
ISSN 1562-6016. ВАНТ. 2020. №6(130) 

PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2020, № 6. Series: Plasma Physics (26), p. 59-63.                                                  59 

https://doi.org/10.46813/2020-130-059 

 

PiCOPIC: 2.5-D PARTICLE-IN-CELL CODE, OPTIMIZED FOR 

SIMULATION OF BEAM-PLASMA INTERACTIONS 
 

O.K. Vynnyk, I.O. Anisimov 
 

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine 

 

E-mail: alexander.vynnyk@protonmail.com 
 

Original code optimized forsimulation of interactions between plasma and charged particles beams and 

bunches, based on particle in cell method described. The code is electromagnetic and fully relativistic with 2.5D 

axial symmetric geometry. Binary coulomb particle collisions are taken into account. The code is fully parallelized 

and designed for computer systems with shared memory. Ability to extend supported platforms to systems with 

distributed memory (like computer clusters or grids) is embedded into code architecture. 
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INTRODUCTION 
 

Computer simulations play important role in modern 

studies of plasmas. Simulations allow to clarify many 

aspects of real plasma experiments, and set directions 

and scripts for their development. Kinetic simulations of 

plasmas need maximal sources [1]. On the other hand, 

they are the most accurate and allow to observe a lot of 

physical effects. Particle in cell is most widely used 

method of kinetic plasma simulation. Initially developed 

for studies of hydrodynamic calculations [2], it was 

adopted for plasma physics and became de-facto 

standard simulation method for wide range of plasma-

related studies from astrophysics to controlled fusion. 

One of the perspective areas of plasma physics are 

beam-plasma and laser-plasma interactions. Beam-

plasma interactions become an object for fundamental 

studies as well for applied purposes. Electron beams and 

bunches can be used as electromagnetic waves' emitters, 

for excitation of wake waves and further electrons 

acceleration, for beam-plasma discharge ignition as a 

possible source of dense plasmas etc.  

PiCOPIC is the successor of PDP3 [3] code, that was 

developed for the same purposes. This code has a lot of 

architecture limitations. Also, PDP3 was designed as 

single-thread code and can not be fully parallelized. 

Development of modern, fast and flexible PIC code, 

optimized for simulation of beam-plasma and laser-

plasma interactions with perspective to extend it to 

cluster-based calculations was the main motivation to 

create PiCOPIC. 
 

1. GENERAL PIC SCHEME 
 

Particle in cell is fully kinetic plasma simulation 

approach. The mathematical model, underlying this 

method is the Vlasov-Maxwell system of equations [4]. 

PIC method performs a discretization of these 

equations. It replaces particles distribution function to 

the sum of parameters of so-called “macroparticles”. 

Each macroparticle represents the set of regular 

particles of some specie Fig. 1. Another discretization 

replaces continuous field’sdistribution with fixed spatial 

grid. Maxwell equations is solved only at the nodes of 

such grid. Time is also splitting into discrete steps.  

Integration of the macroparticles motion equations 

and solving Maxwell equations is solved at every time 

step.  

 

 
 

 

Fig. 1. General scheme of PIC method for single time 

step 

 

2. CODE DESCRIPTION AND FEATURES 
 

PiCOPIC was designed as lightweight high-

performance application with simple build management 

procedure. So, it contains minimal amount of external 

dependencies and tools.  One of the main objectives of 

this code is to make it simple for reading and updating. 

Accepting such requirements modular C++ approach 

was applied. Anyway, parts of the code, that required 

high performance, were implemented as low-level 

C/C++ code without classes. Summarizing, all 

performance sensitive places were implemented, with 

fast low-level code. Wrappers over such blocks were 

implemented with C++ classes and methods with low 

amount of system calls, designed to be understandable 

and extensible. Data analysis tools were written on 

python, using scientific libraries and jupyter notebooks. 

 

2.1. GEOMETRY 

 

Geometry of the simulation area is inherited from 

PDP3 package. It is axisymmetric with bunches' 

injection along the cylinder axis and the shape of 

macroparticles is a cylindrical ring (Fig. 2). This 

approach allows taking into account all three velocity 

dimensions, but, only 2 spatial dimensions. 
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Disadvantage of 2d3v simulation approach is 

geometrical singularity on the central axis, that causes a 

lot of peculiarities in calculations of particle advance, 

weighting etc. Another disadvantage is a unique weight 

of each macroparticle. This feature requires to be taken 

into account during binary collisions, temperature and 

density calculations etc. 

 

 
 

Fig. 2. Geometry 
 

 

2.2. CORE ARCHITECTURE 

 

In opposite to its predecessor, PiCOPIC code 

designed to store data and logic completely separate. 

Each specie of data (e.g. current and field grids, 

macroparticle parameters) stored in separate data 

structure, that processing by OOP methods of 

corresponding class, designed to reduce system calls. 

Such design allows to simply data manipulation, 

addressing it by pointers. 

Each major part of the PIC loop could be 

implemented with several alternate algorithms, that can 

be altered at configuration phase. All these alternatives 

are implemented as child classes of common parent 

abstract class, or separate methods of the same class. 

Required algorithm can be altered by setting 

compiler directives. Building alters the algorithm, 

following these directives. General scheme of the 

architecture is described on Fig. 3. 

PiCOPIC supports several alternative algorithms for 

macroparticles advance: Boris [5], Vay [6] or Higuera-

Cary [7] algorithms. Charge conservation is 

implemented with Villasenor-Buneman [8] and 

ZigZag [9] algorithms. Maxwellian solver implemented 

only with Yee [10], but technically multiple alternatives 

could be added to existing one. 

Simulation model data stored as the set of member 

variables of configuration class. Object of this class 

initialized once, during application start. Initial 

configuration of the simulation model and conditions set 

uses this object. 

Configuration of the package can be done in 

configuration phase, before build, where specific 

algorithms and other internal parameters can be set, and 

via configuration file, where simulation model 

parameters can be set. 

Output data can be written in two alternate formats: 

plain text and HDF5 [11]. HDF5 is default format and 

recommended for usage. Plain text is supported as 

simple format for debug and development purposes. 

Output is configuring, using objects, named “probes”. 

Each probe describes the subarea of the simulation area 

with one of grid parameters (e.g. current, electric field, 

temperature), which should be written as output data. 

Output data analysis implemented as several python 

libraries, wrapped around python scientific libraries and 

libraries for HDF5. They used in various jupyter note 

books [12], that can be simply customized for current 

purposes. 

 

 
 

Fig. 3. Temperature weighting scheme 

 
 

2.3. TEMPERATURE CALCULATION  

 

Temperature is a macroparameter of gas or plasma 

and has sense only when the condition nk / N << 1 is 

satisfied, where nk is amount of particles with velocities 

v – v + dv and N is the total amount of particles. This 

condition is possible only for large amount of N. In the 

most cases of PIC simulation this condition is not 

satisfied for single grid cell, where mean amount of 

macroparticles is frequently less then 10
2
. In this case 

temperature could be interpreted only as mean energy. 

Calculation of mean energy map is implemented 

with two alternative algorithms: direct mean energy 

calculation and mean energy weighting. Filtering of 

direct velocity of macroparticles also implemented for 

both algorithms. 

Finding mean energy per PIC grid cell is quite 

simple procedure, that can be described by expression: 
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where Pi,j is a total momentum of particles in [i, j] cell; 

ni,j is a number of particles and Ni,,j is a number of 
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macroparticles in [i, j] cell; ms is a mass of particle 

specie; Wk is a weight of k’s macroparticle; vk is a 

velocity of k’s macroparticle. 

Directed velocity filtering is also simple. The main 

idea is to subtract the directed velocity of particles from 

its total velocity. The expression for this procedure is: 
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where Ti,j is a mean energy of chaotic motion in [i, j] 

cell. Calculation becomes invalid for high gradients of 

the directed velocity. 

Main idea of weighting-based temperature 

calculation is to weight particles to the cell nodes, 

instead of its direct counting. Weighting procedure 

depends on the form factor of macroparticle. In the case 

of PiCOPIC, this procedure is described on Fig. 4 and 

expressed as 
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Vk,pltl,[i,j] is a part of k’s particle volume, weighted to 

node [i, j]; Vcell,[i,j] is a volume of cell-like structure with 

the center at the position of node [i, j]; Ξi,j is a total 

particle weight for [i, j] node. Say, physically Ξi,j is a 

value, proportional to weighted density of particles 

(e.g. electrons or ions). 

 

 
 

 

Fig. 4. Temperature weighting scheme 

 
Further procedure is similar to eqs. (2), (3), except 

momentums that are also weighting to grid nodes: 
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There are options to apply bilinear and bicubic 

interpolation to existing temperature maps. Testing and 

comparison of different algorithms are shown on Fig. 5. 
PiCOPIC’s code also takes into account relativistic 

case of such calculation. 
 

2.4. BOUNDARY CONDITIONS 

 

Boundary conditions for particles were implemented 

as reflection for particles of background plasma and 

absorption for beam particles. Perfectly matched 

layer [13] can be applied to the boundaries of field 

grids. Such approach can effectively absorb plasma 

waves and oscillations, preventing reflection of such 

waves from the outer boundaries of the simulation area. 

 

 
 

 

Fig. 5. Comparison of temperature maps, generated 

with different algorithms: a – direct counting; b – direct 

counting with bilinear interpolation; c – direct counting 

with bicubic interpolation; d – weighting 

 

2.5. BINARY COULOMB COLLISIONS  

 

Various processes in plasmas are related to plasma 

heating. There are set of conditions, where taking into 

account of coulomb binary collisions between charged 

particles is required. PiCOPIC uses modern direct 

simulation Monte-Carlo algorithm for coulomb collision 

calculation [14] as main and its predecessor [15] as an 

alternative algorithm. 

 

2.6. PARALLELIZATION  

 
 

Package was designed to be fully parallel and run on 

systems with shared memory as well as distributed one. 

It's hard to parallelize PIC loop. Each of its steps 

depends on each other. It requires frequent 

synchronization of parallel threads. And some of the 

loop steps cannot be parallelized et al. (e.g. charge 

conservation). 

Traditional way to parallelize such code is to split 

simulation area to domains (see Fig. 2). Each domain 

has a real boundary or overlay area on all its edges 

(depends on its relative location). In the case of real 

boundary macroparticle reached the domain’s edge, 

interacts with it, according to the boundary condition
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logic. When particle reaches overlay area, it moves to 

the domain, next to the current one. 

Grid values weight to overlay areas in the common 

way, but after each weighting overlays should be 

synchronized as shown on Fig. 6. This procedure was 

implemented as the separate PIC loop step. 

Synchronization procedure is also paralleled in the 

staggered order. 

Each macroparticle is a low-level data structure, 

placed in the free memory. It is linked to the particle 

specie object with C++ pointer. Such design allows to 

move the particle from one domain to another in very 

performance efficient way: just by its repointing. 

Disadvantage of the pointer change method is the 

requirement to work in the shared memory. 

 

 
Fig. 6. Overlaying 

 

2.7. TEST SIMULATIONS 

 

To review performance and correct working of the 

package, several test simulations with parameters close 

to previous beam-plasma interaction simulations 

[16, 17] were performed. The similar result was 

obtained, but with higher accuracy, as the simulations 

were setup with higher amount of macroparticles and 

larger number of grid nodes. 

Electrons velocity distribution in the subarea far 

from PML regions was calculated to check, if thermal 

velocity distribution works correctly. Obtained 

distribution was close to maxwellian (Fig. 7). 

 

 
Fig. 7. Normalized electrons velocity distribution for the 

subarea, that is far from PML regions 

 
Dependency of electric field from the time was 

plotted and compared to the same plot, for simulation 

with the same parameters, processed on PDP3. This test 

was directed to check if the package works correctly at 

the large simulation periods (10
4
...10

5 
steps), both 

simulations (using PDP3 and PiCOPIC) were performed 

for case of resonant multibunch electron beam injection 

to warm plasma. Fig. 8 shows, that Ez component 

changing is quite similar to PDP3’s result. The 

differences can be explained by higher accuracy of 

simulation with PiCOPIC. 

Evolution of the electric field and temperature is 

quite similar to [17]. Fig. 9 shows Er images for the 

region, that is close to the beam injection point for 

different moments of time. One can see the field 

perturbations, similar to ones described in [17]. 

 

 
Fig. 8. Dependency Ez from time for the same cases, 

simulated with PDP3 (top) and PiCOPIC 

 

 
Fig. 9. Er spatial map for the different time moments. 

Field perturbations are on late time moments (bottom) 

 

CONCLUSIONS 
 

The code for kinetic plasma simulation, based on 

particle in cell method described. The code is written on 
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C++ programming language. Performance-critical 

algorithms covered by low-level C-style code. The code 

optimized for simulations of beam-plasma interactions 

and uses 2.5D axial symmetric geometry. Binary 

coulomb collisions implemented with modern DSMC 

algorithm. Data outputs to binary format HDF5, 

designed for scientific purposes. It provides fast access 

to various data subsets, including cases of large size of 

the data and allows working with large data sets 

efficiently. The code is designed as fast, fully parallel 

with working on computer systems with shared memory 

and architectural ability to execute it on computational 

clusters with relatively minor code update. 
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PiCOPIC: 2.5-МЕРНЫЙ КОД, ОПТИМИЗИРОВАННЫЙ ДЛЯ МОДЕЛИРОВАНИЯ  

ПЛАЗМЕННО-ПУЧКОВОГО ВЗАИМОДЕЙСТВИЯ 

А.К. Винник, И.А. Анисимов 

     Описан оригинальный код для моделирования взаимодействия электронных сгустков и пучков с плазмой, 

основанный на методе крупных частиц. Код электромагнитный, полностью релятивистский, выполнен в 2,5-

мерной аксиально-симметрической геометрии. Учитываются парные кулоновские столкновения заряженных 

частиц. Дизайн кода полностью параллельный для запуска на компьютерных системах с общей памятью. В 

архитектуру заложена возможность расширения поддерживаемых платформ на системы с распределенной 

памятью (вычислительные кластеры или гриды).  
 

PiCOPIC: 2,5-ВИМІРНИЙ КОД, ОПТИМIЗОВАНИЙ ДЛЯ МОДЕЛЮВАННЯ  

ПЛАЗМОВО-ПУЧКОВОЇ ВЗАЄМОДIЇ 

О.К. Винник, I.О. Анiсiмов 

Описаний оригінальний код для моделювання взаємодії електронних згустків із плазмою, заснований на 

методі крупних частинок. Код електромагнітний, повністю релятивістський, виконаний у 2,5-вимірній, 

аксіально-симетричнії геометрії. Враховуються парні кулонівські зіткнення заряджених частинок. Дизайн 

коду повністю паралельний для запуску на комп’ютерних системах зі спільною пам’яттю. В архітектуру 

коду закладена можливість розширення підтримуваних платформ на системи з розподіленою пам’яттю 

(обчислювальні кластери або ґріди). 


