
ISSN 1562-6016. ВАНТ. 2020. №6(130)

PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2020, № 6. Series: Plasma Physics (26), p. 59-63. 59

https://doi.org/10.46813/2020-130-059

PiCOPIC: 2.5-D PARTICLE-IN-CELL CODE, OPTIMIZED FOR

SIMULATION OF BEAM-PLASMA INTERACTIONS

O.K. Vynnyk, I.O. Anisimov

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

E-mail: alexander.vynnyk@protonmail.com

Original code optimized forsimulation of interactions between plasma and charged particles beams and

bunches, based on particle in cell method described. The code is electromagnetic and fully relativistic with 2.5D

axial symmetric geometry. Binary coulomb particle collisions are taken into account. The code is fully parallelized

and designed for computer systems with shared memory. Ability to extend supported platforms to systems with

distributed memory (like computer clusters or grids) is embedded into code architecture.

 PACS: 29.17.+w;41.75.Lx

INTRODUCTION

Computer simulations play important role in modern

studies of plasmas. Simulations allow to clarify many

aspects of real plasma experiments, and set directions

and scripts for their development. Kinetic simulations of

plasmas need maximal sources [1]. On the other hand,

they are the most accurate and allow to observe a lot of

physical effects. Particle in cell is most widely used

method of kinetic plasma simulation. Initially developed

for studies of hydrodynamic calculations [2], it was

adopted for plasma physics and became de-facto

standard simulation method for wide range of plasma-

related studies from astrophysics to controlled fusion.

One of the perspective areas of plasma physics are

beam-plasma and laser-plasma interactions. Beam-

plasma interactions become an object for fundamental

studies as well for applied purposes. Electron beams and

bunches can be used as electromagnetic waves' emitters,

for excitation of wake waves and further electrons

acceleration, for beam-plasma discharge ignition as a

possible source of dense plasmas etc.

PiCOPIC is the successor of PDP3 [3] code, that was

developed for the same purposes. This code has a lot of

architecture limitations. Also, PDP3 was designed as

single-thread code and can not be fully parallelized.

Development of modern, fast and flexible PIC code,

optimized for simulation of beam-plasma and laser-

plasma interactions with perspective to extend it to

cluster-based calculations was the main motivation to

create PiCOPIC.

1. GENERAL PIC SCHEME

Particle in cell is fully kinetic plasma simulation

approach. The mathematical model, underlying this

method is the Vlasov-Maxwell system of equations [4].

PIC method performs a discretization of these

equations. It replaces particles distribution function to

the sum of parameters of so-called “macroparticles”.

Each macroparticle represents the set of regular

particles of some specie Fig. 1. Another discretization

replaces continuous field’sdistribution with fixed spatial

grid. Maxwell equations is solved only at the nodes of

such grid. Time is also splitting into discrete steps.

Integration of the macroparticles motion equations

and solving Maxwell equations is solved at every time

step.

Fig. 1. General scheme of PIC method for single time

step

2. CODE DESCRIPTION AND FEATURES

PiCOPIC was designed as lightweight high-

performance application with simple build management

procedure. So, it contains minimal amount of external

dependencies and tools. One of the main objectives of

this code is to make it simple for reading and updating.

Accepting such requirements modular C++ approach

was applied. Anyway, parts of the code, that required

high performance, were implemented as low-level

C/C++ code without classes. Summarizing, all

performance sensitive places were implemented, with

fast low-level code. Wrappers over such blocks were

implemented with C++ classes and methods with low

amount of system calls, designed to be understandable

and extensible. Data analysis tools were written on

python, using scientific libraries and jupyter notebooks.

2.1. GEOMETRY

Geometry of the simulation area is inherited from

PDP3 package. It is axisymmetric with bunches'

injection along the cylinder axis and the shape of

macroparticles is a cylindrical ring (Fig. 2). This

approach allows taking into account all three velocity

dimensions, but, only 2 spatial dimensions.

https://doi.org/10.46813/2020-130-059
mailto:alexander.vynnyk@protonmail.com

60 ISSN 1562-6016. ВАНТ. 2020. №6(130)

Disadvantage of 2d3v simulation approach is

geometrical singularity on the central axis, that causes a

lot of peculiarities in calculations of particle advance,

weighting etc. Another disadvantage is a unique weight

of each macroparticle. This feature requires to be taken

into account during binary collisions, temperature and

density calculations etc.

Fig. 2. Geometry

2.2. CORE ARCHITECTURE

In opposite to its predecessor, PiCOPIC code

designed to store data and logic completely separate.

Each specie of data (e.g. current and field grids,

macroparticle parameters) stored in separate data

structure, that processing by OOP methods of

corresponding class, designed to reduce system calls.

Such design allows to simply data manipulation,

addressing it by pointers.

Each major part of the PIC loop could be

implemented with several alternate algorithms, that can

be altered at configuration phase. All these alternatives

are implemented as child classes of common parent

abstract class, or separate methods of the same class.

Required algorithm can be altered by setting

compiler directives. Building alters the algorithm,

following these directives. General scheme of the

architecture is described on Fig. 3.

PiCOPIC supports several alternative algorithms for

macroparticles advance: Boris [5], Vay [6] or Higuera-

Cary [7] algorithms. Charge conservation is

implemented with Villasenor-Buneman [8] and

ZigZag [9] algorithms. Maxwellian solver implemented

only with Yee [10], but technically multiple alternatives

could be added to existing one.

Simulation model data stored as the set of member

variables of configuration class. Object of this class

initialized once, during application start. Initial

configuration of the simulation model and conditions set

uses this object.

Configuration of the package can be done in

configuration phase, before build, where specific

algorithms and other internal parameters can be set, and

via configuration file, where simulation model

parameters can be set.

Output data can be written in two alternate formats:

plain text and HDF5 [11]. HDF5 is default format and

recommended for usage. Plain text is supported as

simple format for debug and development purposes.

Output is configuring, using objects, named “probes”.

Each probe describes the subarea of the simulation area

with one of grid parameters (e.g. current, electric field,

temperature), which should be written as output data.

Output data analysis implemented as several python

libraries, wrapped around python scientific libraries and

libraries for HDF5. They used in various jupyter note

books [12], that can be simply customized for current

purposes.

Fig. 3. Temperature weighting scheme

2.3. TEMPERATURE CALCULATION

Temperature is a macroparameter of gas or plasma

and has sense only when the condition nk / N << 1 is

satisfied, where nk is amount of particles with velocities

v – v + dv and N is the total amount of particles. This

condition is possible only for large amount of N. In the

most cases of PIC simulation this condition is not

satisfied for single grid cell, where mean amount of

macroparticles is frequently less then 10
2
. In this case

temperature could be interpreted only as mean energy.

Calculation of mean energy map is implemented

with two alternative algorithms: direct mean energy

calculation and mean energy weighting. Filtering of

direct velocity of macroparticles also implemented for

both algorithms.

Finding mean energy per PIC grid cell is quite

simple procedure, that can be described by expression:

,

,

,

,

2

,

, 2

,

= ,

= ,

= ,
2

N
i j

i j k s k

k

N
i j

i j k

k

i j

i j

i j

P W m v

n W

P
E

mn



 (1)

where Pi,j is a total momentum of particles in [i, j] cell;

ni,j is a number of particles and Ni,,j is a number of

ISSN 1562-6016. ВАНТ. 2020. №6(130) 61

macroparticles in [i, j] cell; ms is a mass of particle

specie; Wk is a weight of k’s macroparticle; vk is a

velocity of k’s macroparticle.

Directed velocity filtering is also simple. The main

idea is to subtract the directed velocity of particles from

its total velocity. The expression for this procedure is:

,

,

2 2

, ,

, 2

,

= ,

= ,
2

N
i j

i j k s k

k

i j i j

i j

i j

P W m v

P P
T

mn




 (2)

where Ti,j is a mean energy of chaotic motion in [i, j]

cell. Calculation becomes invalid for high gradients of

the directed velocity.

Main idea of weighting-based temperature

calculation is to weight particles to the cell nodes,

instead of its direct counting. Weighting procedure

depends on the form factor of macroparticle. In the case

of PiCOPIC, this procedure is described on Fig. 4 and

expressed as

, ,[,]

,[,]

,[,]

,

, ,[,]

= ,

= ,

k prtl i j

k i j

cell i j

N
i j

i j k i j k

k

V

V

W



 

 (3)

Vk,pltl,[i,j] is a part of k’s particle volume, weighted to

node [i, j]; Vcell,[i,j] is a volume of cell-like structure with

the center at the position of node [i, j]; Ξi,j is a total

particle weight for [i, j] node. Say, physically Ξi,j is a

value, proportional to weighted density of particles

(e.g. electrons or ions).

Fig. 4. Temperature weighting scheme

Further procedure is similar to eqs. (2), (3), except

momentums that are also weighting to grid nodes:

,

, ,[,]

,

, ,[,]

2 2

, ,

, 2

,

= ,

= ,

= .
2

N
i j

i j k i j k k s k

k

N
i j

i j k i j k k s k

k

i j i j

i j

i j

P W m v

P W m v

P P
T

m

 

 









.

 (4)

There are options to apply bilinear and bicubic

interpolation to existing temperature maps. Testing and

comparison of different algorithms are shown on Fig. 5.
PiCOPIC’s code also takes into account relativistic

case of such calculation.

2.4. BOUNDARY CONDITIONS

Boundary conditions for particles were implemented

as reflection for particles of background plasma and

absorption for beam particles. Perfectly matched

layer [13] can be applied to the boundaries of field

grids. Such approach can effectively absorb plasma

waves and oscillations, preventing reflection of such

waves from the outer boundaries of the simulation area.

Fig. 5. Comparison of temperature maps, generated

with different algorithms: a – direct counting; b – direct

counting with bilinear interpolation; c – direct counting

with bicubic interpolation; d – weighting

2.5. BINARY COULOMB COLLISIONS

Various processes in plasmas are related to plasma

heating. There are set of conditions, where taking into

account of coulomb binary collisions between charged

particles is required. PiCOPIC uses modern direct

simulation Monte-Carlo algorithm for coulomb collision

calculation [14] as main and its predecessor [15] as an

alternative algorithm.

2.6. PARALLELIZATION

Package was designed to be fully parallel and run on

systems with shared memory as well as distributed one.

It's hard to parallelize PIC loop. Each of its steps

depends on each other. It requires frequent

synchronization of parallel threads. And some of the

loop steps cannot be parallelized et al. (e.g. charge

conservation).

Traditional way to parallelize such code is to split

simulation area to domains (see Fig. 2). Each domain

has a real boundary or overlay area on all its edges

(depends on its relative location). In the case of real

boundary macroparticle reached the domain’s edge,

interacts with it, according to the boundary condition

62 ISSN 1562-6016. ВАНТ. 2020. №6(130)

logic. When particle reaches overlay area, it moves to

the domain, next to the current one.

Grid values weight to overlay areas in the common

way, but after each weighting overlays should be

synchronized as shown on Fig. 6. This procedure was

implemented as the separate PIC loop step.

Synchronization procedure is also paralleled in the

staggered order.

Each macroparticle is a low-level data structure,

placed in the free memory. It is linked to the particle

specie object with C++ pointer. Such design allows to

move the particle from one domain to another in very

performance efficient way: just by its repointing.

Disadvantage of the pointer change method is the

requirement to work in the shared memory.

Fig. 6. Overlaying

2.7. TEST SIMULATIONS

To review performance and correct working of the

package, several test simulations with parameters close

to previous beam-plasma interaction simulations

[16, 17] were performed. The similar result was

obtained, but with higher accuracy, as the simulations

were setup with higher amount of macroparticles and

larger number of grid nodes.

Electrons velocity distribution in the subarea far

from PML regions was calculated to check, if thermal

velocity distribution works correctly. Obtained

distribution was close to maxwellian (Fig. 7).

Fig. 7. Normalized electrons velocity distribution for the

subarea, that is far from PML regions

Dependency of electric field from the time was

plotted and compared to the same plot, for simulation

with the same parameters, processed on PDP3. This test

was directed to check if the package works correctly at

the large simulation periods (10
4
...10

5
steps), both

simulations (using PDP3 and PiCOPIC) were performed

for case of resonant multibunch electron beam injection

to warm plasma. Fig. 8 shows, that Ez component

changing is quite similar to PDP3’s result. The

differences can be explained by higher accuracy of

simulation with PiCOPIC.

Evolution of the electric field and temperature is

quite similar to [17]. Fig. 9 shows Er images for the

region, that is close to the beam injection point for

different moments of time. One can see the field

perturbations, similar to ones described in [17].

Fig. 8. Dependency Ez from time for the same cases,

simulated with PDP3 (top) and PiCOPIC

Fig. 9. Er spatial map for the different time moments.

Field perturbations are on late time moments (bottom)

CONCLUSIONS

The code for kinetic plasma simulation, based on

particle in cell method described. The code is written on

ISSN 1562-6016. ВАНТ. 2020. №6(130) 63

C++ programming language. Performance-critical

algorithms covered by low-level C-style code. The code

optimized for simulations of beam-plasma interactions

and uses 2.5D axial symmetric geometry. Binary

coulomb collisions implemented with modern DSMC

algorithm. Data outputs to binary format HDF5,

designed for scientific purposes. It provides fast access

to various data subsets, including cases of large size of

the data and allows working with large data sets

efficiently. The code is designed as fast, fully parallel

with working on computer systems with shared memory

and architectural ability to execute it on computational

clusters with relatively minor code update.

REFERENCES

1. C.K. Birdsall, A.B. Langdon. Plasma physics via

computer simulation. Taylor and Francis, New York.

2005.

2. M.W. Evans, F.H. Harlow. The particle-in-cell

method for hydrodynamic calculations. 1957.

3. Y.M. Tolochkevych, T.E. Litoshenko, I.O. Anisimov.

2.5d relativistic electromagnetic PIC code for

simulation of the beam interaction with plasma in axial-

symmetric geometry // Journal of Physics: Conference.

2014, v. 511, p. 012001.

4. A. Vlasov. The vibrational properties of an electron

gas // Soviet Physics Uspekhi. 1968, v. 10(6), p. 721-

733.

5. J.P. Boris. Relativistic plasma simulation

optimization of a hybrid code. 1970.

6. J.-L. Vay. Simulation of beams or plasmas crossing

at relativistic velocity // Physics of Plasmas. 2008,

v. 15(5), p. 056701.

7. V. Higuera, J.R. Cary. Structure-preserving second-

order integration of relativistic charged particle

trajectories in electromagnetic fields // Physics of

Plasmas. 2017, v. 24(5), p. 052104.

8. J. Villasenor, O. Buneman. Rigorous charge

conservation for local electromagnetic field solvers //

Computer Physics Communications. 1992, v. 69(2),

p. 306-316.

9. T. Umeda, Y. Omura, et al. A new charge

conservation method in electromagnetic particle-in-cell

simulations // Computer Physics Communications.

2003, v. 156(1), p. 73-85.

10. K. Yee. Numerical solution of initial boundary

value problems involving maxwell’s equations in

isotropic media // IEEE Transactions on Antennas and

Propagation. 1966, v. 14(3), p. 302-307.

11. M. Folk, G. Heber, et al. An overview of the hdf5

technology suite and its applications. in Proceedings of

the EDBT/ICDT 2011 // Workshop on Array Databases.

AD ’11. Association for Computing Machinery, New

York, NY, USA. 2011, p. 36-47.

12. J. Perkel. Why jupyter is data scientists’

computational notebook of choice // Nature. 2018,

v. 563, p. 145-146.

13. J.-P. Berenger. A perfectly matched layer for the

absorption of electromagnetic waves // Journal of

Computational Physics. 1994, v. 114(2), p. 185-200.

14. F. Perez, L. Gremillet, et al. Improved modeling of´

relativistic collisions and collisional ionization in

particle-in-cell codes // Physics of Plasmas. 2012, v. 19,

p. 083104.

15. Y. Sentoku, A. Kemp. Numerical methods for

particle simulations at extreme densities and

temperatures: Weighted particles, relativistic collisions

and reduced currents // Journal of Computational

Physics. 2008, v. 227, p. 6846-6861.

16. O.K. Vynnyk, I.O. Anisimov. Wake wave excited

by the sequence of relativistic electron bunches: Initial

stage // Problems of Atomic Science and Technology.

Series «Plasma Physics» (118). 2018, № 6, p. 160-163.

17. O.K. Vynnyk, I.O. Anisimov. Evolution of the wake

wave excided by the sequence of the relativistic electron

bunches // Problems of Atomic Science and Technology.

Series «Plasma Physics» (122). 2019, № 4, p. 55-58.

Article receievd 15.10.2020

PiCOPIC: 2.5-МЕРНЫЙ КОД, ОПТИМИЗИРОВАННЫЙ ДЛЯ МОДЕЛИРОВАНИЯ

ПЛАЗМЕННО-ПУЧКОВОГО ВЗАИМОДЕЙСТВИЯ

А.К. Винник, И.А. Анисимов

 Описан оригинальный код для моделирования взаимодействия электронных сгустков и пучков с плазмой,

основанный на методе крупных частиц. Код электромагнитный, полностью релятивистский, выполнен в 2,5-

мерной аксиально-симметрической геометрии. Учитываются парные кулоновские столкновения заряженных

частиц. Дизайн кода полностью параллельный для запуска на компьютерных системах с общей памятью. В

архитектуру заложена возможность расширения поддерживаемых платформ на системы с распределенной

памятью (вычислительные кластеры или гриды).

PiCOPIC: 2,5-ВИМІРНИЙ КОД, ОПТИМIЗОВАНИЙ ДЛЯ МОДЕЛЮВАННЯ

ПЛАЗМОВО-ПУЧКОВОЇ ВЗАЄМОДIЇ

О.К. Винник, I.О. Анiсiмов

Описаний оригінальний код для моделювання взаємодії електронних згустків із плазмою, заснований на

методі крупних частинок. Код електромагнітний, повністю релятивістський, виконаний у 2,5-вимірній,

аксіально-симетричнії геометрії. Враховуються парні кулонівські зіткнення заряджених частинок. Дизайн

коду повністю паралельний для запуску на комп’ютерних системах зі спільною пам’яттю. В архітектуру

коду закладена можливість розширення підтримуваних платформ на системи з розподіленою пам’яттю

(обчислювальні кластери або ґріди).

