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A.U. KoHOpambes

We investigate different properties of *C diamond layer which was grown on
a top of a brilliant cut diamond anvil. We connected equations of state for diamond
with stress and strain concentrating on the case of [100], see ([1]) strain with
diamond anvil bearing load plane as (100), (see [1]). We investigated the behavior
of optical I phonons with respect to pressure, strain and stress parameters. We
also did simulation of these problems using finite element modeling and Nike2D
computer software. We used O.H. Nielsen approach for modeling of the sensor.

Hocnidxyrombcsi pisHoMaHimHi enacmueocmi npowapky *C-anmasa, sikul
supocmurnu Ha eepxisui ceHcopa-OiamaHma. oedHaHi pieHsIHHSI cmaHy anmasa
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Po30ia 3. Inmeaexmyaavni pecypcu. Hayxoeo-mexmoaoziuna Gesnexa

i KOHUeHmpauii 3 ¢ghoHoenacmu4yHuMu ernacmugocmsamu. [Locnidxyrmbcs
PiBHSIHHSA, SiKi onucyromb MogediHKy OMNMUYHUX YOHI8 8 mepMiHax MUCKy i Ha-
npyeu. lNposedeHo modernroeaHHs Uux Mpobrem 3 suKopucmaHHsM mMemody KiHue-
8ux eniemMeHmig i npozpamHoeo 3abesnedeHHs1 Nike2D. [nsi MoOentoeaHHs CeH-
copy 6yno 3acmocosaHo memod HabnuxeHHsi O. HinbceHa.

Uccnedyromces pasnuyHblie ceolicmea crosi *C-anmasa, ebipauleHHo20 Ha
gepuwiuHe ceHcopa - bpunnuaHma. ObbeduHeHb! ypagHeHUs1 COCMOSHUS anma-
3a U KOHUeHmpauyuu ¢ ¢hoHoanacmuyeckumu ceolicmeamu. WMccnedyromces
ypaeHeHus, onucbigaroujue rnogedeHUe OnMmMuYecKux GPOHOHO8 8 mepMuHax
OasneHusi u HanpsikeHust. [IpoeedeHo modenuposaHue amux npobnem, ucrosb-
3ysi MemoQ KOHEYHbIX 3/1eMEeHMOo8 U rpoepammHoe obecrneyeHue Nike2D. [ns
MoOdenuposaHusi ceHcopa rnpumeHeH memod npubnwxerus O. HunbceHa.

Main Hypothesis. We assume that with initial stress and stress
and compressing load as (100) the compressive changes in diamond
anvils and in high pressure sensor maybe divided in the following
consecutive changes:

1. Initial stresses and strains in [100] direction.

2. Stresses and strains in [110] direction.

3. Stresses and strains in [111] direction.

The resultant are elastic and plastic changes in elastic solids and
they are mixture of stresses and strains in [100], [110] and [111]
directions. As the result the Raman signal will be also the mixture
of the signals of strained cells in each of the directions: [100], [110]
and [111]. Formally all of these maybe written in the following way.

1. For stress tensor components

L= 000 +Blt[110] + Vi O+ B1 +v, =1L
2. For strain tensor components
N = 0,MNpygoy + an[no] + Y M O + B, +v, =1
3. For phonoelastic tensor components
Q= OC39[1001 + BBQ[IIO] + 739[111]; o+ B3 +7; =1
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Exoaociuna 6esnexa ma npupoodoxopucmyeaHus

Research Goals include investigation, verification, and modeling
of Diamond Equations of State, I' Optical Phonon Behavior, High
Pressure Sensor Calibration

Introduction. We study the behavior of I' optical phonons in
diamond anvil which are triply degenerate when strain is not present.
When external pressure appears and thus internal strains are present
the diamond cubic symmetry does not exist anymore and this
triplet is split. On Fig.1 the BC high pressure sensor is presented.

" Diamond Tayer

/ AN

Natural Diamond
Anvil

Fig. 1. 3C High Pressure Sensor in the form of a layer on
natural diamond anvil.

Real Problem of Raman Peak Shift. While compressing the
sensor and anvils in DAC at 156 GPa pressure we’ve obtained the
following shift of the Raman signal (see Fig. 2).The most interesting
thing is that the Raman signal from the sensor is widened and at
156 GPa pressure this signal has the width of 21.51 1/cm. The
main goal of this article is to try to analyze this phenomenon and
to try to develop the physical and mathematical models of it. Our
first step is the data analysis. In Table 1 we put all numerical data
of this pressure sensor. We analyze all points on the graph in the
range from 1542 1/cm to 1563 1/cm and the peaks (graphs) associated
with them.
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Exoaociuna 6esnexa ma npupoodoxopucmyeaHus

Table 1 — Numerical Presentation of the Raman Signal
from High Pressure Sensor

Number of Wave Intensity of Length. of the !nterval
the Point Number Raman Signal associated with the
Value(1/cm) (ye) point (1/cm)
1 1542.18 34977 0.83
2 1543.01 35348 0.82
3 1543.83 35864 0.83
4 1544.66 35472 0.83
5 1545.49 36029 0.83
6 1546.32 35492 0.83
7 1547.15 36133 0.82
8 1547.97 35967 0.82
9 1548.8 36195 0.83
10 1549.63 36216 0.83
11 1550.46 36195 0.82
12 1551.28 35657 0.83
13 1552.11 35719 0.83
14 1552.94 35306 0.83
15 1553.77 36983 0.82
16 1554.59 34977 0.83
17 1555.42 36133 0.83
18 1556.25 35513 0.82
19 1557.07 34997 0.83
20 1557.90 35492 0.83
21 1558.73 36236 0.82
22 1559.55 35059 0.83
23 1560.38 35802 0.83
24 1561.21 36195 0.82
25 1562.03 34586 0.83
26 1562.86 35472 0.83
27 1563.69 34709 0.82

We can see that all relative width for each point signal is about
the same as 0.82—0.83 1/cm.

Our next step is to analyze the local peaks which are parts of this
part of the curve. These local curves (peaks) are described in Table 2.

128



Po30ia 3. Inmeaexmyaavni pecypcu. Hayxoeo-mexmoaoziuna Gesnexa

Elements of Lagrangian Elastic Theory. There are different ways
to present Lagrangian point of view on Solid Mechanics issues. The
way the most close to our goals is presented in [1]. =

Within Lagrangian elastic theory for a strain tensor 1) and ¢ as
a stress tensor we have

N | =
ot

f=det(1+8)(1+8)"'6(1+8)".

Table 2 — Description of the Peaks n the Raman Signal
from High Pressure Sensor

Point .
Number (Ve(;ltlichs) Corl.ler Length Max1m}1m Left Right
of the Vertices | of the Intensity
Peak Included fth Peak fth Boundary | Boundary
ea in the ol the ea ot the (1/cm) (1/cm)
(Curve) lll’leak Peak (1/em) | Peak (ye)
1 1,2,3,4 1,4 2.48 36864 1542.18 1544.66
2 4,5, 4,6 1.66 36029 1544.66 1546.32
6
3 6,7,8 6,8 1.65 36133 1546.32 1547.97
4 8,9, 10, 8,12 3.31 36216 1547.97 1551.28
11,12
5 12,13, | 12,14 | 1.66 35719 | 1551.28 | 1552.94
14
6 14, 15, 14, 16 1.65 36983 1552.94 1554.59
16
7 16, 17, 16, 19 2.48 36133 1554.59 1557.07
18, 19
8 19, 20, 19, 22 2.48 36236 1557.07 1559.55
21,22
9 22,23, 22,25 2.48 36195 1559.55 1562.03
24,25
10 25, 26, 25,27 1.66 35472 1562.03 1563.69
27
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Exoaociuna 6esnexa ma npupoodoxopucmyeaHus

where g is a physical strain tensor defined by the replacement in

the following ¥ 9(I+§);7, and G is a physical stress tensor.
General strain-stress relations are

ti:ZC"f'n/’+%Z’;C1ﬂfn;nk+'"

f‘=;AJ~TL+%§AM,TI,(+M’

where (C l.i,C j« are elastic constants and 3 is a vector of all
relative replacements and 4 Iz Ak are internal strain tensors. We
assume that bearing load plane of diamond anvil and bearing load
of the BC diamond layer to be parallel and to be (100). We have
then the case of strain directed as [100] and thus the strain tensor
7| will be written in rather simple way

n 00
Aoy =0 0 0.
0 00

Notice that for the case of [110] strain the tensor will be

m o m 0
1?|[110] =M, M 0].
0O 0 O

For the case of [111] case the tensor will look like this

1 1
n 5’14 5’14
. 1 1
N = 5“4 n, 5“4
1 1
_5“4 5“4 uh |



Po30ia 3. Inmeaexmyaavni pecypcu. Hayxoeo-mexmoaoziuna Gesnexa

1
L=Cm, +5C111n12;

1
L=t,=C,n + 5 Cllznlz

t, 0 0
For [100] strain case the stress tensor ?[100] =[0 ¢ is
0 0 g

presented by the main components #,,f,,¢,. In our case they are
equal to.

For case of [110] strain case the stress tensor components ;[1101
are written in the following way

1
L=t = (Cll +Cp, )nl + E(Cm +3C), + 4Cl66)n127
Iy = 26, +(Cp, + C123 +2C,, )n127
ty =2C,M, + 4C166ﬂ12-

For case of [111] strain case the stress tensor components

t
[111]
are written in the following way

1
t=t,=t;=(C, +2C,)m, + E(Cm +6C),, + 2C123)n12 +
1
+ 5 (Cyy +2C )ﬂi ,
t,=t; =t =C,m, +(Cpyy +2C (oMM, + C456ﬂi-

We also plan to use Eulerian approach in order to use the Birch
equation of state and to compare each obtained result in both
theories. Both theories differ in the coordinate systems being fixed
and associated with some apriori chosen inertial coordinate system
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or coordinate system is being inbuilt in the solid and is under
transformation as well as the solid is. We present the Birch’s results

[3] which connects Eulerian strain ﬁE tensor and Eulerian stress

tensor fF

e _ 1
2
7F =det(1+&)(1+8)6(1 +8).

In Nike2D model we use cylindrical system of coordinates and
regular notation is the following for [100] strain case.

[T—(T+E)2]=%[T—(T+2ﬁ)l];

G6.. =6,
G, =0,,
Oy = O3,
G, =03

where using elastic constants presented in [1] for Lagrangian and
Euler theories we write the following stress/strain dependencies for
stress tensor for the case of [100] strain.
Lagrangian Approach.
t, =1081n; —31501112;

t, =t, =1251, — 400m;
Eulerian Approach.

t, =1081n, + 27851112;
t, =t, =1251, —4151;
These relations are shown on Fig. 3.
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Stress vs Strain {Lagrangian Approach) Stress vs Strain {Lagrangian Approach)
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Fig.3. Stress/Strain Relations in Lagrange and Euler theories for [100]
Strain case

As we can see the Lagrangian approach gives better approximation
to the experimental data. Nike2D simulation model also well match
First Main Stress Component in the stress tensor for Lagrangian
approach. For the case of [110] strain the tensor stress components
are
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Lagrangian Approach.
t, =t, =1207m, — 64507 ;
t, =250m, —710m;;
t, =1158.4n, —10440m; .
Eulerian Approach.
t, =t, =1207n, +3103.50;
ty =250m, +15007;
t, =1158.4n, +3132n;.

For the case of [111] strain the stress tensor components are.
Lagrangian Approach.

t,=t, =t, =1331.5m, — 18751, —2595n;;

t, =t =1,579.21, —5190n,n, —1310n;.
Euleria Approach.

t,=t, =t, =1332.5M, +965M° +859.5n;;

t,=t,=t,=579.2n, +1719n, +571In;.

High Pressure Sensor Calibration (Present Models). The use of
BC diamond layer as a high pressure sensor and its calibration was
described in [2]. The calibration of this type of sensor was also
investigated by different authors and as was confirmed in [2] a
quadratic fit for a relative shift of a Raman peak with respect to
pressure is a good model. If A®w= ®—®, is a relative shift of a
Raman peak and P is a pressure then the following quadratic fit
A®=aP = pP?*, where a and b are constants is valid. Several
comparable fits are presented in the Table 3 below.

Diamond Equation of State. We consider two equations of state
for diamond : one suggested by Birch [4] , another by Murnaghan
[5]. On Fig. (left) the Birch equation of state is shown, on Fig.
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Table 3 — Different Quadratic Fits for a Relative Shift
of a Raman Peak

# Source Constant a Constant b
1 Eremets 2.258 -0.0024
2 Akahama et al. 2.179 -0.0018
3 Sun et al. 2.062 -0.0014
4 Wei et al. 2.418 -0.0038
5 Our Nike2D Model 2.423 -0.0034

(right) the Murnaghan equation of state is shown, on Fig. our
Nike2D simulation model results are shown. The Nike2D model
simulation results are very close to the Birch model. The parameter
used in Nnike2d model is the ratio (VO/V) -1, we use the same
parameter for the Birch and Murnaghan models for easy comparison.

’ dB
If B is a bulk modulus, B = P = constant | then for diamond we

have the following Murnaghan diamond equation of state.
VO 29
P= 158.62[(7) -1],

Vi, is the volume at ambient pressure and V is a current volume.
Birch diamond equation of state

5/3 2/3 2/3
P:658.5(%) (%) -1 1+0.375((%] ~1)

V.
In Nike2D the parameter used is the following ratio: (70)_1.

For the purpose of better comparison we present the Birch and
Murnaghan equations of state for diamond with respect to the same
ratio. Both Birc We notice that much better comparison with Nike2D
model diamond equation of state was made for the Birch transformed
model. Nike2D model is shown on Fig.5. Birch and Murnaghan
transformed functions are shown on Fig.4.
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Pressure vs (V0V} (Birch Equation of State for Diamond) Mumaghan Eguation of State
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Fig. 4 . Birch transformed and Murnaghan transformed Diamond
Equation of State
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Fig.5. Nike2D Model Diamond Equation of State

Optical T Phonon Behavior with respect to Stress and Strain.
We assume as in [1] that the optical I' phonon is completely
described by the phonon-frequency tensor

Q Q, Q
Q=1Q, Q, Q,|.
Q. Q, Q,

Phonon-frequency tensor components maybe expressed as
functions of strain

1
Q, =0, {8, + Y Qm, +529ymmk e,
7 I
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where §={3,}is a unit tensor, Q,,Q, are dimensionless
phonoelastic constants. In the case of [100] strain we have the following

relations for normal mode frequencies of phonon-frequency tensor.
1
Q =m(1+Qm, + Egmnlz);

1
Q,=Q, = (00(1+912ﬂ1 +59112n12)

Notice that for the case of small pressure value we can restrict
our case only with [100] strain. With the pressure increased we have
automatically strain appearing in [110] direction and with further
pressure increase in [111] direction. The main reason is that the
diamond unit cell are being deformed from its initial equilibrium
position and those cases will automatically appear due shear stress
and other effects.The resultant strain is some linear combination of
strains in all these three directions mentioned above. All of this will
cause us also to consider these directions as separate and important
ones. For the case of [110] strain we have for phonoelastic tensor

Q =Q, =, [1+(Q,, +Q,)n, +
1
+ E(Qm +3Q,, + 49166)“12],
Q, = [1+2Q,n, +(Q,,, +Q,, +2Q,, )1112]:
Q¢ =0,(2Q,m,, + 49166“12)'
The normal modes for the case of [110] strain are

Q +Q.;Q —Q;Q, For Lagrangian approach we have the
following normal modes for [110] strain

Q, +Q, =1281-5556.978n, +2469.768n2;
Q, - Q, =1281-120.414n, +3105.144n?;
Q, = 1281—1954.8067, +9607.5n’.
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Dependence of strain is shown on Fig.6. Normal modes for
[110] strain for Eulerian approach

Q, +Q, =1281-5295.6n, —24273n;;
Q,-Q, =1281-381.8n, +526.4n7;
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On Fig.7 normal modes vs. strain for the

Eulerian approach is shown.
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Fig. 7. Normal Modes for Case of [110] Strain (Eulerian Approach,).

For the case of [111] strain we have the following components
of the phonoelastic tensor.
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Q =Q, =Q, =01+ (2, +2Q,)n, +
1 1
+ 5 (€, +6Q, +2Q,,, )1112 + 5 (Q + 29166)11421]:

Q,=Q,=0Q, =w,[Q,M, +(Q,, +2Q,, MM, + 945611421)'

The normal modes for the case of [I111] strain are
Q, +2Q,,Q, —-Q,, the last is double degenerate. The normal modes
for the case of [111] strain for Lagrangian approach are

Q, +2Q, =1281-3816m, +6.8851; —
—2449.21, +1537.2nm, —3355.90;3;
Q, -Q, =1281-3816m, +6.8851; +
+1224.6m, —768.6nm, +1678.41;.

The normal modes for [111] strain for Eulerian approach are
presented in the following way

Q, +2Q, =1281-3816m, —7107.61; —
—24571m, —14014nm, —8653.1n;,

Q,-Q, =1281-3816m, —7107.61; +
+1228.51, + 700711, —928.77;.

Our investigation shows that the relative shift of a Raman peak
follows the following Hanfland et al [ ] equation. And it is the best
fit for it. We have calculated the parameters of Hanfland model
fitting experimental data. The model now is

P=859.95(3) {[3] —1}[1—0.2545{[3] —1}]
(DO 0)0 (DO .
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Notice that the parameters of the Hanfland model which fit the
experimental data are a = 573.3 GPa, b = 0.2545 (dimensionless).
In experimental data we used ®,=1281 1/cm. The dependence between
P and » is shown on Fig. 8. Hanfland dependence is presented in
the form of direct and inverse functions. On Fig.9 is shown the same
type of dependence we obtained by simulation this problem using the
Nike 2D model in the form of direct and inverse functions.

Hanfland et al Equation for Pressure vs Wave Number Wave Number vs Pressure {Hanfland et al}
it [
s -
g e
ES &5
n =
o )
5 - t:: LE
E H
H £ 1
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=
g 122 o
i - £ Lo —
13 ES
< -
P I R o i [ R kR [P g i K 1 R A I e a Er u 2 e 0 a0 Eoy] prrs
Wava Mumber Ik em Prossure in GPa

Fig. 8. Hanfland Pressure / Wave Number Model (direct and inverse

representation)

Pressure vs Wave Number (Hike2D Model Calculations) Wave Number ve Pressure {NikeZ2D Model Calculations)
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Fig. 9. Nike2d Model connecting pressure and wave number

For alternative model we used Nielsen model [1] which for [100] strain
case normal mode frequencies for phonon-frequency tensor will be.
Lagrangian approach.

Q, =1281-1857.45n,;
Q, =0, =1281-973.56m, +960.751;
o, =1281
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Eulerian approach.
Q, =1281-1857.45n, —3843n;;
Q, =Q, =1281-973.56m, — 832.65n;

®, =1281. Both Lagrangian and Euler approaches for Nielsen
model are shown on Fig.10.

Maximum Shear Stress. We investigated the behavior of maximum
shear stress for [100] strain case in order to find points where the
anvil may fail. If T, is a maximum shear stress, then

X
t,—t 1 1
_hL-hL _ _ 2
Tinax = ) 2n1(C11 C12)+4(C111 Cin
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Fig. 10. Normal Mode Frequencies for Nielsen model
(Lagrangian and Euler representation)

141



Exoaociuna 6esnexa ma npupodoxopucmyeanns

Lagrangian approach. T,y = 461.5m— 13757]2 .

Eulerian approach.

T, =461.5n+1600n".

Both functions are presented on Fig.11. The point of interest for
us will be the strain value for which the maximum shear stress
reaches value of about 100GPa. Behavior of maximum shear stress
is more realistic in Lagrangian approach.

o,

Investigation of R1 ratio. We introduce the variable R1, Rl =—"

(&)

V4

This ratio is rather important in diamond anvil compression
problem. Our goal to connect values of R, with the [100] strain. We

have for ratio Rl

t

8]

Rl =

1
Cpm, + 5 Cllznlz

_2C,+Cm

~
—_

1
Cllnl + ECmﬂf

- 2C,+Cm

Maximum Shear Stress vs Strain
[400] Straln
Lagrangian Appraach

Maximum Shear Stress in GPa

an LRI il B - I E N ch A

[1100] Strain

L T 4

are

T

Mazimum Shear Strezs in GPa

Maximum Shear Stress vs Strain
[100] Strein
Eulerign Apprgagh

R CH O - S S L B o) 8
[100] Strain

Fig. 11. Relation of Maximum Shear Stress vs [100] Strain
(Lagrangian and Euler approach).

As the result we obtain.
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254 —800m,
210063001,

Lagrangian approach. Rl =

| __254-830n,
2100+ 55707,

These ratios for Lagrangian and Eulerian approaches are presented
on Fig.12. Analysis shows full advantage of Euler theory for Rl ratio.

Eulerian approach.

Ratio R1 vs [100] strain Ratic R1 vs [100] strain
R1=Radial Btreas ! Axial Streaa R1 = Radial Stress ! Axial Strass
Lagranglan Approach Eulerian Appraach
i
iz ] |t i
i
vl
[
e E
s Il E -
& ho [
4] 18
e o
.
e AU | N L I R | D Ml R o
45 4 BE 23 2 AE < 05 2 [100] $irain
[100] Strain

Fig.12. Ratio Rl for Lagrangian and FEuler approaches

Description of a Raman Peak Shift of I" Optical Phonon using
Coordinate Position. The advantage of Nielsen model presented before
for the case of [100] strain based upon the use of strain tensor component.
We connect normal mode frequencies of phonon-frequency tensor with

the measuring point location in a strained diamond using 1, = ——1.

X9
Lagrangian approach.

Q, = ©,[2.33-1332;

Xo

2
Q,=0, =0, [0.75(ij - 2.26(iJ +2.511; o, =1281(1/cm)

X9 Xo
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Eulerian approach.

2

Q, = o [-3 = | +4.67 = |-0.67];

Xo

X9

2

Q, =0, = 0,[-0.65 | +0.54 = |+1.11];

Xo

Xo

o, = 1281 1/cm. These dependencies are presented on Fig. 13.
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Fig. 13. Normal Mode Frequencies of Optical 1" Phonon in a [100]
Strained Diamond
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Notice that both models explain split of triplet of optical phonon
in unstrained diamond (Hanfland model does not show that) in a
singlet and doublet (First Mode Frequency explains a singlet , the
Second and the Third Mode Frequency represent the doublet ).
Also we can see that these normal modes behavior is relatively
close to experimental data (Eulerian approach).

Description of Pressure with respect to Coordinate Position. For
the case of [100] strain we don’t have any internal parameter to be
calculated for describing the internal stress/strain relations. For
unstrained diamond for [100] strain case the loading axis is x axis
and let x, be the initial position. Basically in this case we are
talking about the tip of C diamond layer, physically it corresponds
to the gasket/diamond layer interface. Notice that for the case of
x =x, all stress, strain, pressure values will be equal to zero. By
changing the position of x we will obtain stress and strain values not
equal zero and for negative values of strain (compression in negative
x axis direction) we will connect these values with the stress tensor
components. Notice that the same type of curve will be obtained
if the pressure on gasket/diamond anvil is not equal zero and lets
it will be some value of pressure F, , then along the loading axis
with respect to loading (axial) coordinate this value will be added
to each pressure component. Thus the study of pressure vs coordinate
position in a strained diamond is essential. For the strain in [100]
direction we have the following relation

1 l l l X9

Using relation between strain and physical strain tensors can also
easily can connect them in the following way:

g, =-1+,14+2n, . We will make the following mathematical
21, +t,
3

assumptions (for the case of [100] strain). P = , where

1
t=Cm, +Ecnm12§t2 =t;,=C,n, + C112n12- Thus
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2C, C C C
P= (le + ?)m + (% + %)nf In the form of pressure/

coordinate x representation

Xo Xo

2
x |1 x |1
P:(_) g(cm+2C112)+(_J§[(C11_C111)+

1
+2(C12 _Cllz)]+g[(clll _2C11)+2(C112 _2C12)]~

Using elastic constants for Lagrangian and Eulerian theories we
obtain the following functions.
Lagrangian approach.

P=-1316.67[(2)’ —2.33(-) +1.33],x < x,.
X9 Xo
FEulerian approach.

P= 651.67[(1)2 - 1.33(1) +0.33],x < x,.
Xo X9

These pressure/loading coordinate relations for Lagrangian and
Eulerian approaches are presented on Fig.15. The curve for
Lagrangian approach gives a good agreement with our Nike2d
computer simulation model.

Change of Total Energy with respect to Strain. We investigate the
change of total energy of a diamond using Nielsen approach for
[100] strain case. We will have the following function related to
strain in [100] direction.

AE,, 1 ! 1
7:tal ZECMWZ +ngnf +ngm?.

Using values of elastic constants we obtain
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Pressure vs Ratio (X/X0) Prassure vs Ratio (X/X0)
Lagrangian Approgch Eulerian Appraach
[100] Strain [100] Strain
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Fig.14. Pressure vs ratio — (Lagrangian and Eulerian approach)

Xo
Lagrangian approach. % = 5251”]12 - 10501‘[? + 181.671’]f'.
0
Eulerian approach. % =52517 +928.331; +679.177; .
0

Both functions are on Fig. 15.
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Fig.15. Total Diamond Crystal Energy Change as Function of Strain
for [100] case (Lagrangian and Euler Approaches)
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Notice that in case of Lagrange approach the energy change is
about four times faster than in case of Eulerian approach. On our
opinion Lagrangian approach is more preferable.

Conclusions

1. We proved that Hanfland et al model for the relative shift of
a Raman peak is a much better fit the the well known and well
accepted quadratic fit. The Hanfland model was also confirmed by
our simulations on Nike2D computer model.

2. Our Nike2d simulation model has shown the full advantage
of Birch equation of state for diamond.

We confirmed by investigation and by computer simulation that
under the external pressure the splitting occurs (into singlet and
doublet) of I' l.optical phonon which was originally triply
degenerate in unstrained diamond crystal. Our main results were
confirmed in our Nike2D computer simulation model.

2. The peaks 1, 7, 8, 9 (Table 2) are produced by first normal
mode in [100] strained compressed sensor cells. Peaks 2, 3, 5, 6,
10 are produced by first normal mode in [110] strained compressed
sensor cells. Peak 4 is produced by first normal mode in [111]
strained compressed sensor cell.

5. We considered applications of our results in ecological safety
and use of natural resources.

Discussion

1. We study the behavior of " phonons along the loading axis
of diamond anvils and high pressure sensor. While being compressed
the strained diamond anvils and high pressure sensor cells along the
initial loading axis will be located in arbitrary order with respect to
the direction of this axis. For a randomly chosen diamond cell
along the I" phonon axis the direction of a cell axis

7i = (cos 0, cosP,cosy); cos® o+ cos’B+cos’y=1.

Then we have the following
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COs O 1 0 0
cosP |=cosof O [+cosP| 1 [+cosy 0 |=
cosYy 0 0 1
1 1 1
(cosot—cosP) 0 |+ (cosB—cosy) I [+cosy 1
0 0 1

The last shows that arbitrary chosen strained direction maybe
represented as the linear combination of [100], [110], and [111]
strained directions.

2. We assume that along the " phonon line the diamond cells
are arbitrary oriented in all of these three directions [100], [110],
and [111] in the proportion a:b:c;a+b+c=1.
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