- 3. Е е ж е. 1971. Эколого-систематический обзор эвгленовых сточных вод. «Гидробиол.
- 4. Ее же. 1973. Эколого-систематический обзор протококковых водорослей сточных вод. «Науч. докл. высш. шк.», биол. н., 2, М.
 5. Захаров Н. Г., Константинова Е. Ф. 1929. Очистительные пруды на Люблинских полях фильтрации в 1919—1920 гг. Тр. Совещ. по очистке сточн. вод, 2, М.
 6. Ильченко Н. И., Матвиенко А. М. 1969. К изучению альгофлоры сточных
- вод сахарных заводов. «Гидробиол. ж.», 5, 5. 7. Киселев И. А. 1954. Пирофитовые водоросли. Опред. пресновод. водор. СССР,
- 6, M.
- Свиренко Д. О. 1918. Материалы к флоре прудов Харьковской городской канализации. «Тр. Бот. ин-та Харьк. ун-та».
 Унифицированные методы исследования качества вод. 1966. Часть VI. «Мет. биол.
- и микробиол. анализа вод», 3, М.

Поступила 29. VII 1971 г.

УДК (581.526.3+592)(289)

ПРОДУКТИВНОСТЬ ВЫСШЕЙ ВОДНОЙ РАСТИТЕЛЬНОСТИ И ЗАПАСЫ ФИТОФИЛЬНЫХ БЕСПОЗВОНОЧНЫХ В КИЛИЙСКОЙ ДЕЛЬТЕ ДУНАЯ

В. М. КЛОКОВ, Л. Н. ЗИМБАЛЕВСКАЯ

(Институт гидробиологии АН УССР, Киев)

Высшая водная растительность Килийской дельты сосредоточена преимущественно в морских заливах переднего края и отчасти на взморье. Площади, занятые группировками водных растений в рукавах дельты, незначительны, так как желобообразное строение ложа, высокая мутность воды, жидкие илы в сочетании с большими скоростями течения создают неблагоприятные условия для растительности*.

В зависимости от степени минерализации и характера растительности заливы переднего края дельты делят на пресноводные (0,03- $4,5^{\circ}/_{00}$) и солоноватоводные $(0,07-10^{\circ}/_{00})$. В участках опресненного взморья, расположенных в районе выхода наиболее крупных рукавов в южной и юго-восточной частях дельты минерализация воды невелика — $0.02-0.03^{\circ}/_{00}$; в северной ее части соленость вод взморья много выше (до $14^{\circ}/_{\circ\circ}$).

Пресноводные заливы и участки опресненного взморья наиболее продуктивны — биомасса растительности на 1 га поверхности зоны зарослей колеблется от 7,1 до 12,4 т сухого веса, в то время как в солоноватоводных заливах и соленом взморье она обычно не превышает 3,4- $7.1 \ T.$

Водная растительность Килийской дельты весьма разнообразна. Она представлена растительными ассоциациями, относящимися к 16 формациям. В пресноводных заливах и на опресненном взморье зарегистрировано 13 формаций, в солоноватоводных заливах — восемь, на участках соленого взморья — лишь одна. В целом в водоемах дельты наибольшую площадь занимают группировки земноводной (512 га) и погруженной (474 га) растительности. Площадь зарослей растительности с плавающими листьями составляет 153 га. В солоноватоводных заливах и на соленом взморье северной части дельты заросли растений с плавающими листьями не встречались.

^{*} Площади дельтовых водоемов крайне незначительны, водная растительность в них практически отсутствует; растительность плавней мы относим к болотному типу и потому в данном сообщении не рассматриваем.

Среди группировок земноводной растительности наибольшую площадь занимают ассоциации ежеголовника многогранного — Sparganium polyedrum (Asch. et Gr.) Jur. Преобладают смешанные заросли ежеголовника многогранного с водяным орехом (Trapa natans L.), площадь которых равна 150 га. Биомасса в этой группировке $1.2 \ \kappa c/m^2$, запасы растительности 1850 т сухого веса. Значительные площади заняты также рогозом узколистным (Typha angustifolia L.) и тростником (Phragmites communis Trin.). Биомасса их соответственно 1,5 и 3,5 $\kappa z/m^2$, запасы растительной массы 2037 и 3118 т сухого веса. Среди растительности с плавающими листьями наиболее существенную роль в продуцировании органических веществ играет формация водяного ореха. Он образует обычно чистые заросли (площадь 68 га, биомасса $0.7 \ \kappa e/m^2$, запасы растительной массы 434 τ сухого веса). Среди погруженной растительности наибольшую площадь занимают группировки рдеста гребенчатого — Potamogeton pectinatus L. с урутью колосовой — Myriophyllum spicatum L. (площадь 174 га, биомасса 0,38 кг/м², запасы 682 т сухого веса) и рдеста пронзеннолистного — Potamogeton perfoliatus L. (104 ea, 0.4 ke/m^2 , 416 τ cyxoro Beca).

T а б n и ц а 1 Площадь (ϵa) зарослей высшей водной растительности в Килийской дельте

Группа формаций	Пресноводные заливы (1 0 97 <i>га</i>)	Солоновато- водные заливы (741 га)	Опресненное взморье	Солено е взморье	Bcero	
Земноводная растительность	324	184	4	_	512	
Растительность с плава- ющими листьями	150	_	3	_	153	
Погруженная раститель- ность	182	269	11	14	475	
Общая площадь зарос- лей	698	452	17	14	1181	

Таблица 2 Запасы высшей водной растительности в Килийской дельте

	Заливы		Взмо			
Группа формаций	пресные	соленые	пресное	соленое	Всего	
Земноводная раститель-	4989	3748	95	_	8832	
Растительность с плава- ющими листьями	796	_	17	_	813	
Погруженная раститель-	7 97	1050	38	60	1945	
Общие запасы	6582	4798	150	60	11590	
Годовая продукция	7898	5758	180	72	13908	

Примечание. Годовая продукция рассчитана по формуле: $P = B_{\text{макс}} \cdot 1,2$.

Зоопланктон в зарослях высшей водной растительности характеризуется невысокими показателями количественного развития (по данным за 1964-1965 гг.). Его биомасса в пределах дельты в среднем составляет $1,75\ e/m^3$. Для примера укажем, что в Днепровско-Бугском лимане и в низовьях Днепра биомасса фитофильного зоопланктона равна $6-7\ e/m^3$, а в водохранилищах и пойменных водоемах Днепра

исчисляется десятками граммов в $1 m^3$. Невысокий уровень количественного развития фитофильного зоопланктона, как и пелагического [3], можно связать с обилием минеральных и органических взвесей в дунайской воде, а также соленостью морских заливов мезогалинная зона), что практически исключает развитие массовых пресноводных видов.

Наиболее богат зоопланктон в пресноводных заливах. Биомасса его здесь колеблется в пределах $20-41~\kappa z/za$; в солоноватоводных заливах она составляет $1-13~\kappa z/za$, а в среднем по всей дельте $-17~\kappa z/za$. В пресноводных заливах сосредоточено около 75% общих запасов зоопланктона заливов дельты $(18~\tau)$.

В отличие от фитофильного зоопланктона зоофитос в водоемах Килийской дельты очень богат. В заливах его биомасса в среднем составляет 89,5 г/м², или 895 кг/га. Для сравнения укажем, что в Киевском водохранилище биомасса зоофитоса равна 339 кг/га, а в пойменных водоемах среднего Днепра — 513 кг/га.

Самые высокие величины биомассы фитофильных беспозвоночных отмечены в пределах мезогалинной зоны в солоноватоводных заливах (563—4096 кг/га). Поскольку 75—80% биомассы в последних приходится на долю Balanus improvisus, кормовая ценность которого невелика, основные запасы кормового зоофитоса сосредоточены в пресноводных заливах (238—579 кг/га). Запасы зоофитоса в заливах и на взморье составляют 1174 т (табл. 3).

 $T \ a \ b \ a \ a \ a \ a$ Биомасса (г/м²) и запасы (т) фитофильных беспозвоночных и бентоса

в Килийской дельте Дуная							
	Зоопланктон		Зоофитос		Бентос		
Участок дельты	2/M2	τ	2/M²	r	2/M²	7	
	I	Тресноводн	ная зона				
Заливы				1			
Ананькин	2,61	3,8	28,7	41,0	2,09	4,4	
Лазаркин	4,15	1,9	57,9	27,4	3,4	1,6	
Делюков	2,64	2,7	52,7	61,3	2,1	3,4	
Рыбачий	2,00	2,3	48,2	55,5			
Потаповский	2,00	1,9	23,8	54,6			
Цыганка	2,00	0,2	40,4	6,0	_	_	
Таранов	1,10	1,8	409,6	649,5			
Взморье	0,6	0,1	43,0	7,3	_	_	
	Cox	' Юноватово	дная зона	'		•	
Заливы	1	1		1		1	
Соленый	0,4	1,2	56,3	164,7	23,8	108,5	
Шабаш	0,1	0,01	134,5	20,3	21,8	3,7	
Перебоина	1,3	1,5	72,4	93,6	99,7	141,1	
Взморье	2,0	0,2	109,4	15,3	_		

В пресноводных заливах значение бентоса в общей биопродуктивности этих водоемов велика, поскольку основные запасы бентических беспозвоночных концентрируются на водной растительности. Запасы донных беспозвоночных здесь составляют 9,4 τ [2], запасы зоофитоса — 129 τ . В солоноватоводных заливах запасы бентоса и зоофитоса очень близки — 252 и 278 τ .

В рукавах дельты зоофитос по уровню количественного развития также превосходит бентос (соответственно $32 \ \epsilon/m^2$ и $8 \ \epsilon/m^2$), но роль его в общем балансе кормовых ресурсов несущественна, что обусловлено незначительной площадью, занимаемой высшей водной растительностью.

ЛИТЕРАТУРА

1. Марковский Ю. М. 1955. Фауна беспозвоночных низовьев рек Украины, условие ее существования и пути использования. Ч. III. Водоемы Килийской дельты Дуная. Изд-во АН УССР, К.

2. Оливари Г. А. 1961. Бентос советского участка Дуная. «Тр. Ин-та гидробиол.

АН УССР́», 36.

3. Цееб Я. Я. 1961. Зоопланктон советского участка Дуная. Там же.

Поступила 6. II 1973 г.

УДК 577.472(28)

БИОПРОДУКЦИОННЫЕ ПРОЦЕССЫ В р. УРАЛЕ

Г. Н. СОЛОВЫХ

(Оренбургский мединститут)

Несмотря на большое народнохозяйственное значение р. Урала его биология изучена недостаточно. Совершенно неисследованными остаются биопродукционные процессы в реке.

Нашей задачей было выяснить интенсивность первичной продукции и деструкции органического вещества в р. Урале у Оренбурга и влияние на эти процессы стоков промышленных и коммунально-бытовых

предприятий города.

Наблюдениями в 1969—1970 гг. был охвачен участок реки протяженностью около 35 км. Пробы отбирали на шести разрезах: в 1 км выше черты города («Дубки»); в районе городского водозабора; у автогужевого моста (место сброса промышленных стоков); ниже впадения в Урал банной протоки, по которой спускаются сточные воды городской канализации и некоторых промышленных предприятий; ниже черты Оренбурга, после впадения в Урал самого многоводного из его притоков — р. Сакмары, и, наконец, в 10 км ниже устья р. Сакмары (у Зеленого Яра).

Суточную продукцию и деструкцию органического вещества определяли скляночным методом в кислородной модификации [1]. Пробы воды отбирали в 8 ч утра в поверхностном горизонте и разливали в шесть светлых склянок (емкость 120 мл) с притертыми пробками. В двух склянках сразу же определяли исходное содержание кислорода. Две другие помещали в двойные дерматиновые мешки и вместе с двумя незатемненными склянками крепили к специальной металлической штанге и погружали в водоем на глубину отбора пробы. Через сутки склянки извлекали из воды и тут же на месте производили фиксацию кислорода с последующим определением его содержания по Винклеру. Наблюдения проводили один раз в месяц. Каждый опыт ставили в четырех повторностях.

Параллельно определяли величины БПК₃, БПК₅, БПК₀ и полного БПК. Послед-

нюю рассчитывали по формуле:

$$\mathrm{БПK}_{\mathrm{полн}} = \frac{a_1^2}{2 \, a_1 - a_2},$$

где a_1 и a_2 — биохимическое потребление кислорода в ме O/Λ соответственно за 3 и 6

суток в каждой пробе [2].

Представлялось интересным сравнить суточную деструкцию с полным БПК. Это отношение, выраженное в процентах, характеризует минерализацию легкоокисляемых органических веществ за сутки.