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BRAGINSKII EQUATIONS FOR HOT RELATIVISTIC PLASMAS:
MIXED APPROACH

I. Marushchenko, N.A. Azarenkov

V.N. Karazin Kharkiv National University, Kharkiv, Ukraine

In the paper, the Braginskii equations for relativistic electrons in hot plasmas with slow macroscopic fluxes are
derived. This consideration is suitable for description of the typical fusion plasma with the temperatures of about
several tens of kiloelectronvolt, when the plasma rotation and the longitudinal currents should be taken into account.
Contrary to other papers devoted to classical description of transport processes in fusion devices, as well as to fully
relativistic description of the astrophysical objects, we propose the mixed approach with fully relativistic kinetics for
the hot electrons and non-relativistic macroscopic fluxes. The obtained form of the Braginskii equations includes all
important features of relativistic hydrodynamics, has the same form as the classical representation, which is
currently implemented into modern transport codes, and can easily replace the latter.
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INTRODUCTION

Due to the progress in fusion research in last decades
[1-4], the typical temperature of amagnetically confined
plasma in large tokamaks and stellarators can already
reach the range of 10...20 keV. In next-generation
fusion projects, such as the ITER [5] and DEMO [6]
tokamaks the temperatures should be even higher, up to
60 keV, depending on the scenario.

Formally, each scenario mentioned above satisfies
the condition T, «< m,c?. At the same time, there are
many effects and processes in which relativistic effects
make a non-negligible contribution and must be taken
into account. For example, physics of electron cyclotron
heating and current drive [7] and radiation losses in hot
plasmas [8].

In addition, in the “inertial fusion" [9], when a
plasma is created by a short laser pulse of extremely
high power, the energies of electrons in exploding
plasma streams can reach hundreds of keV, which is
already quite relativistic.

It is also important to mention the projects of a
neutronic fusion [10-12], based on the reactions D — He®
and p — B, in which temperatures of the order of
50...70 keVV (and even higher)should be maintained,
which requires a fully relativistic description.

In general, the basic theory for describing relativistic
plasmas is well developed, see [13, 14]. A number of
theoretical studies of relativistic kinetic and transport
have been carried out. Usually, attention is focused on
astrophysical objects [15], where a fully relativistic
description is required and it is common to apply the
covariant formalism with the 4-vectors in the
Minkowski space [14]. In particular, in the literature one
can find papers devoted to the description of fully
relativistic and ultra-relativistic plasmas and plasma
with flows; see, for example, [16]. In addition, fully
relativistic hydrodynamic has already been developed
[17]. At the same time, the plasma generated in
laboratory, for example in fusion devices, does not
require such a formalism and can be well described
without refence to the Lorentz invariance [18-21]. The
present paper deals with the case of quite practical

needs and the results obtained here can be easily
implemented in any transport code.

Below, we consider a quite typical situation in
fusion plasmas where the macroscopic flows exist.
These flows can be associated with plasmarotation or
longitudinal electriccurrent in the magnetized plasmas.
The main feature of this kind of flows is that V « v,
and v,, < c. In other words, hot plasma electrons can be
relativistic, while the flows are characterized by the
classical velocities.

There are two ways to find the optimal model for
describing transport processes in such plasmas: i) start
with a fully relativistic model obtained with Lorentz
invariance (see, for example, [16]) and reduce it to the
required level; and ii) derive it directly from the
relativistic kinetic equations using Braginskii’s method
and only those effects that need to be considered. We
have found the second method to be simpler and more
convenient.

The resulting equations like any other chain of
equations for the moments [22, 23] must be closed. This
means that in orderto solve the resulting system of
equations, it is first necessary to calculate the moments
in the rest frame. This can be done by solving the
linearized kinetic equation with respect to d&f,.
However, this task is not considered here.

Below, we derive the Braginskii equations for hot
plasmas with relativistic electrons and non-relativistic
macroscopic fluxes.

1. DRIFTING JUTTNER-MAXWELLIAN
AND QUASI-RELATIVISTIC GALILEAN
TRANSFORMATION

We start from the standard relativistic kinetic
equation for electrons in plasmas which can be written
as following [14],
dfe u e u dfe X

— Vfet— (E+— xB) - == =C.(f), (I
3t+7 f—'_me<+0’y>< )8u (fe),
where f, — the electron distribution function,

u = vy- the moment of electron per unit mass and
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y =41+ u?/c? E and B — the electric and magnetic

fields, respectively, C.(fe) = Coo(fo) + Coi (fo)—
relativistic  Coulomb  collisional operator which

describes the collisions of electrons with themselves and
with the ions. Generally, in Eqg. (1) also the external
sources of particles and energy, S..., has to be
accounted. However, since it seems rather a trivial
point, we omit this term here and mention it below only
if necessary.

Formally, in order to derive the equations for the set
of moments of the distribution function, we do not have
to solve the Eq. (1). However, this solution is required
in order to close the system of transport equations. Since
the closure is not the point of this paper, we only briefly
discuss the features of f,.

The object of our investigation are quite slow
processes with characteristic times sufficient for
relaxation of plasmas to the thermodynamic
equilibrium. As consequence, we can suppose that the
ions are well described by the (classical) Maxwellian,
while the electrons may have only small deviations from
the equilibria. As usually, all these deviations are
induced by the thermodynamic forces (plasma
parameters gradients) and the external forces. As
consequence, the electron distribution function can be
represented in standard form, f, = f.o + 6 f., Where §f,
— small deviation from the drifting Jiittner-Maxwellian,

Ne 1 Vo tig
f(fO = C@.JMW €xXp |:_N‘ﬁ/0 (7 - % - 2 >:| )
(2)
where V — the macroscopic flux velocity of electrons
andy, = (1 — V?/c?)7'/2- the respective relativistic
factor, u;, = pte/m. — the thermal moment per unit
mass with p,, = (2m,T,)*/? (u,, seems equal to the
thermal velocity, but it is notlimited by the speed of
light), and p, = m,c?/T,. Here and below, we apply
the rule of summation over the repetitive indexes. The
normalizing factor is, respectively

.
CeJ =

T e Hr 15
— = 1-—— 4+ 0 ?. (3
2Mr K2 (//fr) 8Mr ( )
whereK, (x) is the modified Bessel function of second
kind.

The form of representation of f,, in Eqg. (2) is
chosen in such a way that a recovering of the classical
(drifting) Maxwellian in the case of both T,/m,c? - 0
and V2 /c? - 0 would be most evident.

The relation between f,, and &£, is chosen in such a
way that §f, does not contribute to the integrals for

density
Ne = /ffddu: /ffi0d3U7 (4)

as well as for the macroscopic flux
'.=n. V= /vfed3u = /vfeodgu. 5)

Following the Braginskii method [22, 23], let us
account a presence of the macroscopic flux with the
help of transformation to the frame of reference which
moves with the flux velocity V. Since we are interested
in the slow non-relativistic fluxes, it seems natural to
apply the classical Galilean velocity transformation,
v, = v, +V,. However, the relativistic nature of the
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moving object (i.e. the hot electrons themselves) means
that the only right way is the reduction of the general
Lorentz transformation (see, for example, [24]), taking

Yo=1+V?%/2¢? and keeping only the lowest
order of V,
Ua = U, + Vo
,y:,y/_’_vuuiy_»_ﬁ C)
c? 2c2°

Since this approach has a lower order with respect to V
than the weakly relativistic approach [24], we call this
transformation a quasi-relativistic Galilean.

Similarly, the drifting Jittner-Maxwell distribution
(DJM) also can be reduced,

Ne
feo = CegM —575—5 €xXp {—/i <7 -1-
73/2u3,

Vatla _ Me V2
c? 2T,

This approach includes all required effects. Below we
will use this form of reduced DIM.

For clarity, however, one specific point has to be
emphasized. While the precise Lorentz transformation
when applied to the standard DJM precisely cancel the
drift in the moving coordinate system (exactly the same
as in the classical case with the classical Galilean
transformation), application of the quasi-relativistic
Galilean transformation, Eq. (6), to the reduced DJM,
given by Eq.(7), leads to only approximate canceling of
thedrift. However, it can be easily shown that the
residual term in exponentis of order (m,V?2/T,)(u'?/
c?), which is very small since both conditions m,V?/
T, < 1 and u'?/c? « 1 are well satisfied by definition.
Actually, this result confirms a validity of the proposed
approach.

For calculation of the moments in the next chapter,
the Jacobian of the coordinate transformation is
required. It can be found from the invariance of the
phase-space volume and can be written as following:

dBu 3 vy Vool V?

= and S ~1+ ‘oz (8)

2. THE EQUATIONS FOR MOMENTS

In this chapter, the moments of Eqg. (1) are
calculated. For compactness, we introduce the following

notation

(A) = ni /Afed3u and (A') = ni /A/ fed®u.
B Ve . (9)

ve

One can checkthat(v,) =V, and (v,) = 0.

Direct integration of Eq. (1) leads to a continuity
equation, which describes a conservation of the number
of particles. In terms of the first moments, Egs. (4, 5),
this equation can be written as

one

ot
and there is no difference from the standard form. Here,
in the right-hand-side, a possible presence of the
external source is accounted.

In order to calculate the next moments, such as the
momentum, {(m,u,), Kinetic energy, {(m.c%(y — 1)),
and the viscosity tensor, (m,u,vg), with the drift
velocity, one has to define them in the rest frame, i.e.

+ divT,e = (e )ext- (10)

o1



the frame with no drift. The density of averaged kinetic
energy of relativistic electrons can be written as [19]

3
W, = nemeCQ <’7/ - ]-> = (2 + R) De, (1)
2
where p, = -n,m, (”y—,) = n,T,is the pressure and
K3 5 15
= — —1 12
RGu)=r (3 =1) = 5 = g 4 0U?) (12

is the additional relativistic correction to the classical
definition of energy density, W, = gneTe.
We introduce also the heat flux:

(o = Ne <U mec?(y — 1)> (13)
Now, it is easy to calculate the next moments, related to
the rest frame,

qa
neme (Uy,) = 2
Ug, U (14)
NeMe o = Tap + 0apPe-

One can note that first moment in Eq. (14) is non-zero
only due to the relativistic effects, while in the classical
limit (u,) — (v)) = 0. Second moment in Eq. (14)
corresponds to the viscosity tensor, non-diagonal part of
which can be written similar to the classical definition
[22,23],

u/ u/ 1 u,2
alig
TaB = NeMMe << 7/ > — g <,7/ 60({3 . (15)

Apart from that, we need to consider the terms with
the collision operator. Since we take into account only
the Coulomb collisions of electrons with electrons and
ions, the number of particles is conserved automatically.
Moreover, collisions of electrons with themselves
conserve both the momentum and energy. As
consequence, in the following only the electrons-ions
collisional operator, C,;(f.), is required.

Again, firstly we consider only the rest frame. For
that, we introduce the collisional friction force between
the electrons and ions,

R% = /meu; Coi(fe) d®u,

(16)

the stress tensor generated by the electron-ion collisions,

an/m(v(yuB Coi(fo) A3/, 17)
and the collisional rate of heat flux generated,
G = /v; mec®(y — 1) Coi(fo) d®u. (18)

Additionally, we introduce the rate of energy
exchange between the relativistic electrons and classical
ions. This process is significant only if T, and T; are
different. In this case, the contribution from §f, is
negligible, and the energy exchange can be explicitly
calculated with the relativistic Jiittner-Maxwellian
distribution of electrons and the classical Maxwellian
distribution of ions [18],

P = (’7 -1) ei(fe())d3u/

(p]) eH\[(,u ) iy r

(in somewhat different form it was obtained also in

[17D).

52

Here, P(ejl) is the classical value [23],

T

OETLZ‘ZZ»2<TE — Tl) X — = !
my

B (20)

; 4
P&Zl) = —ﬁl/e
with v, as the standard collision frequency (not shown
here).

3. THE BALANCE EQUATIONS

Since the final aim of this work is to obtain the
equations which describe the force and energy balance
in the laboratory frame of reference (equation of the
particles balance is trivial and is given already; see Eq.
(10)), we consider the moments that appear during an
integration of the kinetic equation Eq. (1) with the
weights m,u, and m,c?(y — 1). Apart from that, also
the moments (m,u,vp) and (v,m.c*(y — 1)) arise.

Using the Egs. (6) and (8), we calculate the first
moment, i.e. the averaged momentum. Here and below,
the terms of orderV2/c? are neglected in final
expressions and only the lowest order of Vis taken into
account:

V!, V2
NeMe (Ua) = NeMe <<1 [;5 202) (!, + ’y’Va)>

1 5
~nemeVy + - {qa + (5 +R> nd,V, + 71'043‘/5:| .
c

(21
For convenience, all relativistic corrections are grouped
in brackets. One can see that the thermal force related to
qq/c? is not canceled by V = 0.
As was mentioned above, for the force balance the
additional moment is required. Formally, this moment
corresponds to the viscosity tensor:

NeMe (UaVg) = NeMe <(u’a ++' Vo) (Ujj + V5)>

(22)
—Ha[3+ (Qa‘/ﬁ"’QI‘?V )
where, foIIowmg the classical definition,
HaB = nemr:‘/onvﬂ + TapB +pc§aﬁ' (23)

Please note that this expression, apart from the term in
the square bracket, contains the relativistic correction
also in the viscosity tensor m,g; see Eq. (15).

In order to simplify the calculation of the term,
related to interaction with the electric and magnetic
fields, it is convenient to use the conservative form of

Eq. (1),
/meuai (ugfe) Bu = —en, <E + = [V x B] )
aug
24
This term is precise in any approach.
The last term in the force balance is the collisional

friction. In the lowest order with respect to Vthe result
can be written as

/meuoz Cm(fs’) dgu

Vs V2
= [ (14 5 4 ) Ve Gl

2

~ Rei+ 5 (PVa + FEiV)
(25)
Finally, we obtain the balance of forces, which can
also be called the momentum conservation equation:
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0 1 5
5 (nemeVa + el {qa + (% + 72) ned .V, + Wa)q‘//;:|>

0 1
5. Hu' 5 U(V "/u
+0$/3< s+ 5 (Vs +asVa)

= ene (Ea + % [V x B}a> + RS+ %2 (VF,PE"' + VﬁF;;,)_
(26)
This equation is written in such a way that all relativistic
corrections are emphasized. The non-relativistic limit
can be easily recovered when ¢ — oo.

As the next step, let us consider the moments
required for the energy balance equation. Again, we
calculate the respective moments in the laboratory
frame. Let us start from the density of energy:

NeMec? ((v—1))

Voul, V2 Vs
A ) )

mV? 3
~ W, +n, — + = daVa.
2 C
27
One can find that with ¢ — oo this expression can

mev?

be reduced to the classical limit, %neTe +n,

The energy flow can be calculated using the
previous results with the same accuracy,

5
NeMec? (Va(y — 1)) >~ qq + (5 + R) NeTe Vo + TapVs.

(28)

Next, for calculation of the term with electric and

magnetic field, it is convenient to use the conservative

form of kinetic equation. Since the magnetic field does

not perform any work, only the electric field contribute
to the respective moment,

/meCQ('y — 1)i (ugfe) Bu=—en.E V.  (29)
8uB

This term is also precise in any approach.
The rate of collisional change of the energy can be
written as

) 2
/mecQ('y — 1) Coi(fe) d3u = /mec2 (1 + V”_ta + V—)

2 2c2
X (y’ -1+ ) Cei(fe) &30’

. . 1 .
~ Py <R§;’ + —205) V.
C

Vg u%
c2

(30)
Finally, combining all terms together, the energy
balance equation can be written as following:

0 meV? 3

a (We + Ne 72 + 672 ana>
0 5

+ax 5 +R neTeVa + go + Taﬂvlg

) ) 1 )
= en.E,Vy + P + (Rfj + Qij) V.
C

€29

One can see that the obtained set of “fluid” equations,
Egs. (10), (26), and (31), recovers the well-known
classical limit. Indeed, in the limit ¢ — oo and T,/
m,c? - oo, the terms proportional tol/c?disappear,
R — 0, andu — v. Evidently, the equations will be
exactly the same as given in [22, 23].

CONCLUSIONS

In the paper, the “fluid” equations for the relativistic
electrons in hot plasmas have been derived. We have
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considered the case when slow flows with characteristic
velocities V « v, can be generated in plasma, while
the thermal electron velocity is arbitrary and can even
reach the speed of light. This condition makes it
possible to apply a significantly reduced model, with a
fully relativistic description of plasmas electrons and a
“classical” description of macroscopic flows.

In order to derive the equations, the method of
Braginskii has been applied, with the only difference
from the original derivation is that the macroscopic flow
was taken into account using the so called quasi-
relativistic Galilean transformation with an accuracy to
the lowest order of flow velocity. The equations are
written in such a way that the relativistic contributions
manifest itself as additional terms - relativistic
corrections.

We have found that the “mixed” approach, i.e. the
description of plasma electrons at a fully relativistic
level combined with a non-relativistic description of the
flows, is completely sufficient for describing this kind
of plasmas. Although there is practically no restriction
on the electron temperature, the characteristic velocity
ofaflow is limited by the conditionsV?/c? « 1
and V « v.,. However, both of these conditions are
typically well satisfied for any fusion device by a wide
margin.
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YPABHEHUS BPATUHCKOI'O 1151 TOPSTYEM PEJISITUBUCTCKOM ILJIA3MbI
C MEJVIEHHBIMH IOTOKAMM: CMEHIAHHOE ITPUBJINKEHUE

H. Mapywenko, H.A. A3apenxos

BeiBomsiTCA ypaBHEHUs bparvHCKOro A pEISITUBUCTCKUX 3JIEKTPOHOB B TIOpSYEH IUIa3ME€ C MEAJICHHBIMU
MaKpOCKOMUYECKHUMHU MOTOKaMHM. JTO PacCMOTPEHHE MOAXOTUT IS OMMCAHUS TUIIUYHOM TEpMOSIEPHOM Mia3mbl C
TEMIIepaTypaMH B AECSATKH KHJIOJJIEKTPOHBOJIBT, KOT/Ia HEOOXOIMMO YYUTHIBATH BpAICHUE IUIa3Mbl M IPOJOJIbHBIC
motokd. B omimume oT apyrux paboT, IOCBAIMIEHHBIX KJIACCHUECKOMY OIIMCAHHUIO TIPOLIECCOB IIepeHoca B
TEPMOSACPHBIX YCTPOMCTBAX, a TaKKe IOJHOCTHIO PEISATHBHUCTCKOMY OINHCAHHUIO acTPO(PU3NIECKHX OOBEKTOB, MBI
IpeularaéM CMEIIaHHBIA IOAXOJ C IOJHOCTBIO PENATUBHCTCKOM KHHETHKOM [UIi TOpSAYHMX OJIIEKTPOHOB U
HEpEeNITUBUCTCKUMH MaKpOCKOIIMYeCKHMH NoTokamH. [lonmyuennas ¢popma ypaBHeHH bparuackoro BkIIto4aeT B ce0st
BCE Ba)KHBIE OCOOEHHOCTH PEIATUBHCTCKON TMAPOJMHAMUKHI, UMEET TOT XK€ BHJ, YTO U KIACCHYECKOE MpECTaBICHHE,
KOTOpPO€ B HACTOSIEE BpeMs pPEaTH30BaHO B COBPEMEHHBIX TPAaHCHOPTHBIX KOJAX, U MOXKET JETKO 3aMEHUTh
HOCIIETHEE.

PIBHAHHS BPATTHCBKOI'O JJ151 TAPSIYOI PEJIATUBICTCHKOI IJIA3MU 3 TOBLIbHUMU
INOTOKAMM: 3SMIINIAHE HABJIMKEHHSA

1. Mapywenxo, M.O. A3apenkos

BuBeneni piBHAHHSA bBpariHCEKOTO [UIS pENATHUBICTCHKUX CNEKTPOHIB y TapsAdid IUla3Mi 3 TMOBUTBHUMH
MaKpOCKOIIIYHUMH ITOTOKaMH. 3aIPONOHOBAaHUN PO3TIIS] MiAXOIUTD VISl OIUCY J1a00paTOPHOI TEPMOSAEPHOI IIa3MH 3
TEMIIEpaTypaMH B I€CSITKH KiJIOCJIEKTPOHBOJIBT, KOJIH CJiJ] BpaXOBYBaTH oOepTaHHS IUIa3MH Ta HO3I0BXHI noToku. Ha
BiIMiHY BiJ] IHIINX POOIT, IPUCBIYCHUX KIACHYHOMY OMICY TPAHCIIOPTHHUX HPOIECIB Y TEPMOSACPHUX IPUCTPOAX, a
TaKOX ITOBHOMY PEJIATHUBICTCHKOMY OIKCY acTpO(i3NUHUX 00'€KTIB, MM IIPONIOHYEMO 3MilllaHe HAOJIMXKEHHS 3 OBHICTIO
PENSATHUBICTCHKOIO KIHETHKOIO [UISi TapsSuuX eJIEKTPOHIB Ta HEPENSTUBICTCBKUMHM MaKpOCKOIIYHUMH ITOTOKAMHU.
Otpumana ¢opMa piBHSIHb BpariHChKOTO BKIIIOYAE BCi BaYKIMBI OCOOIMBOCTI PENSTUBICTCHKOI T1IPOUHAMIKY, MA€E Ty
X ¢opMy, IO 1 KIacHYHE MOJAHHA, K€ B MaHWH Yac BIPOBAPKEHO B CydYacHI TPAHCIOPTHI KOIW, 1 MOXE JIETKO
3aMiHUTH OCTaHHE.
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