the coatings in further researches, although 

it is seem that the coatings has really the significantly 

smaller masses comparing with the mass of the 

cladding. Besides, it is interesting to estimate the 

mechanical stresses in the cladding of fuel rods 

occurring due to the time harmonics of the outer 

pressure of the moving heat carrier with the frequencies 

proportional the rotation velocity of the main circulation 

pump. 
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ВЛИЯНИЕ ТОНКИХ ЗАЩИТНЫХ ПОКРЫТИЙ НА СОБСТВЕННЫЕ ЧАСТОТЫ 

РАДИАЛЬНЫХ КОЛЕБАНИЙ ОБОЛОЧЕК ТВЭЛОВ ЯДЕРНЫХ РЕАКТОРОВ 

Ю.Е. Мазуренко, Ю.В. Ромашов, А.Г. Мамалис 

Собственные частоты и формы радиальных колебаний рассчитываются с использованием метода сеток 

для оболочки твэлов ядерных реакторов ВВЭР-1000, выполненной с тонкими защитными покрытиями. 

Получены значения более 150 кГц для первых собственных частот радиальных колебаний оболочки твэлов 

ядерных реакторов ВВЭР-1000. Показано, что тонкие защитные покрытия приводят к заметному 

увеличению первой частоты собственных колебаний, но оказывают незначительное влияние на вторую и 

более высокие частоты, а также на формы собственных радиальных колебаний оболочек твэлов. Увеличение 

собственных частот колебаний цилиндрических оболочек твэлов за счет использования тонких защитных 

покрытий объясняется значительным повышением радиальной жесткости оболочек благодаря наличию 

окружных сил в покрытиях при незначительном увеличении массы конструкции. 

 

ВПЛИВ ТОНКИХ ЗАХИСНИХ ПОКРИТТІВ НА ВЛАСНІ ЧАСТОТИ РАДІАЛЬНИХ 

КОЛИВАНЬ ОБОЛОНОК ТВЕЛІВ ЯДЕРНИХ РЕАКТОРІВ 

Ю.Є. Мазуренко, Ю.В. Ромашов, А.Г. Мамаліс 

Власні частоти і форми радіальних коливань розраховуються з використанням методу сіток для 

оболонки твелів ядерних реакторів ВВЕР-1000, виконаної з тонкими захисними покриттями. Отримано 

значення більше 150 кГц для перших власних частот радіальних коливань оболонки твелів ядерних 

реакторів ВВЕР-1000. Показано, що тонкі захисні покриття призводять до помітного збільшення першої 

частоти власних коливань, але мають незначний вплив на другу і більш високі частоти, а також на форми 

власних радіальних коливань оболонок твелів. Збільшення власних частот коливань циліндричних оболонок 

твелів за рахунок використання тонких захисних покриттів пояснюється істотним збільшенням радіальної 

жорсткості оболонок завдяки наявності окружних сил у покриттях при незначному збільшенні маси 

конструкції. 


