

ОПОВІДІ національної академії наук україни

БІОФІЗИКА

УДК 577.3 © **2010**

Р.О. Жураківський, член-кореспондент НАН України Д.М. Говорун Конформаційні можливості 2'-дезоксипурину: квантово-механічне дослідження методом функціонала густини

Квантово-механічним методом функціонала густини на рівні теорії MP2/6-311 + +G(d,p)//DFT B3LYP/6-31G(d,p) проведено вичерпний конформаційний аналіз біологічно важливого нуклеозиду 2'-дезоксипурину. Наведено основні геометричні, енергетичні та полярні характеристики всіх виявлених 103 стійких конформерів, а також конформаційні рівноваги при температурі 298,15 К.

Дослідження конформаційних властивостей ізольованих нуклеозидів є класичною проблемою сучасної біохімії, молекулярної фармакології та структурної біології [1, 2]. Саме в цій площині лежать відповіді, які дозволяють зрозуміти принципи дії біологічно активних нуклеозидів і "молекулярну логіку" просторової будови та функціонування нуклеїнових кислот.

У попередніх наших роботах реалізовано новий підхід до теоретичного конформаційного аналізу 2'-дезоксирибонуклеозидів: квантово-механічним методом функціонала густини на рівні теорії MP2/6-311G + +(d,p)//DFT B3LYP/6-31G(d,p) вперше отримано повне конформаційне сімейство 1',2'-дидезоксирибози — модельного цукрового залишку [3] — і на його основі проведено повний конформаційний аналіз усіх канонічних нуклеозидів — 2'-дезоксицитидину [4], тимідину [5], 2'-дезоксиаденозину [6] та 2'-дезоксигуанозину [7].

Дана робота присвячена повноформатному квантово-механічному конформаційному аналізу 2'-дезоксипурину (dP).

Матеріали і методи. Для вивчення конформаційних властивостей dP використано теорію функціонала густини (DFT) із застосуванням гібридного обмінно-кореляційного функціонала електронної густини в узагальненому градієнтному наближенні B3LYP [8–10]. Для оптимізації геометрії ми скористалися стандартним набором базисних функцій 6–31G(d,p), які задовільно зарекомендували себе для подібних задач [3–7]. Усі зоптимізовані конформери перевірено на стійкість за відсутністю уявних частот в їхніх коливальних спектрах. Коливальні спектри отримано на згаданому рівні теорії у гармонічному наближенні.

Усі квантово-механічні розрахунки проведено з використанням програмного пакета "GAUSSIAN03" для платформи Win32 [11].

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2010, Nº 1

Рис. 1. Структура та позначення атомів молекули 2'-дезоксипурину та її основних конформаційних змінних

Рис. 2. Залежність відносної вільної енергії Гіббса (ΔG) (a) та максимального вигину кільця цукрового залишку (ν_{\max}) (δ) від фазового кута псевдообертання фуранозного кільця цукрового залишку (P) усіх можливих конформерів 2'-дезоксипурину

Використані у роботі позначення класичних конформаційних змінних (рис. 1) — стандартні [12]. За міру конформаційної мінливості того чи іншого структурного параметра довжини зв'язку чи величини валентного кута — взято безрозмірну величину Δ , що є відношенням стандартного відхилення величини структурного параметра до його середнього значення.

Результати та їхнє обговорення. *Конформаційні властивості*. Вперше встановлено, що ізольований dP має 103 пари дзеркально-симетричних стійких конформерів, відносна енергія Гіббса яких лежить у діапазоні 0–8,89 ккал/моль за нормальних умов (табл. 1, рис. 2). За своїми конформаційними ознаками та кількістю вони розподілені таким чином (табл. 1, рис. 3).

ISSN 1025-6415 Доповіді Національної академії наук України, 2010, №1

Конформер	ΔG	D	P	$ u_{ m max}$	X	β	γ	δ	ε
1	2	3	4	5	6	7	8	9	10
1	0,00	3,74	165,5	36,0	$55,\!6$	68,1	45,7	146,1	-177,4
2	0,04	$3,\!58$	168,4	36,2	55,8	$68,\!8$	45,1	151,0	$-64,\!8$
3	$1,\!98$	$2,\!90$	172,9	$34,\!8$	56,8	70,9	43,3	143,2	$45,\!9$
4	$2,\!65$	2,73	28,4	31,7	65,1	171,8	-59,1	89,1	-59,9
5	$2,\!69$	$4,\!14$	174,8	$35,\!8$	67,7	-56,8	173,4	154,5	-61,0
6	2,96	3,76	$18,\! 6$	32,8	84,8	165,7	48,8	87,8	$-104,\!0$
7	2,97	3,26	$29,\!6$	32,3	45,4	$46,\! 6$	42,1	89,7	$-84,\!6$
8	2,98	$3,\!90$	35,5	29,5	47,4	45,9	44,9	90,0	-149,9
9	3,00	$2,\!57$	23,0	29,7	67,5	$-56,\!6$	178,5	94,5	-85,4
10	$3,\!12$	4,96	170,0	35,7	67,7	-55,7	172,7	148,8	-179,3
11	3,15	5,24	13,2	36,8	-175,7	-78,9	-58,6	83,7	-61,9
12	3,17	3,23	175,1	34,7	68,6	176,8	-68,1	153,2	-65,1
13	3,19	3,50	24,9	30,4	70,5	-57,4	179,0	89,9	-161,3
14	3,21	4,23	141,9	38,9	-110,9	64,8	59,9	135,0	-177,4
15	3,40	6,50	172,9	33,3	-125,6	175,5	51,0	145,2	175,1
16	3,58	3,83	149,5	38,0	176,3	63,8 170 F	55,1	139,5	178,7
10	3,38	5,01	8,1 0,6	30,0 22.6	-179,5	170,3 172,4	-58,8	80,5 85 <i>c</i>	-57,7
18	3,01	0,02 4 47	9,0	33,0 27.2	-152,4	172,4	51,5 161 4	80,0	-100,0
19	3,72 2,76	4,47	10.0	37,3 24.6	42,0	-71,7	101,4	107,4	-38,8
20	3,70 2,77	0,42 5.10	10,9 22 5	34,0 26 5	-149,9	104,2 177.0	40,0 57.6	01,0 92.7	-69,1
21	296	5,19	33,5 157 5	30,3 26 6	-125,0	67.0	-57,0	00,1 147.0	-55,0
22	3,80	5,04 4.03	30.4	30,0 33 0	-104,8	-77.4	-58.7	147,0 86.6	-65.3
23	3,80	4,03 5 37	158.8	36.4	175.3	65.0	-55.2	147.1	-68.0
25	3,07	4.01	15.7	33 3	-129.6	67.1	64.1	87.3	-165.2
26 26	3 98	7,54	175.9	33.5	-122.5	174.4	50.3	150.1	-65.2
27	3.99	4.36	176.4	35.0	68.7	-75.7	-66.6	153.8	-66.8
28	3.99	4.37	17.7	33.9	-128.3	66.6	61.8	90.1	-85.9
29	4,03	4,22	22,6	30.0	68,2	-59.0	-179.8	85.9	57.0
30	4,07	$3,\!11$	359,5	34,5	156,7	63,8	$53,\!9$	89,0	-163,5
31	4,09	$3,\!21$	$173,\!3$	$35,\!6$	69,1	179,3	-66,1	150,8	-176,0
32	4,32	$5,\!96$	155,3	36,9	-132,3	$-178,\! 6$	-68,4	145,5	-65,5
33	4,32	$4,\!11$	$173,\!3$	35,2	$68,\! 6$	-69,0	-63,8	149,4	$-177,\!4$
34	4,37	$3,\!27$	187,1	$34,\!6$	72,7	-56,5	$173,\!9$	149,2	$42,\!4$
35	$4,\!38$	$5,\!67$	178,1	37,0	43,4	$-70,\!6$	$160,\! 6$	$152,\! 6$	-178,4
36	$4,\!39$	$3,\!55$	5,2	35,2	162,1	$62,\! 6$	$51,\!0$	89,9	-90,3
37	4,44	$3,\!58$	178,0	$34,\!8$	69,4	$_{98,1}$	-69,1	$153,\!9$	-60,4
38	4,53	$2,\!63$	1,9	35,3	178,7	$-54,\!8$	-179,9	$87,\!9$	-170,9
39	$4,\!67$	$5,\!25$	$184,\!8$	$32,\!6$	-120,0	178,0	48,9	$143,\! 6$	56,0
40	4,70	$6,\!14$	9,4	33,2	-151,8	176,5	52,4	$81,\!8$	65,7
41	4,72	$4,\!85$	162,3	36,7	-121,7	-49,5	172,1	150,1	-61,2
42	4,79	4,95	153,9	$37,\!6$	-129,0	-49,8	172,8	142,2	179,9
43	4,94	3,01	8,0	35,3	$-175,\!6$	-53,9	179,1	$90,\!6$	$-80,\!6$
44	4,94	$5,\!24$	34,0	29,7	$46,\!6$	45,1	45,8	85,2	$58,\!8$
45	$5,\!00$	2,86	28,2	31,9	70,4	$-174,\! 6$	-170,3	86,0	$-162,\!8$

Tаблиця 1.Деякі структурні, енергетичні та полярні характеристики повного сімейства конформерів 2'-дезоксипурину

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2010, № 1

Таблиця 1. Продовження

	qobinonini								
1	2	3	4	5	6	7	8	9	10
46	5,03	2,91	178,1	34,5	-120,1	-47,7	170,7	146,9	48,4
47	5,03	4,83	35,0	$37,\!3$	-127,5	-79,5	-57,9	81,7	-59,8
48	5,08	4,23	24,0	$_{30,4}$	67,2	59,9	$-176,\! 6$	90,5	-92,2
49	5,08	$5,\!50$	157,8	37,1	-131,2	-77,0	-67,7	147,0	-67,9
50	5,09	$4,\!66$	14,2	33,0	$-128,\!6$	67,0	$64,\! 6$	83,5	63,2
51	$5,\!11$	$2,\!59$	24,1	$_{30,3}$	65,7	$-167,\!8$	-170,0	$91,\! 6$	-83,2
52	$5,\!14$	3,74	$31,\!6$	35,7	$-137,\!8$	-54,7	178,1	87,9	-78,3
53	$5,\!19$	$2,\!88$	166, 5	$33,\!8$	-102,9	71,3	66,1	140,9	$54,\!8$
54	$5,\!23$	$3,\!86$	34,2	37,0	$73,\!5$	40,8	-69,7	79,3	$-166,\!8$
55	$5,\!24$	$4,\!54$	156,0	$37,\!8$	-141,7	-68,5	-64,4	143,1	-179,4
56	$5,\!27$	5,73	8,2	35,4	$-157,\!3$	-87,3	$53,\!5$	$83,\!6$	-176,1
57	$5,\!28$	$3,\!43$	$7,\!6$	35,4	-175,2	-56,8	$-178,\!9$	81,9	62,5
58	$5,\!30$	$3,\!53$	187,9	37,4	$41,\! 6$	-73,9	164,0	152,0	$34,\!6$
59	5,32	$1,\!16$	190,5	35,3	$74,\! 6$	176,0	$-67,\!6$	151,2	41,9
60	$5,\!35$	2,77	210,4	36,4	176,3	-178,4	-66,5	$154,\! 6$	$48,\! 6$
61	$5,\!46$	$7,\!05$	173,7	33,5	-126,3	-88,8	53,1	146,2	$173,\!8$
62	5,52	$4,\!68$	$25,\!6$	$_{30,6}$	70,5	65,1	-175,1	87,0	-161,7
63	$5,\!55$	4,77	159,2	37,5	-161,0	$73,\!9$	-74,5	144,3	175,1
64	$5,\!58$	$4,\!69$	$173,\!8$	35,4	69,4	84,7	-71,1	149,8	179,2
65	$5,\!66$	$4,\!93$	359,7	34,0	159,5	64, 4	54,2	85,1	64,7
66	5,71	$3,\!28$	25,3	31,1	$67,\! 6$	-173,5	-169,4	82,4	57,1
67	$5,\!80$	4,40	$32,\!3$	35,7	70,7	50,8	-67,7	76,2	55,9
68	$5,\!82$	$2,\!98$	$10,\!6$	38,1	179,4	42,1	-70,0	$79,\! 6$	-173,0
69	$5,\!83$	$3,\!27$	190,7	$34,\!8$	74,0	-69,1	-63,8	149,8	46,8
70	$5,\!84$	$3,\!64$	12,5	$37,\!8$	-177,0	50,5	-68,4	75,2	60,7
71	$5,\!94$	$6,\!13$	8,4	35,0	-155,4	-87,4	52,8	79,7	$65,\! 6$
72	5,96	$7,\!66$	177,1	$33,\!8$	-123,5	-85,9	52,9	151,4	-60,7
73	6,05	$3,\!46$	349,4	34,3	171,1	178,9	-175,4	90,7	-171,7
74	6,19	4,56	$344,\! 6$	$33,\!5$	171,8	62,0	177,2	93,1	-171,1
75	6,22	$3,\!64$	$172,\! 6$	35,4	-128,6	-176,2	-67,4	145,8	49,4
76	6,24	5,58	182,1	34,7	70,8	59,2	177,9	153,8	-63,3
77	6,26	$5,\!62$	176,1	34,3	69,8	59,3	178,3	147,5	178,9
78	6,26	6,06	194,8	34,0	-160,0	48,6	161,1	152,4	175,1
79	6,31	4,01	353,4	34,4	173,8	179,8	-173,8	84,8	62,6
80	6,32	1,91	195,9	35,8	75,6	-157,8	-175,1	150,7	41,1
81	6,34	3,98	219,7	37,6	-171,8	-179,3	174,2	153,9	48,6
82	6,34 6.25	5,29 5-47	159,1	37,2	-135,8	84,9	-71,9	147,4	-58,8
83	6,35	5,47	21,7	29,5	07,7 199,9	67,4 60.2	-1/5,/	84,2	60,4 F 4 F
84	6,39	3,31	109,0	30,3 00,6	-128,8	-09,3	-04,2	143,5	54,5 44,9
85	6,44 6,50	3,10	19,0	28,0	00,9 164.0	171,0	-71,2	88,4 109.5	44,2
80	6,50 6,50	2,33	335,2 208 0	31,0 24.4	164,9	-178,0	-03,2	102,5 159 5	-159,7
01	0,50	0,40 5,70	208,9 206 0	34,4 22 C	-109,8	-1//,/	172.0	152.2	-02,1
00 80	0,04	5,70	200,0 187 1	აა, ს ვვ ე	-109,2 -120,0	-179,9	50.6	100,0 145 4	114,0 59.7
00	6 55	5,50	106.2	30,∠ 34_4	-120,0 -157.6	-01,9	150.0	140,4 157 1	-65 0
90 Q1	6 50	1,04 6 30	190,2 Q /	94,4 97-1	-158.0	-40,0 _82.0	109,9 55 Q	20.0	-00,0
91	0,59	0,04	0,4	04,1	-100,2	-62,9	55,0	09,4	-19,0

ISSN 1025-6415 Доповіді Національної академії наук України, 2010, №1

Таблиця 1. Закінчення

1	2	3	4	5	6	7	8	9	10
92	6,64	2,69	192,1	35,5	75,1	85,6	-72,2	150,8	39,6
93	$6,\!65$	$4,\!35$	348,7	33,5	171,9	-176,2	-175,2	95,7	-78,9
94	6,77	$4,\!95$	$342,\! 6$	32,8	173,3	56,1	174,2	98,3	-83,9
95	$6,\!81$	$5,\!04$	212,0	36,3	-163,1	52,9	165, 4	152,5	$51,\!0$
96	$6,\!99$	$3,\!25$	199,7	35,2	-141,0	-32,1	164, 4	153,2	48,9
97	7,08	$5,\!96$	$162,\! 6$	$36,\!6$	82,7	-76,2	$54,\! 6$	147,0	-61,5
98	$7,\!11$	$4,\!09$	357,2	$34,\!6$	176,3	176, 1	-71,2	86,5	$51,\! 6$
99	$7,\!22$	$5,\!45$	345,0	$33,\!3$	173,5	$63,\!8$	176,5	89,1	66,0
100	$7,\!24$	$3,\!92$	$200,\!6$	$35,\!4$	78,2	$60,\!6$	175,7	150,4	$45,\!9$
101	$7,\!52$	$5,\!69$	153,9	38,4	81,2	$-82,\!6$	$50,\!6$	139,9	$177,\!4$
102	7,70	$3,\!19$	162,9	$35,\!6$	$-134,\!6$	71,9	-75,3	140,3	49,8
103	8,89	3,51	210,0	31,0	$95,\!9$	-60,9	74,1	144,8	$50,\!6$

Примітка. Позначення кутів β , γ , δ , ε , χ , P та ν_{max} — стандартні [1], величини кутів наведено в градусах; ΔG — відносна вільна енергія Гіббса за нормальних умов, ккал/моль; D — дипольний момент, Дебай. Структурні характеристики отримано на рівні теорії DFT B3LYP/6-31G(d,p), а енергетичні — на рівні теорії MP2/6-311++G(d,p)//DFT B3LYP/6-31G(d,p). Конформери пронумеровано в порядку зростання їхньої вільної енергії Гіббса (ΔG).

Рис. 3. Конформаційні кільця для основних структурних параметрів конформерів 2'-дезоксипурину

Syn-орієнтація цукрового залишку відносно нуклеотидної основи зафіксована в 44 конформерах (41,6° $\leq \chi_{syn} \leq 95,9^{\circ}$), а anti-орієнтація (156,7° $\leq \chi_{anti} \leq 179,4^{\circ}$; -179,5° $\leq \chi_{anti} \leq -102,9^{\circ}$) — у 59 конформерах. Переважаюча кількість anti-конформерів та значно більший діапазон їхніх торсійних кутів χ вказує на те, що для них стеричні обмеження, зумовлені невалентною взаємодією між цукровим залишком та основою, менші, ніж для syn-конформерів.

Формально кількість конформерів з північною (N) конформацією фуранозного кільця цукрового залишку ($335,2^{\circ} < P_N < 360^{\circ}; 0^{\circ} \leq P_N < 35,5^{\circ}$) помітно менша — їх 48,

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2010, № 1

ніж кількість конформерів з південною (S) конформацією фуранозного кільця (141,9° < $P_S < 219,7^\circ$) — їх 55. Ширший діапазон кутів псевдообертання P в останньому випадку свідчить про те, що S-конформери стерично менше обмежені, ніж N-конформери. При цьому S- та N-конформери не зводяться лише до "класичних" C2'-endo та C3'-endo відповідно. Хоча кількість останніх у загальній чисельності свого підсімейства є максимальною — 34 та 38 відповідно, проте поряд з ними спостерігаються й інші: 19 конформерів C3'-ехо, 10 конформерів C2'-ехо і по одному конформеру C1'-ехо та C4'-endo.

Розподіл значень торсійних кутів γ для всіх можливих конформерів dP — тримодальний. При цьому вони займають три доволі вузькі сектори: g^+ (42,1° $\leq \gamma_{g+} \leq 74,1°$) — 33 конформери, t (159,9° $\leq \gamma_t \leq 180,0°$; $-180,0° \leq \gamma_t \leq -169,4°$) — 39 конформерів і g^- ($-75,3° \leq \gamma_{g-} \leq -57,6°$) — 31 конформер. Тримодальний розподіл також встановлено для кутів β , які займають ті ж самі сектори g^+ , t і g^- : g^+ (40,8° $\leq \beta_{g+} \leq 85,6°$) — 38 конформерів, t (164,2° $\leq \beta_t \leq 180,0°$; $-180,0° \leq \beta_t \leq -157,8°$) — 29 конформерів і g^- ($-88,8° \leq \beta_{g-} \leq -32,1°$) — 35 конформерів. Один конформер має значення кута β 98,1°, що прилягає до сектора g^+ . Для кутів ε маємо сектори, що тільки частково збігаються із стандартними g^+ , t і g^- : g^+ (34,6° $\leq \varepsilon_{g+} \leq 66,0°$) — 35 конформерів, t (173,8° $\leq \varepsilon_t \leq 180°$; $-180° \leq \varepsilon_t \leq -159,7°$) — 30 конформерів і g^- ($-89,1° \leq \varepsilon_{g-} \leq -55,6°$) — 34 конформери, крім того, один конформер, що має значення кута $\varepsilon -149,9°$, прилягає до сектора t, а три інших із значеннями -104,0°, -92,2°, -90,3° — до сектора g^- . Торсійні кути δ поділяються на два сектори: 75,2° $\leq \delta \leq 102,5°$ та 135,0° $\leq \delta \leq 158,5°$.

Таким чином, спостерігається приблизно рівномірний кількісний розподіл можливих конформерів dP за класичними торсійними кутами γ , β і ε у секторах g^+ , t і g^- .

Привертає до себе увагу те, що повне конформаційне сімейство досліджуваного нуклеозиду містить лише чотири ДНК-подібні конформери — **18**, **20**, **15** і **26**, які відповідають AI, AII, BI і BII формам двоспіральної ДНК [13].

Вивчаючи структурні особливості всіх можливих конформерів dP, ми не обмежилися лише аналізом їхніх основних (номенклатурних) характеристик, а дослідили конформаційну мінливість усіх без винятку структурних параметрів, а саме — довжин хімічних зв'язків, величин валентних кутів та торсійних кутів, що описують неплощинність гетероциклу основи та вихід глікозидного зв'язку із середньої площини гетероциклу основи. При цьому встановлено такі закономірності.

Нуклеотидна основа у складі нуклеозиду є практично пласкою: ми не зафіксували статистично значущого її відхилення від планарності порівняно з ізольованою основою — пурином.

Іншою структурною особливістю конформерів dP є вихід глікозидного зв'язку C1'N9 із площини основи. Згідно з отриманими результатами кут виходу зв'язку C1'N9 із площини основи не перевищує 1,6°.

З-поміж усіх хімічних зв'язків нуклеозиду конформаційно найчутливішим є глікозидний зв'язок C1' N9 — для нього параметр Δ становить 0,0071, довжина зв'язку змінюється в межах 1,446–1,488 Å, а середнє значення дорівнює 1,463 Å. Наступним у списку йде зв'язкок C4N9, для якого $\Delta = 0,0019$, довжина зв'язку змінюється в межах 1,375–1,387 Å, а середнє значення становить 1,381 Å. Для порівняння зазначимо, що для зв'язків N3C4, N7C8 та C8H основи 0,001 $\leq \Delta \leq 0,0016$, а зв'язки N1C2, N1C6, C2N3, C2H, C4C5, C5C6, C5N7, C8C9 та C6H основи є конформаційно найменш чутливими ($\Delta < 0,001$). У цукровому залишку найбільші значення Δ мають зв'язки C1'O4' — 0,0043, C4'O4' — 0,0043 та C5'O5' — 0,0041, а мінімальне значення Δ встановлено для зв'язку O3'H — 0,0012. Таким чином, хі-

ISSN 1025-6415 Доповіді Національної академії наук України, 2010, №1

мічні зв'язки цукрового залишку загалом конформаційно лабільніші, ніж хімічні зв'язки основи.

Така ж сама закономірність виявлена і для валентних кутів: валентні кути цукрового залишку конформаційно лабільніші, ніж валентні кути основи. У основі значення параметра Δ для них змінюються від 0,0004 (N1C6H) до 0,0042 (N3C4N9). У цукровому залишку ці зміни значно більші і сягають 0,0265 (C2′C3′O3′). При цьому ще п'ять валентних кутів мають високі значення Δ : O3′C3′H — 0,0247, C4′C3′O3′ — 0,0231, O5′C5′H1 — 0,0229, O5′C5′H2 — 0,0223 і C4′C5′O5′ — 0,0217; мінімальне значення Δ зафіксовано для кута H1C5′H2 — 0,0035.

Таким чином, за всіма структурними ознаками азотиста основа досліджуваного нуклеозиду є конформаційно консервативнішою, ніж цукровий залишок.

Щодо полярних властивостей, то нуклеозид має значний дипольний момент, який сильно змінюється від конформера до конформера і лежить у межах 1,16-7,66 Д.

Конформаційні рівноваги. Спираючись на енергетичні характеристики всіх без винятку конформерів dP, ми чисельно охарактеризували його конформаційні рівноваги при температурі 298,15 К. Виявилося, що рівновага syn:anti за температури 298,15 К майже повністю зсунута ліворуч (syn : anti = 98,2% : 1,8%), а рівновага S : N — у бік S-конформерів (S : N = 96,8% : 3,2%). При цьому встановлено такі співвідношення між "класичними" та "некласичними" конформерами фуранозного кільця цукрового залишку:

для S-підсімейства: C2'-endo — 96,5%, C1'-exo — 0,2%, C3'-exo — 0,2%;

для N-підсімейства: C3'-endo — 3,1%, C2'-exo — 0,1%;

заселеність підсімейства C4'-endo практично нульова — 0,001%.

Також нами визначено такі закономірності (у дужках наведено заселеності при T = 298,15 К). Конформери з $\gamma \in g^+$ (96,8%) домінують над конформерами з $\gamma \in t$ (1,6%) та з $\gamma \in g^-$ (1,6%). Конформери з $\beta \in g^+$ (96,1%) домінують над конформерами з $\beta \in t$ (1,9%) і з $\beta \in g^-$ (2,0%); при цьому конформери $\beta \in g^+$ є ѕуп-любними (95,4% проти 0,7%), для інших конформерів ситуація така ж: $\beta \in t - 1,2\%$ проти 0,7%, $\beta \in g^- - 1,7\%$ проти 0,4%. Конформери з $\varepsilon \in t$ (49,9%) переважають над конформерами з $\varepsilon \in g^-$ (48,2%) та з $\varepsilon \in g^+$ (1,9%); при цьому всі конформери є ѕуп-любними: $\varepsilon \in t - 49,1\%$ проти 0,8%, $\varepsilon \in g^- - 47,3\%$ проти 0,9%, $\varepsilon \in g^+ - 1,8\%$ проти 0,1%.

Таким чином, вперше проведено вичерпний конформаційний аналіз біологічно активного нуклеозиду 2'-дезоксипурину квантово-механічним методом функціонала густини на рівні теорії MP2/6-311 + +G(d,p)//DFT B3LYP/6-31G(d,p). Встановлено основні геометричні, енергетичні та полярні характеристики всіх його 103 стійких конформерів, а також конформаційні рівноваги при температурі 298,15 К.

Автори висловлюють щиру вдячність корпорації "GAUSSIAN" (США) за люб'язно наданий грант — програмний пакет "GAUSSIAN03" для платформи Win32.

- 1. Зенгер В. Принципы структурной организации нуклеиновых кислот. Москва: Мир, 1987. 584 с.
- 2. Микельсон А. Химия нуклеозидов и нуклеотидов. Москва: Мир, 1966. 668 с.
- Жураківський Р. О., Юренко Є. П., Говорун Д. М. Конформаційні властивості 1', 2'-дезоксирибози модельного цукрового залишку 2'-дезоксирибонуклеозидів: результати неемпіричного квантово-механічного дослідження // Доп. НАН України. – 2006. – № 8. – С. 207–213.
- Жураківський Р. О., Говорун Д. М. Вичерпний конформаційний аналіз канонічного нуклеозиду 2'-дезоксицитидину квантово-механічним методом функціоналу густини // Фізика живого. – 2006. – 14, № 3. – С. 35–48.

- Yurenko Ye. P., Zhurakivsky R. O., Ghomi M., Samijlenko S. P., Hovorun D. M. How many conformers determine the thymidine low-temperature matrix infrared spectrum? The DFT and MP2 quantum chemical study // J. Phys. Chem. B. – 2007. – 111, No 32. – P. 9655–9663.
- 6. Жураківський Р. О., Говорун Д. М. Повний конформаційний аналіз дезоксиаденозину квантово-хімічним методом функціоналу густини // Біополімери і клітина. 2007. **23**, № 1. С. 45–53.
- Жураківський Р. О., Говорун Д. М. Повний конформаційний аналіз молекули 2'-дезоксигуанозину квантово-механічним методом функціонала густини // Доп. НАН України. – 2007. – № 4. – С. 187–196.
- Parr R. G., Yang W. Density Functional Theory of Atoms and Molecules. New York: Oxford University Press, 1989. – 350 p.
- Lee C., Yang W., Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density // Phys. Rev. B. – 1988. – 37. – P. 785–789.
- Becke A. D. Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing // J. Chem. Phys. – 1996. – 104. – P. 1040–1046.
- Gaussian 03, Revision C. 02 / M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J. R. Cheeseman, Jr., J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople. – Gaussian, Inc., Wallingford CT, 2004.
- Seeman N. C., Rosenberg J. M., Suddath F. L., Parc Kim J. J., Rich A. A simplified alphabetical nomenclature for dihedral angles in the polynucleotide backbone // J. Mol. Biol. - 1976. - 104. - P. 142-143.
- 13. Foloppe N., MacKerell Jr. Intrinsic conformational properties of deoxyribonucleosides: implicated role for cytosine in the equilibrium among the A, B, and Z forms of DNA // Biophys J. 1999. 76. P. 3206-3218.

Інститут молекулярної біології і генетики НАН України, Київ Надійшло до редакції 09.04.2009

R. O. Zhurakivsky, Corresponding Member of the NAS of Ukraine D. M. Hovorun

2'-deoxypurine conformational possibilities: the DFT quantum mechanical investigation

Comprehensive conformational analysis of biologically important nucleoside 2'-deoxypurine is performed by means of the density functional theory at MP2/6-311 + +G(d,p)//DFT B3LYP/6-31G(d,p) level. Main geometric, energetic, and polar characteristics of all its 103 conformers are presented, as well as conformational equilibria at 298.15 K.