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Let L be an algebra over a field F. Then L is called a left Leibniz algebra if its multiplication operations [-, - | addition-
ally satisfy the so-called left Leibniz identity: [[a,b],c] = [a,[b,c]] - [b,[a,c]] for all elements a, b, ¢ € L. In this paper,
we begin the description of the algebra of derivations of Leibniz algebras having dimension 3. It is clear that the
description of the algebra of derivations of all Leibniz algebras, having dimension 3, is quite large. Therefore, in this
article, we will focus on the description of the nilpotent Leibniz algebra, whose nilpotency class is 3, and the nilpotent
Leibniz algebra, whose center has dimension 2.

Keywords: dimension, derivation, hypercenter, Leibniz algebra, nilpotent Leibniz algebra

Let L be an algebra over a field F with the binary operations + and [-, -]. Then L is called a left
Leibniz algebra if it satisfies the left Leibniz identity

[[a’ b]r C] = [ar [b) C]] - [b7 [a’ C]]
for all @, b, ¢ € L. We will also use another form of this identity:
[a, [b, c]] = [[a, D], c] + [b, [a, c]].

Leibniz algebras appeared first in the paper of A. Blokh [1], but the term “Leibniz algebra”
appears in the book of J.-L. Loday [2], and the article of J.-L. Loday [3]. In [4] J.-L. Loday and
T. Pirashvili began the real study of the properties of Leibniz algebras. The theory of Leibniz alge-
bras has developed very intensively in many different directions. Some of the results of this theory
have been presented in the book [5].

Same as in Lie algebras, the structure of Leibniz algebras is greatly influenced by their alge-
bras of derivations.
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Denote by End (L) the set of all linear transformations of L, then L is an associative algebra
by the operation + and o. As usual, End (L) is a Lie algebra by the operations + and [, ], where
[f,gl=fog—gofforall f,g e Endy(L).

A linear transformation f of a Leibniz algebra L is called a derivation, if

f([a, b)) =[f(a),b] +[a, f(b)] foralla,b e L.

Let Der(L) be the subset of all derivations of L. It is possible to prove that Der(L) is a subal-
gebra of a Lie algebra End(L). Der(L) is called the algebra of derivations of a Leibniz algebra L.

The influence on the structure of the Leibniz algebra of their algebras of derivations can be
seen from the following result: if A is an ideal of a Leibniz algebra, then the factor-algebra of L by
the annihilator of A is isomorphic to some subalgebra of Der(A) [6, Proposition 3.2].

It is natural to start studying the algebra of derivations of Leibniz algebras, the structure of
which has been studied quite extensively. A description of the structure of algebras of derivations
of finite-dimensional cyclic Leibniz algebras was obtained in papers [7—9]. The question natural-
ly arises about an algebra of derivations of Leibniz algebras, having a small dimension. In contrast
to Lie algebras, the situation with Leibniz algebras of dimension 3 is very diverse. Leibniz algebras
of dimension 3 are mostly described, and the description of Leibniz algebras of dimensions 4, and
5 are carried out quite intensively. Here we only note that the study of right Leibniz algebras of
dimension 3 is the subject of section 3.1 of a book [5] and works [10—14].

In this paper, we begin the description of the algebra of derivations of Leibniz algebras, having
dimension 3. It is clear that the description of the algebra of derivations of all Leibniz algebras,
having dimension 3, is quite large. Therefore, in this article, we will focus on the description of
nilpotent Leibniz algebra, whose nilpotency class is 3, and of nilpotent Leibniz algebra, whose
center has dimension 2.

1. Some preliminary results. Let’s start with some general properties of the algebra of deri-
vations of Leibniz algebras. We will show in this section some basic elementary properties of deri-
vations, which have been proved in a paper [7]. First of all, let’s recall some definitions.

Every Leibniz algebra L has one specific ideal. Denote by Leib(L) the subspace, generated by
the elements [a, a], a € L. It is possible to prove that Leib(L) is an ideal of L. The ideal Leib(L) is
called the Leibniz kernel of algebra L. By its definition, a factor-algebra L/Leib(L) is a Lie algebra.
And conversely, if Kis an ideal of L such that L/K is a Lie algebra, then K includes a Leibniz kernel.

Let L be a Leibniz algebra. Define the lower central series of L as

L=y (L)=2v,(L)=... 2V (L) 2 Yoy (L) =. . . V5 (L) =7 (L)

by the following rule:y,(L) = L, v,(L) = [L, L], and recursively y__,(L) = [L, y,(L)] for all ordinals
aand y,(L) = Ny <L) for the limit ordinals A. The last term y4(L) = v, (L) is called the lower
hypocenter of L. We have yy(L) = [L, v5(L)].

If o = k is a positive integer, then y,(L) = [L, [L, [L, .., L] ... L] is the left normed commutator
of & copies of L.

As usual, we say that a Leibniz algebra L is called nilpotent if there exists a positive integer k
such that y,(L) = (0). More precisely, L is said to be nilpotent of nilpotency class c if y_ (L) = (0),
but y,(L) # (0).
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The left (vespectively right) center € (L) (respectively "8"(L)) of a Leibniz algebra L is
defined by the rule:

Cleft (L) — {X cl | [x, y] = 0 for each element Yy e L}

(respectively,
¢t (Ly= {xe L|[y,x] =0 for each element y e L}).

It is not hard to prove that the left center of L is an ideal, but it is not true for the right center.
Moreover, Leib (L) < z'* (L), so that L/ Cleft(L) is a Lie algebra. The right center is a subalgebra
of L, and, in general, the left and right centers are different; they even may have different dimen-
sions (see [6]).

The center {(L) of L is defined by the rule:

C(L)={xeL|[x,y]=0=[y, x] for each element y € L}.

The center is an ideal of L.
We define now the upper central series

0)=Co(L)<GUL)SE L)< G (L)Szg0 (D)< . § (L) =8 (L)

of a Leibniz algebra L by the following rule: (L) = (L) is the center of L, and recursively,
G, (L)/C (L) =C(L/C (L)) forall ordinals o, and {, (L) = Uy <i8.(L) for the limit ordinals A. By
definition, each term of this series is an ideal of L. The last term £ (L) of this series is called the
upper hypercenter of L. If L = _(L) then L is called a hypercentral Leibniz algebra.

Lemma 1. Let L bea Leibniz algebra over a field F and f be a derivation of L. Then
JET@N<EN@), FEH@H<EEL) and [EGEL))<LL).

Corollary. Let L bea Leibniz algebra over a field F and f be a derivation of L. Then
S, (L)) <L, (L) forevery ordinal o.

Lemma 2. Let L bea Leibniz algebra over a field F and [ be a derivation of L. Then
S (v (L)) < v, (L) forall ordinals o, in particular, f(y., (L)) < v.(L).

It is natural to first give a description of the algebra of derivations of the Leibniz algebras of
dimension 2. The description of Leibniz algebra, having dimension 2, is given in several papers,
one of the first of which was [15]. The Leibniz algebras, having dimension 2, which are not Lie
algebras, are limited to the algebras of the following two types

Lei,(2, F) = Fa, ® Fa, where [a,, a,] = a,, |a,, a,] = |a,, a,] = [a,, a,] = 0;
Leiy(2, F) = Fa, @ Fa, where [a,, a,] = a,, |a,, a,] = a,, |a,, a,] = [a,, a,] = 0.

Let L be a Lie algebra. We say that L is a semidirect sum of an ideal A and a subalgebra B if
L=A+Band An B={0).

Proposition 1. Let D be the algebra of derivations of the Leibniz algebra Lei (2, F). Then D is
a semidirect sum of an ideal ofdimension 1 and a subalgebra of dimension 1. More precisely, D is
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isomorphic to a subalgebra of matrices, having the following form

o 0
, where o, o, € F.
oy 204

Proposition 2. Let D be the algebra of derivations of the Leibniz algebra Lei,(2, F). Then D is
abelian and has dimension 1, D = Ff where f (a,) = a,, f (a,) = a,.

2. Algebra of derivations of some Leibniz algebras, having dimension 3. Now, let’s move
on to the main part of our work, namely the consideration of the algebra of derivations of a Leib-
niz algebra with dimension 3. Naturally, we will only consider Leibniz algebras that are not Lie
algebras, which means their Leibniz kernel is not zero. The first type of Leibniz algebras we will
consider is the nilpotent Leibniz algebras, and specifically, the nilpotent Leibniz algebras of nilpo-
tency class 3. There is only one type of such algebra, which is the following Lei, (3, F):

Lei (3, F) = Fa, ® Fa, ® Fa, where la,, a\] = a,, [a,, a,] = a,, |a,, a;] =0,
lay, a(] = las, a,] = |a,, a)] = |a,, a;] = [a,, as] = 0.
It is cyclic Leibniz algebra,

Leib(Lei, (3, F)) = £“(Lei, (3, F)) = [Lei (3, F), Lei (3, F)] = Fa, ® Fa,,

M (Lei (3, F)) = C(Lei (3, F)) = v5(Lei (3, F)) = Fa,,.

Theorem 1. Let D be the algebra of derivations of the Leibniz algebra Lei,(3, F). Then D is a
semidirect sum of an ideal N of dimension 1 and a subalgebra of dimension 1, generated by deriva-
tion f, such that f,(a,) = a,, f,(a,) = 2a,, f,(as) = 3a,. Furthermore, N is abelian, N = Ff,, ® If,,

where f,(a,) = a,, f,(a,)=a,, f,(a3) =0, fy(a,) = a,, [y(a,) =0, fy(a;) =0.An algebra D is iso-
morphic to a Lie subalgebra of matrices, having the following form

o 0 0
o, 204 0 | where a, o, 04¢€F.
Oy Oy 304

Theorem 2. Let D be the algebra of derivations of the Leibniz algebra Lei,(3, F). Then D has a se-
ries of ideals (0) < N < C <A <D suchthat Nis abelian, N = Ff, ® Ff,, C= N® Ff,,A= C® If,,
D =A® Ffy, wheref, f,, [ [+ [, are the derivation, defined by the rules:

Jolap) = ay, fo(ay) = 2a,, fo(az) =0;
Ji(ap) =0, fi(ay)) =0, fi(as) = ay
[y(a) = ay, [y(ay)) =0, [y(az) =0;
J3(ay) = ay, f5(ay) =0, fy(ay) = 0;

f4(a1) =0, f4(ag) =0, f4(a3) = a,.
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Moreover,

Jseli=Tiots 3o So=1ro /s
oSl =5 Ui Sol =1
Tsefi=tiots il =T
Joeli=JiJo

o fol = Fo Vo S5l = fo oo S = 2
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[IPO MOXIJIHI AJITEBP JIEMBHIIIA MAJIOI BUMIPHOCTI

Hexaii L — e anrebpa nag nosiem F. Toxi L nazupaeTbes 1iBoio anrebpoio Jleiibuina, axio ii oneparii MHOKEHHS
[-, -] 3amOBOIBHSTIOTD TaK 3BaHy JIiBY ToToXKHicTh Jlehbnina: [[a, b, ¢] = [a, [b, ¢]] — |b, |a, ¢]] ans BCix enemenTiB
a, b, c e L.'Y craTti 3amoyaTKoBaHoO oIuc ajarebpu noxiguux anre6p JleiOHina, 1o MaroTh BUMIpHICTD 3. 3po3y-
MiJI0, 1110 omuc ajireOpH MOXiAHUX Beix anredp JleiibHina BUMIpHOCTI 3 € LOCUTH BeJUKHUM. ToMy TyT HaBeIEHO
omnmc HizbroTeHTHUX ajreGp JleiiOHila, Kaac HiJbIOTEHTHOCTI SKUX AOPIBHIOE 3, Ta HIiJBIOTEHTHUX ajredp
JleiibHiia, eHTp IKUX Ma€ PO3MIPHICTH 2.

Knmouoei crosa: sumipnicmn, noxiona, zinepuenmp, anzebpa Jleiibniua, ninonomenmua anzebpa Jletibniya.
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