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The process of excitation of Cherenkov electromagnetic radiation by a laser pulse in ion dielectric waveguide is 
investigated. Nonlinear electric polarization in isotropic ion dielectric medium and, accordingly, polarization 
charges and currents induced by a ponderomotive force of a laser pulse are determined. Frequency spectra of the 
excited wakefields in the infrared and microwave frequency ranges are obtained. The spatio-temporal structure of 
the wakefield in ion dielectric waveguide is obtained and studied. It is shown that the excited field consists of a po-
tential polarization electric field, as well as a set of eigen electromagnetic waves of ion dielectric waveguide.  

PACS: 41.75.Lx, 41.85.Ja, 41.69.Bq 
 

INTRODUCTION 
A effect of Cherenkov radiation takes place when a 

high-power laser pulse propagates in a dielectric [1 - 5]. 
A necessary condition for the appearance of a Cher-
enkov radiation of a laser pulse is that the group veloc-
ity of the laser pulse must exceed the phase velocity of 
the radiated electromagnetic wave. The effect of Cher-
enkov radiation of a laser pulse in a dielectric medium is 
as follows. When a laser pulse propagates in a dielectric 
a pulsed ponderomotive force quadratic in the laser field 
propagating in the medium with the group velocity of 
the laser pulse will act on the bonded electrons of the 
atoms (ions) of a medium. This force, in turn, will lead 
to the polarization of the atoms (ions) of the dielectric. 
Induced polarization charges and currents will coher-
ently radiate electromagnetic waves (Cherenkov radia-
tion). The effect of the Cherenkov radiation of a laser 
pulse is quite similar to the Cherenkov radiation of an 
electron bunch moving in a dielectric medium, with the 
difference that the ponderomotive force of the laser 
pulse plays the role of the pulse electric field of the 
electron bunch. 

The Cherenkov wakefield radiation in a dielectric 
medium of a high-power ultrashort laser pulse can be 
used to accelerate charged particles similarly to a laser-
plasma wakefield acceleration method [6]. 

A wider class of dielectrics is formed by ion-bonded 
dielectrics [7 - 9]. No pure element of the periodic table 
is related to dielectrics of this class. All ion dielectrics 
are chemical compounds. Ion crystals are composed of 
positive and negative ions. These ions form a crystal 
lattice as a result of Coulomb attraction of oppositely 
charged ions. 

The traditional example of ion dielectrics are crys-
tals of an alkali-halide group with the formula I VIIA B  
(for example, NaCl and KCl). In crystals of this group, 
it is energetically advantageous for an atom of alkali 
metal to transfer its valence electron to an adjacent hal-
ide atom and fill its outer shell. As a result, an ion bond 
arises between the atoms of different elements. This 
bond is due to the interaction of oppositely charged 
ions. Below we restrict consideration to the simplest 
case of diatomic crystals.  

In determining the total electric polarization induced 
by a laser pulse in an ion dielectric, it is necessary to 
take into account both the total contribution of the po-
larizations of the electron shells of all the ions which 
form the crystal and the total contribution of the positive 
and negative ions of the crystal. 

In this paper, a system of nonlinear equations of 
macroscopic electrodynamics is formulated, which de-
scribes the process of excitation of Cherenkov radiation 
by a laser pulse in an ion dielectric medium. 
On the basis of these equations, the effect of the Cher-
enkov radiation of a laser pulse in a dielectric 
waveguide (light guide) will be investigated. A com-
plete picture of the excitation of Cherenkov radiation by 
a laser pulse propagating in an ion dielectric is pre-
sented. The frequency spectrum of Cherenkow radiation 
is determined. The spatio-temporal structure of the 
Cherenkov electromagnetic field has been obtained and 
studied. Note that when the laser pulse crosses the di-
electric boundary, the transition radiation effect is pos-
sible by analogy with the case of an electron bunch [10].  

1. PROBLEM STATEMENT.  
BASIC EQUATIONS 

A laser pulse (wave packet) with electromagnetic 
field components propagates in a homogeneous dielec-
tric medium 
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 is wave vector; 0 /Lk c , L  is 

carrier frequency of a laser pulse; 0 ( , )E r t
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pulse envelope slowly varying in space and time. 
Under the action of the ponderomotive force (RF-

pressure force) a polarization arises in the dielectric, 
slow on the carrier frequency scale, which in turn is the 
source of the electromagnetic field of the laser pulse 
(Cherenkov radiation). Maxwell's system of equations 
describing the electromagnetic field, which is excited by 
a polarization induced by a laser pulse, has the form 
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P


 is vector of electric polarization. 
In ion dielectrics there are two mechanisms of elec-

tric polarization. This is primarily an electron polariza-
tion mechanism inherent in all types of dielectrics. Elec-
tron polarization is due to the displacement of a shell of 
bound electrons relative to their nuclei under the action 
of an electric field. The second polarization mechanism 
is ionic; it is caused by the relative displacement of op-
positely charged ions.  

First of all, we formulate equations describing the 
electron polarization of diatomic ion crystals induced by 
a laser pulse.  

In a condensed medium, each atom is in a local (act-
ing) electric field locE


, which can differ substantially 

from the macroscopic field E


 included in Maxwell's 
equations (2). The local electric field locE


 includes both 

the external electric field and the total electric field of 
the induced dipoles surrounding a given atom (ion). In a 
crystal medium with a cubic crystal lattice, the local 
electric field is described by the Lorentz formula [7 - 9] 
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Taking into account the local field effect, the expres-
sion for the ponderomotive force acting on the electrons 
of the crystal ion shell from the side of the laser pulse 
has the form [3 - 5] 
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The indexes (  ) correspond to positive and negative 
ions, ( )de   are frequencies of the dipole oscillations of 
the electron shells of ions, L  is the dielectric constant 
of the medium at the frequency of the laser pulse. The 
first term in (5) describes the gradient force of HF-
pressure. The second term appears only in the case of a 
crystal medium and is caused by the difference between 
the local electric field in a crystal and the average elec-
tric field of a laser pulse in dielectric medium. In dielec-
tric media where the active field coincides with the ex-
ternal field, for example, in the gas dielectric or plasma 
this term is absent. 

Under the action of ponderomotive force in dielec-
tric electron and ion polarizations appear. Full polariza-
tion of ion dielectrics is 
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where ( )
eP 


 are the partial electron polarizations of posi-

tive and negative ions; iP


 is ion polarization. Partial 
polarizations are described by a system of coupled lin-
ear oscillators 
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where ( )
L
  are electron polarizabilities of individual 

positive and negative ions at laser pulse frequencies; 
2 ( )

( ) 04 /pe eq N m  
   is square of the effective elec-

tron plasma frequency; ( )q   is full charge of the elec-
tron shell of the corresponding ion; 0N  is concentration 
of ions of each type; di  is the eigen frequency of ion 
dipole oscillations; 2 2

04 /pi iq N M   is the square of 
the ion plasma frequency; M is reduced mass of ions; 

iq  is ion charge.  
The left-hand sides of equations (7) for electron po-

larizations include complete polarization of the ion di-
electric, which also includes ion polarization iP


. Note 

that since the ponderomotive force acting on ions is 
inversely proportional to the mass of the ions, then it is 
small and we neglected it in equation (7).  

Thus, partial polarizations are described by a sys-
tem of coupled linear oscillators. The external force 
exciting these oscillators is the ponderomotive force 
from the side of the laser pulse. 

The Maxwell equations (2), together with the equa-
tions for partial polarizations (7) and the relation (6) for 
the full polarization, are closed and describe the Cher-
enkov excitation of electromagnetic radiation of a laser 
pulse in an ion dielectric. 

We will solve this system of equations by the 
method of Fourier transform 
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where ( )E r


, ( )P r

   are Fourier-components of the 
corresponding quantities. From the system of coupled 
equations for partial polarizations (7) we find the ex-
pression for the Fourier components of the full polariza-
tion vector 
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 is Fourier-component of the quadratic depend-
ence of the ponderomotive force (5) on the intensity of 
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the electric field of a laser pulse. The value ( )   is the 
dielectric constant of a diatomic dielectric with an ion 
bond.  

Maxwell's system of equations for Fourier-
component of the electromagnetic field, taking into ac-
count the relation for the full polarization (8) can be 
represented as 

0 0
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0 /k c . The Fourier-components of the polarization 
currents and charges induced in the dielectric by the 
ponderomotive force of a laser pulse are described by 
the expressions 
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.         (11) 
The resulting working system of equations makes it 

possible to investigate Cherenkov radiation in a wide 
variety of physical situations: the model of an infinite 
dielectric medium, dielectric waveguides and cavities. 

2. CHERENKOV RADIATION OF A LASER 
PULSE IN A DIELECTRIC WAVEGUIDE 
We consider the dielectric waveguide, made in the 

form of a homogeneous dielectric cylinder, the lateral 
surface of which is covered with a perfectly conductive 
metal film. A circularly polarized laser pulse with elec-
tric field components propagates along the axis of the 
waveguide 
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The function  R r  describes the radial profile of the 

laser pulse intensity 
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b  is the waveguide radius, the function ( )T   describes 
the longitudinal profile, / ,gt z v   gv  is the group 
velocity, ( ) 1,maxT    0I  is the maximum intensity. 

From the system of Maxwell equations (10) the 
wave equation for the longitudinal Fourier component 
of the Cherenkov electric field follows  
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For a circularly polarized laser pulse (12), expres-
sions for pol , polj 


 take the form 
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where /g gk v    is the transverse part of Lapla-
cian; I ( )r  is Fourier component of the intensity of the 
laser pulse field. The result of solving equation (13) is 
the following expression for the longitudinal component 
of the electric field in the form of a convolution 
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is Green function. For further analysis, we will present 
the Green function in the form 
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The Green function actually describes the structure 
of the wakefield in a dielectric medium excited by a 
laser pulse with a -shaped longitudinal intensity pro-
file. Moreover, the term 0( , )lG r    takes into account 
the excitation of potential longitudinal oscillations of 
the ion dielectric, and the term 0( , )trG r    describes 
the excitation of transverse electromagnetic waves. 

2.1. DISPERSION PROPERTIES  
OF ION DIELECTRIC WAVEGUIDE 

Let us now briefly discuss the question of the propa-
gation of electromagnetic waves in an ion dielectric 
waveguide. Dispersion equations for potential longitu-
dinal oscillations and electromagnetic waves have the 
form  

( ) 0   ,                              (19) 
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zk  is longitudinal wave number. The dielectric constant 
is described by the formula (9). The expression for the 
dielectric constant can be represented as [5] 
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The frequency Li  is the frequency of longitudinal 
optical phonons and belongs to the infrared frequency 
range. Frequencies ( )Le   are the frequencies of longi-
tudinal polarization electron oscillations and are in the 
optical or even ultraviolet frequency ranges. The fre-
quencies ( ),Ti Te    are the absorption lines of the elec-
tromagnetic waves of an ion crystal. In the vicinity of 
these frequencies, the imaginary part of the dielectric 
constant and, accordingly, the energy losses of electro-
magnetic waves increase greatly. The frequency of ab-
sorption by the ion subsystem Ti  is the frequency of 
transverse optical phonons. 

In total, there are three branches of longitudinal os-
cillations ( ),Li Le     and four branches of electro-
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magnetic waves [5]. The low-frequency branch Li   
corresponds to the longitudinal optical phonons, and the 
other two branches ( )Le    are frequencies of the 
polarization electron oscillations. As for the electro-
magnetic branches, the lowest frequency (ion) branch1 
is in the infrared and microwave ranges 

1( ) ,Ti z cik      /ci n stc b     is low ion cutoff 
frequency  
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st  is the static dielectric constant. In the frequency 
range Ti ci     , the dispersion curve has a lin-

ear plot /z stk c  . The frequencies of the electro-
magnetic branch 2 are within 2 ( )Te z сi Lik       , 

сi   is high frequency ion cutoff frequency The low-
frequency section of this branch corresponds to the in-
frared frequency range and the high-frequency region 
corresponds to the optical one. This branch also has a 
linear dispersion region /z орtk c  , opt  is the optic 
dielectric constant. The tilt angle of this line exceeds the 
tilt angle of the straight section of branch 1. And finally, 
branches 3 and 4 are purely electron branches and locate 
in the optical and ultraviolet frequency ranges. The 
phase velocity of electromagnetic waves belonging to 
the fourth branch exceeds the speed of light and in the 
limiting case approaches it. 

2.2. CALCULATION OF GREEN'S FUNCTION 

The Green function (18) contains two terms that de-
scribe the excitation of longitudinal potential oscilla-
tions and electromagnetic waves. The potential Green's 
function 0( , )lG r    has only simple poles, which are 
the zeros of the dielectric constant ( ) 0   . The fre-
quency spectrum of longitudinal oscillations contains 
the frequency of longitudinal optical phonons Li  and 
the frequencies ( )Le   of electron polarization oscilla-
tions. Below we restrict ourselves to the study of wake 
fields in the infrared and lower frequency ranges.  

Calculating the residues in the integral 0( , )lG r    
at the poles 0Li i    , we find the following for the 
potential Green function expression  
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Term in the total Green's function 0( , )trG r    de-
scribes the Cherenkov excitation of the eigen electro-
magnetic waves of the dielectric waveguide. Integrands 
of Fourier integrals 0( )nS    contain only simple 
poles, which are the roots of the equation 

( ) 0n   .                           (23) 
As we are interested in the infrared (microwave) 

frequency range equation three pairs of roots. Two of 
them are located on the real axis 
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and one pair eni    on the imaginary axis. Calculat-
ing the residues in these poles we find the expression for 
the Green function 
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The first term in the expression for the electromag-
netic Green's function (26) describes the electric field in 
the microwave (terahertz) frequency range 2 2

Li in   
(ion branch 1) and is a set of eigen electromagnetic 
waves with frequencies in . The second term in expres-
sion (26) describes a purely electron electromagnetic 
field and belongs to branch 2 in the infrared frequency 
range 2 2 2

Te en Li     . The longitudinal structure of 
this field is more complicated. Each radial harmonic 
contains a wake monochromatic wave, as well as a bi-
polar antisymmetric solitary pulse. Moreover, the height 
of this pulse is exactly two times smaller than the ampli-
tude of the wake wave. Since the amplitudes of the 
waves entering the Green function are proportional to 
the square of their frequencies, the electron electromag-
netic waves will have a larger amplitude compared to 
the ion waves. 

2.3. THE EXCITATION OF WAKE FIELD  
BY LASER PULSE 

The wakefield excited by a laser pulse is described 
by convolution (16), in which the Green function is the 
key element. We first consider the excitation of longitu-
dinal optical phonons. Using the potential polarization 
part of the Green function, we obtain the following ex-
pression for the wake field of longitudinal optical pho-
nons  

( , ) ( ) ( )iz Li i LiE r E r Z    ,              (27) 
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where  0 0 0
1( ) . / . cos ( )L
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Lt  is characteristic duration of a laser pulse.  
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The wake function ( )Z   describes the distribution 
of the wakefield on frequency   in the longitudinal 
direction at each moment of time. We will consider a 
laser pulse with a symmetric longitudinal profile 

0 0( ) ( )T T   . The wake function is conveniently rep-
resented as 

( ) ( ) ( ) cos ( ),Z T X      


          (28) 
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
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The first term in (28) describes the wake wave 
propagating behind the laser pulse. The second term in 
(28) describes a bipolar antisymmetric pulse of a polari-
zation field localized in the region of a laser pulse. The 
field of this pulse decreases and tends to zero with in-
creasing distance from the laser pulse. 

Behind a laser pulse, the wakefield of longitudinal 
optical phonons has the form of a monochromatic wave 

( , ) ( ) ( ) cos ,iz Li i Li LiE r E r T    


   Li Li Lt  . 
Let us give expressions for the Fourier amplitude 

( )T 


 for Gaussian model longitudinal profiles of a la-
ser pulse 

2 2 2
0 0

€( / ) exp( / ), ( ) exp( / 4).L LT t t T        
Longitudinal optical phonons are most efficiently 

radiated when the coherence condition 1Li Lt   is satis-
fied. If the condition 1Li Lt   is satisfied, then the 
longitudinal optical phonons are radiated incoherently 
and the amplitude of the wake wave is exponentially 
small. We present the expressions for the amplitudes of 
longitudinal optical phonons LiE . For two alkaline hal-
ide ion dielectrics: sodium chloride NaCl and potassium 
iodide KI, we have  

 4 2
0( ) 7.4 10 /

( )
L

Li
L

N
E NaCl a V cm

m 
  , 

where LN  is number of wavelengths in the laser pulse; 
127.62 10Lif Hz   is frequency of longitudinal optical 

phonons. In the case of potassium iodide, we obtain   

 4 2
0( ) 1.16 10 /

( )
L

Li
L

N
E KI a V cm

m 
  , 

124 10Tif Hz  . The amplitude of the longitudinal opti-
cal phonons and their frequency are lower than in the 
case of potassium chloride. For 1L m  , 30N   and 

0 1a   we find ( ) 2.2 /LiE NaCl MV cm , 
( ) 0.35 /LiE KI MV cm . 

Let us now consider the excitation of electromag-
netic waves by a laser pulse. Taking advantage of the 
electromagnetic Green's function, we obtain the wake 
electromagnetic field as a superposition of radial har-
monics 
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Behind the laser pulse ,/ 1, 1L ni et    , the 
pulse fields are negligible and only the set of eigen 
waves of the dielectric waveguide remains 
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Let us consider, for example, a laser pulse that has a 
Gaussian profile both in the longitudinal direction and 
in the transverse one 

2 2
0 0( / ) exp( / )L LR r r r r   

moreover, the radius of the laser pulse is small com-
pared with the radius of the dielectric waveguide 

Lr b . In this case, for the expansion coefficients in 
the series (29) we have 

2 22

2 2 2
1

1 exp
( ) 4

n LL
n

n

rr
b J b





 

  
 

. 

Accordingly, for the wake electromagnetic field in-
stead of (29) we obtain 
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Amplitudes of wake electromagnetic waves are pro-
portional to the square of their frequencies. Therefore, a 
short laser pulse will predominantly excite electron 
electromagnetic waves, since their frequencies greatly 
exceed the frequencies of ion electromagnetic waves 

en in  . But the number of these waves is limited by 
inequality 1en Lt  . If the laser pulse is long at the 
scale of the minimum period of electron electromag-
netic waves 1 1e Lt  , but short compared with the peri-
ods of ion electromagnetic waves 1in Lt  , then low-
frequency ion electromagnetic waves will be most ef-
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fectively excited. Under these conditions, only low-
frequency waves are emitted coherently by a laser pulse. 

CONCLUSIONS 

In this work, the process of excitation of wake Cer-
enkov radiation by a laser pulse in an ion dielectric 
waveguide is investigated. For definiteness, a diatomic 
ion crystal medium is considered. The nonlinear electric 
polarization of the ion dielectric medium, induced by 
the ponderomotive force with the side of the laser pulse, 
is determined. The total electric polarization in the ion 
dielectric includes the electron polarization of the elec-
tron shells of ions of opposite charges, as well as the ion 
polarization proper, due to the displacement of ions in 
the electric field. A system of three strongly coupled 
linear oscillator equations is obtained, which describes 
the excitation of partial electric polarizations of an ion 
dielectric by a ponderomotive force from the side of a 
laser pulse. The solution of these equations is obtained 
and the complete polarization in a diatomic ion dielec-
tric medium is determined. Accordingly, expressions are 
obtained for polarization charges and currents, which, in 
turn, are the source of Cerenkov wake waves. The fre-
quency spectrum and the space-time structure of the 
Cherenkov wake field, excited by a laser pulse in an ion 
dielectric waveguide, are determined. It is shown that in 
the infrared (microwave) frequency range, the excited 
wake electric field consists of a potential field of longi-
tudinal optical phonons and a set of eigen wake elec-
tromagnetic waves of a dielectric waveguide. The di-
electric constant in the infrared (microwave) frequency 
range in ion dielectrics always exceeds the dielectric 
constant in the optical range. Therefore, the condition of 
the Cherenkov radiation of a laser pulse in ion dielec-
trics is always satisfied. 
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ВОЗБУЖДЕНИЕ КИЛЬВАТЕРНЫХ ВОЛН ЛАЗЕРНЫМ ИМПУЛЬСОМ В ИОННОМ 
ДИЭЛЕКТРИКЕ 

В.А. Балакирев, И.Н. Онищенко 
Исследован процесс возбуждения черенковского электромагнитного излучения лазерным импульсом в 

ионном диэлектрическом волноводе. Показано, что возбуждаемое поле состоит из потенциального поляри-
зационного электрического поля продольных оптических фононов и набора собственных электромагнитных 
волн ионного диэлектрического волновода. 

ЗБУДЖЕННЯ КІЛЬВАТЕРНИХ ХВИЛЬ ЛАЗЕРНИМ ІМПУЛЬСОМ В ІОННОМУ ДІЕЛЕКТРИКУ 
В.О. Балакiрєв, I.М. Онiщенко 

Досліджено процес збудження черенковського електромагнітного поля лазерним імпульсом в іонному 
діелектричному хвилеводі. Показано, що збуджуване поле складається з потенціального поляризаційного 
електричного поля поздовжніх оптичних фононів та набору власних електромагнітних хвиль іонного діелек-
тричного хвилеводу. 

 


