УДК 577.472(28)

O РЕЗУЛЬТАТАХ АККЛИМАТИЗАЦИИ COROPHIUM SOWINSKYI (MART.) В ВЕСЕЛОВСКОМ ВОДОХРАНИЛИЩЕ

В. М. КРУГЛОВА, Е. М. РЕЙХ, Л. Н. ТАПИЛЬСКАЯ

(Н.-и. ин-т биологии при Ростовском-на-Дону госуниверситете)

В последнее время акклиматизация кормовых для рыб беспозвоночных проводится в широких масштабах. Однако работ по проверке результатов вселения кормовых организмов в новые для них водоемы мало, хотя они чрезвычайно важны не только в теоретическом, но и в практическом отношении. В связи с этим мы поставили перед собой задачу выяснить некоторые вопросы биологии акклиматизированного в Веселовском водохранилище рачка Corophium sowinskyi (Mart.).

Работа проводилась в 1969—1970 гг. Рассмотрено распределение корофиид в водохранилище, их размножение и питание. Материал собирали дночерпателем Петерсена весной, легом и осенью. Всего промерено 1975 экз. корофиид, определена плодовитость 65 самок, исследовано питание 80 экз. При измерении корофиид пользовались бинокулярной лупой МБС-1 с окуляр-микрометром, кишечники просматривали под микроскопом МВ-30.

Веселовское водохранилище представляет собой одно из звеньев Манычского каскада, образовавшегося на р. Зап. Маныч в результате ее зарегулирования в 1933 г. Оно простирается от х. Веселого до г. Пролетарска. Длина 97,5 км, площадь 30 тыс. ϵa [8]. По неопубликованным данным (И. Я. Горис), соленость воды в 1970 г. в среднем по водохранилищу составляла $1,44^0/_{00}$, максимум ее $(2,01^0/_{00})$ наблюдался в октябре в средней части водоема.

Веселовское водохранилище образовалось на южных и приазовских маломощных черноземах, отличающихся повышенным содержанием солей. Материнская порода сложена лессовидными суглинками и мощными аллювиальными отложениями Дона [2, 4]. Грунты водохранилища в русловой части илистые, у берегов глинистые, перемешанные с серым мягким илом [5, 6].

Опреснение Веселовского водохранилища в 1948 г. кубанской водой вызвало депрессию в развитии органической жизни, затянувшуюся более чем на три года. Это привело к необходимости акклиматизации

кормовых организмов.

С 1951 по 1956 гг. в Веселовское водохранилище был вселен комплекс организмов, состоящий из 12 видов беспозвоночных лиманно-каспийского типа (мизиды, кумовые раки, полихеты, моллюски, корофицды). За пять лет из дельты Дона было перевезено 135 тыс. корофиц С. sowinskyi [6]; выпущены они были в нижней и средней частях водохранилища — у Веселовского шлюза и напротив х. Хирного.

Впервые корофииды были обнаружены через два года после все-

ления, в массовом количестве — на третьем году.

В отличие от Дона в Веселовском водохранилище отсутствуют каменистые, жесткие и песчаные грунты; наблюдаются повышенная минерализация и иное соотношение солей, очень незначительное течение, другие биоценозы. В новом водоеме корофииды обитают на уплотненной, слегка размытой желтой глине, которая до вселения сюда корофиид была чрезвычайно бедна организмами. Согласно В. М. Кругловой [7], биомасса бентоса в таком биотопе обычно не превышает 1 г/м². В 1970 г. за счет развития корофиид среднегодовая биомасса бентоса на глинистых грунтах возросла до 7,7 г/м², 61,8% ее составили корофииды.

Летом во время вылета хирономид доля корофиид в биомассе увеличилась до 81,5%. Максимальная биомасса их на глинистых участках достигала $14,3\ e/m^2$, численность — $12480\ 9\kappa s/m^2$ (разрез у х. Жеребки, осень 1970 г.). На илистых грунтах значение корофиид невелико; среднегодовая их биомасса в 1970 г. составила $0,17\ e/m^2$, в 1969 г. — всего $0,06\ e/m^2$ (табл. 1).

Таблица 1
Распределение корофиид в Веселовском водохранилище на различных грунтах

Распреде.	ление :	короф	ИИД В	весело	вском	водо	храни	лище н	а разл	ІИЧНЫ	х грун	тах
		1968 r.			1969 г.				1970 г.			<u> </u>
Тип грунта	Весна	Лето	Осень	В сред- нем за год	Весна	Лето	Осень	В сред- нем за год		Лето	Осень	Всред- нем за год
Среднее										_		
Уплотненный	$\frac{2,23}{1446}$	$\frac{0,41}{640}$	$\begin{array}{ c c }\hline 0.65 \\ \hline 206 \end{array}$	$\frac{1,10}{764}$	$\frac{0.46}{284}$	$\begin{array}{ c c }\hline 0,79\\\hline 547\end{array}$	$\frac{1,15}{1030}$	$\begin{array}{ c c }\hline 0,80\\\hline 620\end{array}$	$\frac{3.29}{1737}$	6,83 5390	$\frac{4.16}{3609}$	$\frac{4,76}{3579}$
Максимальное												
	$\frac{9,54}{6220}$	$\begin{array}{ c c }\hline 1,12\\\hline 1920\end{array}$	$\begin{vmatrix} 4,28\\1120 \end{vmatrix}$		$\frac{1,80}{1240}$	$\frac{3,25}{1600}$	$\frac{2,44}{1880}$		10,64 5680	$\frac{7,76}{6600}$	$\frac{14,28}{12480}$	
Среднее												
Илистый	$\frac{0,64}{54}$	$\frac{0.12}{128}$	$\frac{0,10}{107}$	96	16	$\begin{array}{ c c }\hline 0.02\\\hline 118\\ \end{array}$	$\left \frac{0,12}{123}\right $	0,06 86	$\left \frac{0,14}{87}\right $	$\begin{vmatrix} 0.21 \\ 167 \end{vmatrix}$	$\frac{0,17}{216}$	$\begin{array}{c} 0.17 \\ \hline 157 \end{array}$

 Π р и м е ч а н и е. Числитель — биомасса, z/m^2 , знаменатель — численность, экз/ m^2 .

В среднем по водохранилищу среднегодовая биомасса этих организмов составляла: в 1967 г. — 1,84, в 1968 г. — 0,60, в 1969 г. — 0,43 и в 1970 г. — 1,23 e/m^2 .

Биоценоз твердого глинистого грунта в Веселовском водохранилище сложился на месте засоленных почв, в настоящее время ушедших под воду. После заполнения водохранилища по берегам сохранилась типично солончаковая растительность: солерос — Salicornia curopaca L., бескильница — Puccinella dolicholepis (V. Krecz.) Рау. L., полынь малоцветковая — Artemisia pauciflora Web., лебеда стебельчатая — Atriplex pedunculata L. и др.

Грунты этого биотопа очень бедны органическими веществами (по неопубликованным данным И. Я. Горис, содержание гумуса не превышает 0,3—0,5%).В бентосных пробах найдены лишь корофииды, хирономиды и единичные экземпляры олигохет и кумовых раков.

В 1969 г. были начаты наблюдения за биологией корофиид — их ростом, размножением, питанием. По литературным данным [9], длина С. sowinskyi составляет 3—5 мм. В Веселовском водохранилище встречались экземпляры длиной от 1,5 до 7,2 мм (чаще 2,0—4,0 мм).

Из приведенных данных (табл. 2) видно, что в апреле преобладающей была размерная группа 3,1—4,0 мм; в это время вовсе не отмечены корофииды с длиной тела менее 2,0 мм. Только в апреле в пробах обнаружены экземпляры 7,1—7,2 мм. Летом и осенью доминировала группа 2,1—3,0 мм, крупные корофииды (летом более 7,0, а осенью более 6,0 мм) не найдены.

Размножение большинства амфипод в Азовском море начинается, согласно В. П. Воробьеву [3], в конце марта—начале апреля, к концу мая появляется молодь, поэтому средний вес особи к этому времени снижается. Другие авторы [1] также отмечают, что амфиподы размножаются с весны до конца лета. В наших сборах половозрелые самки

с яйцами встречались со второй половины апреля по конец августа. Минимальная длина половозрелой самки — 2,9 мм. Подсчет яиц показал, что одна самка в среднем выметывает 7 яиц, максимально — 15 при длине тела более 4,0 мм. С увеличением размеров особей число янц, выметываемых одной самкой, возрастает (табл. 3).

Размерный состав (%) корофиид Веселовского водохранилиша

	Длина, мм							
Сезон	1,1—2,0	2,13,0	3,1—4,0	4,1—5,0	5,1-6,0	6,1—7,0	более 7,1	Bcero
Весна	_	26,6	60,0	8,3	3,0	1,2	0,9	454
Лето	8,2	49,6	30,6	8,3	2,6	0,7	_	780
Осень	11,0	57,3	29,1	2,4	0,2	_	-	742
Количество, экз.	146	932	729	121	34	10	4	1976

Таблица З Плодовитость корофиид в зависимости от размеров самок

	1	Количество яиц у одной самки					
Длина особи, <i>мм</i>	Число иссле- дованных са- мок, экз.	среднее	максимальное	минимальное			
3,1—4,0	45	6	11	2			
4,15,0	16	9	15	4			
5,1—6,0	4	13	15	11			

Исследование содержимого кишечников корофиид показало, что основной пищей этих рачков является детрит — 93,6% (по частоте встречаемости), а также грунт с очень мелкими песчинками (4,1%) и диатомовые водоросли — Navicula, Nitzschia, Gyrosigma (1,7%).

Корофииды найдены в значительном количестве в кишечниках тарани (1.4%) по весу), леща, судака, окуня, бычка-песочника (8.4%), бычка-кругляка (18,9%). Таким образом, C. sowinskyi оказался удачным объектом акклиматизации в Веселовском водохранилище, обогатив кормовую базу ранее крайне бедных и совершенно непригодных для нагула рыб участков. Результаты вселения корофиид в Веселовское водохранилище дают основания рекомендовать их для акклиматизации в других водоемах.

ЛИТЕРАТУРА

- 1. Бирштейн Я. А., Романова Н. Н. 1968. Бокоплавы. Атлас беспозвоночных Каспийского моря. Изд-во «Пищепром.», М. 2. Болышев Н. Н., Зубова М. П. 1950. Генезис почв лиманов долины Маныча.

- Вест. МГУ, серия физ.-мат. и ест. н., 5.

 3. Воробьев В. П. 1949. Бентос Азовского моря. Тр. АзЧерНИРО, 13.

 4. Гаврилюк Ф. Я. 1952. Почвы западной части Доно-Манычского водораздела и перспективы их орошения. Уч. зап. РГУ, 18, спец. вып.

 5. Жадин В. И., Герд С. В. 1961. Реки, озера и водохранилища СССР, их фауна
- и флора. Гос. уч.-пед. изд-во Мин-ва просвещ. РСФСР, М.
 6. Круглова В. М. 1962. Веселовское водохранилище. Формирование флоры и фауны и пути развития рыбопродуктивности. Изд-во Ростовск. ун-та.
 7. Ее же. 1969. О влиянии типа почв, уходящих под воду, на формирование биоло-
- гического режима создаваемых искусственных водоемов. В сб. «11 совещ. по вопр. кругов. вещ-ва и энерг. в озер. вод.», пос. Лиственичное на Байкале.
- 8. Лузанская Д. И. 1965. Рыбохозяйственное использование внутренних водоемов СССР. Изд-во «Пищепром», М.

9. Мордухай-Болтовской Ф. Д., Грезе И. И., Василенко С. В. 1969. Отряд амфиподы, или разноногие. «Определитель фауны Черного и Азовского морей», 2, изд-во «Наукова думка», К.

Поступила 21 V 1971 г.

УДК 577.1+59

К ХАРАКТЕРИСТИКЕ ВОЗРАСТНЫХ РАЗЛИЧИЙ АМИНОКИСЛОТНОГО СОСТАВА БЕЛКОВ ГЕМОЛИМФЫ LYMNAEA STAGNALIS (L., 1758)

А. П. СТАДНИЧЕНКО

(Астраханский технический институт рыбной промышленности и хозяйства)

Для характеристики белков гемолимфы пресноводных брюхоногих моллюсков важно знать их аминокислотный состав. Однако внимание этому вопросу стали уделять сравнительно недавно [3, 4, 6, 8, 11—17]. Представляет, в частности, интерес выяснение качественного состава и количественного содержания аминокислот белков гемолимфы пресноводных брюхоногих моллюсков в связи с возрастными различиями.

Материал и методика. Рассмотрен широко распространенный в континентальных водоемах СССР голарктический вид прудовика озерного (Lymnaea stagnalis L.). С целью получения пригодного для сравнения материала и для того, чтобы на результатах исследования не отразились сезонные и экологические изменения, моллюски были собраны в сжатые сроки (конец мая—начало июня 1968 г.) и в одном биотипе (пруд в окрестностях г. Львова).

Гемолимфу от мелких особей получали по методике Таргетта [16], от крупных — по ранее описанной нами методике [8]. При этом все органы животных обследовали на зараженность партенитами и личиночными формами (метацеркариями) трематод, руководствуясь методическими указаниями В. И. Здуна [2]. В данном сообщении приводятся результаты биохимического исследования гемолимфы, полученной только от

незараженных моллюсков.

Белки выделяли общепринятым методом. Гидролиз и очистку гидролизата проводили по методике Пасхиной [7]. Хроматограммы ставили одномерные нисходящие, для них использовали бумагу марки «Ленинградская медленная». Для разделения семи аминокислот — глицина, серина, треонина, метионина, валина, глютаминовой и аспарагиновой — растворителем служила смесь 1-н. раствора бутилового спирта, ледяной уксусной кислоты и воды в отношении 8:3:1. Остальные десять аминокислот разделяли при помощи растворителя, составленного из тех же компонентов, но в соотношении 4:1:5. Для проявления аминокислот хроматограммы обрабатывали 0,5%-ным раствором нингидрина в 95%-ном растворе, содержащем 1% ледяной уксусной кислоты. Содержание аминокислот определяли на СФ-4 при длине волны 510, качественный состав — по калибровочным графикам, составленным для стандартных растворов аминокислот. Каждую аминокислоту выявляли отдельно, за исключением метионина и валина, а также лейцина и изолейцина, определявшихся суммарно. Пролин, содержавшийся в белках гемолимфы в ничтожно малых количествах, подлежал только качественному определению. Триптофан не выявляли. В настоящее время отсутствуют бесспорные критерии, позволяющие с доста-

В настоящее время отсутствуют бесспорные критерии, позволяющие с достаточной степенью точности устанавливать возраст большинства брюхоногих моллюсков. О нем чаще всего судят по высоте раковины животного. Мы исследовали моллюсков двух возрастных групп: с высотой раковины 17,69±0,55 мм (молодые особи) и

 $39,23\pm0,63$ мм, (старые).

Всего было проанализировано 20 биологических проб в трехкратной повторности. Цифровые материалы обрабатывали методами вариационной статистики [1].

В кислотном гидролизате водорастворимых белков гемолимфы прудовика озерного выявлено 17 аминокислот: цистин, лизин, гистидин, аргинин, аспарагиновая и глютаминовая кислоты, серин, глицин, треонин, аланин, тирозин, пролин, метионин, валин, фенилаланин, лейцин и изолейцин. Качественных различий в составе связанных аминокислот