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ABOUT ONE STATISTICAL MODEL OF ERROR RATE
IN THE STREAM OF PACKET DATA TRANSMISSION THROUGH
COMMUNICATION CHANNELS

Abstract. A statistical model of the frequency of errors in the packet data
transmission through communication channels is proposed. This is a stochastic
sequence defined as the averaged proportion of erroneous data packets.
A diffusion approximation of such a sequence is used: discrete Markov diffusion,
which is defined by a difference stochastic equation. The parameters of such a
model are estimated using covariance statistics on the trajectories of the stochastic
sequence of signal transmission errors.

Keywords: statistical model, difference stochastic equation, stationary process,
equilibrium, covariance statistics, parameters estimation along trajectories.

BASIC DEFINITIONS

Our goal is to build a model of error inclusions in packet data transmission over
communication channels. In the data transmission protocols, a packet integrity check
(CRC code, parity etc.) is built-in, which restores the original data at the reception
point due to the redundancy of the transmission code [1, 2]. This redundancy,
however, reduces the data rate and requires additional digital signal processing.

The task of determining the statistical parameters and their estimates of the
fraction of the “corrupted” data packets with respect to their total volume is determined
by equilibrium state of the frequency of erroneous packets. This equilibrium state is
an invariant point of the regression function or, equivalently, zero point of the
regression function of increments of evolutionary process [3].

Consider a string for receiving N data packets {I,2,..., N}, containing both
holistic and corrupted blocks arranged in random order, as illustrated in Fig. 1.

Define the following binary random variables as packets integrity indicators

5, (k)= 0, %f the package n %s holistic, k20, 1<n<N.
1, if the package n is corrupted,
Then the normalized sum of random indicators
1 N
Sy(k)y=—>106,(k), k=0, (1)
N n=1

determines the proportion of packet errors in the process of receiving and
transmitting a signal over communication channels. The discrete-time random
process Sy (k), k>0, is called statistical experiment [3] and takes values in the
interval [0, 1]. The extreme value O corresponds to the situation when all received
packets are fake, and the extreme value 1 corresponds to the situation when all
received packets are complete and there are no errors.

[Packl ] E{>[Pack2]=>[]>ack3q = L = Packl] => [Packl+1]={>m

Corrupted Corrupted

Fig. 1. Typical packet flow of data transmission with errors
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It is assumed that the dynamic process S  (k), k > 0, has the following properties.

1. Stationarity, in wide sense, of the random function S ; (k) with respect to time k:
the mean values E[S y (k+1)], E[(Sy (k +1))2] are independent of k, as well as the
covariance E[S y (k)S  (i)]=R(| k—i]|), which depends only on the difference in time
instants.

2. Statistical equilibrium [4] relative to the ergodic state p:

APk+1=—V[Pk—p],O<V<1; APk+1::Pk+1_Pk’ (2)
p=lim Py, Pyi=ELELSy (6)| Sy (k=DI].

k—o0
It is known that the errors dynamic process of data transmitting errors S  (k),
k >0, is approximated by normal autoregression [5], determined by a process of
discrete Markov diffusion ¢, ¢ >0, with increments

Aag1=a,,—a;, t20, ag is given.
The diffusion ¢, is a solution of stochastic difference equation
Ad,q=—Va,+0AW,, 1, t20, 0<V <], (3)

where AW, ;, t20, is a standard Wiener process (Brownian motion) with
mathematical expectation 0 and standard deviation 1.

STEADY REGIME OF ERROR RATE OF DATA RECEIPTION

As noted above, the dynamic error process S (k), k 20, is statistically equivalent
to a process of discrete Markov diffusion «,, # >0, which is a solution of the
stochastic difference equation (3).

The assumption of stationarity, in wide sense, of discrete Markov diffusion ¢,
t >0, implies the following numerical ratios:

Ea =0, Ea(z):oé, Ea,a,, s =B(s), “4)

where £ be the mathematical expectation.

The stationarity of diffusion «; allows us to build a statistical model with the
possibility of estimating its parameters V, o? along the trajectory of observations.

An essential property of stationarity, in wide sense, of discrete Markov diffusion ¢,
t >0, are the following relations [6]:

or =02/ =20 V2 ®)

The value &, generated by the drift parameter V/, is called the coefficient of
stationarity.
In addition, the following representations of the covariance take place:

cov (a,,a,)=E(a,)? =0?, Ea,a,.,=q°c%, q(-V). (6)

For covariance analysis of statistics, we consider a two-component process
(as,Aasrq), t20. It is known that its covariance matrix has the following
representations [6]:

cov(at,at)zaz, cov(at,Aat+1):—Va2, @)

cov (AaHl,AaHl):ZVaZ, t20.

The covariance relations (7) form the basis of statistical estimates of the
parameters (V, o) of the main equation (3).
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Consider the matrix of empirical covariance statistics
2 _le 2 5 1% 2 1 <
00T=?Zat, aArz?Z(Aa,) , ATz?ZatAat. (8)
t=1 t=1 t=1
By virtue of relations (7), the mean square convergence of empirical statistics takes
place:

2

) L L 2 r 2
S—Vo*, Ap > Wo?, T >, )

oL, —>0°, 0

2
0T AT

STATISTICAL PARAMETER ESTIMATION OF ERROR RATE PROCESS

OF DATA TRANSMISSION

As was shown in the previous section, the stationarity conditions (4), (5) imply the
covariance relations (7), and therefore the possibility to evaluate the fundamental
parameters of the process of data reception errors «;, ¢ >0, which is a solution of

the difference stochastic equation (3).
Namely, due to relations (7), there are two estimates of drift parameter /' [7, Ch. 3]:

T T
A 2 2 2 2
VaVe =0y, /05, =) (M) Y af, (10)
t=1 t=1
0 2 a a 2
VeV, ==Arlog, =—> aAa, /) a;. (11)
t=1 t=1

The quadratic diffusion characteristic a;, ¢t >0, according to formula (7), is
estimated by the following empirical formula [7, Ch. 3]:

T

2 2 1 2

o zaT:—E (a,)”. (12)
ri5

The stationarity coefficient £ is estimated by the quadratic form of the drift
coefficient o 0
ExEr =20, (V)" (13)

and the diffusion coefficient o of equation (3) has the following statistical estimate
2 2 2
0" x05 =Er0;. (14)

It is noteworthy that there are two different statistical estimates of the drift
parameter V: (10) and (11). Such redundancy can be used to verify the adequacy of the
proposed model of the process of data reception errors a;, t>0.

NUMERICAL MODELING AND ANALYSIS OF THE MODEL OF THE DYNAMICS

OF ERRORS OF DATA TRANSMISSION

The binary stream of the integrity/error marker of data packets consisting of zeros
and ones is numerically modeled. That is, we emulate the sequence J,,, 1<n< N,
where N is a fixed size of the generated sample, in our case N =1525. The sample
0, is constructed as follows: N binary numbers 0 or 1 with randomly generated
“average distance” A =1/m of the location of zeros in the sample corresponding to
the relative frequency of packet errors in the process of receiving and transmitting
a signal over communication channels. Moreover, the appearance of the value “0”
(error) is equally probable for all members of the sample. That is

1 N
ESy =E N;a" =m. (15)
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Fig. 2. The random flow generation with the error rate
m =0.05
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Fig. 3. The random flow generation with the error rate
m=0.2
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Fig. 4. The random flow generation with the error rate
m =0.35

e calculate for £ from 0 to K

And the binary zeros in the
sample correspond to the arrival
instants of damaged data packets
for processing. The average
distance of arrival time of
damaged data packets determines
the intensity parameter A =1/m.

The above numerical
simulation of the binary stream of
the integrity/error marker of data
packets is illustrated in Figs. 2—4
graphical representations of data
streams of the first 90 sample
values (for clarity) for different
values of errorrate m (0 < m<1).

So, we can say that the “zero
cycle” is simulated and the initial
sample is obtained. To simulate the
dynamics of the process of random
errors of packet data transmission,
we use the relations (2).

The process of modeling
dynamics is described as follows.

Initial settings determination:

e N (sample size), K (number
of stages);

e p=1-m
value).

The values S (k), £ >0, are
calculated according to the rule
described at the beginning of this
section, that is

e generate a sample u,,
0< n< N, of uniformly distributed
random variables on [0, 1];

e generate a data flow
simulation as follows:

5, ={°’
1

(equilibrium

if u, <m
T 1<n< N;
otherwise,

1 N
Smk):ﬁZén (k);
n=1

e calculate the randomized dynamic flow by the formula

Syk+D) =Sy (B)=V[Sy (k)=-pl=Sy ()A-V)+Vm.

(16)

A numerical implementation of the above algorithm gives the following results.
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Fig. 5. The centered proportion of packet errors in the process of signal transmission (initial data:
N =220, K =400, m =0.05)
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Fig. 6. Dynamics of random frequency of packet errors and its increments in the process of signal transmission
(initial data: N =220, K =400, m =0.05)

Table 1
Estimation of model parameters at
m =0.05 m=0.15
Initial data Parameter estimates Initial data Parameter estimates
N =220 V =0.9739342 N =220 V ~1.0253241
= 2 = 2
K = 400 0° ~0.0847564 K — 400 o° ~0.2405275
£ ~0.9993206 £ ~0.9993587

Fig. 5 illustrates the “diffusion type” of the behavior of a centered process of
errors in the reception and transmission of data [Sy (k)—p].

Fig. 6 represents the frequency paths of the packet errors S, (k) and their
increments AS y (k).

The obtained time series allow calculate the statistical parameters V, 02, &
by (10)—(14). For m =0.05 and m = 0.15 we have the following results (Table 1).
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Thus, having a time series of the process of data transmitting errors, we can consider
these series within the scheme of discrete Markov diffusion «,, ¢ >0, which is a solution
of stochastic difference equation (3) with parameters determined by the statistical estimates

(11), (12) of parameters V, o°.

Using classification techniques [8], it is possible to test hypotheses about different
type of limit frequencies (attracting states, repelling states, absorbing states). In connection
with the classification theorems, it is of interest to consider the unsteady flow [9] of
transmission and reception errors, as well as the Lyapunov stability problem [7].

It should be noted that a significant practical potential lies in the development of
the proposed models of the dynamic centered process of errors that occur during the
transmission of data presented in the form of multidimensional Markov random
evolution [10, 11], as well as in pulsed processes with semi-Markov switchings [12].

STATISTICAL FEATURES OF THE ERROR FLOW DYNAMICS MODEL

Our proposed simulation of the dynamics of errors in packet data reception over the
communication channels has a lag N of averaging the error frequency. The error rate
dynamics S (k) is studied by a discrete time parameter & > 0.

Stationarity and statistical equilibrium (2) determine the fundamental principle of the
dynamics of “stimulation—deterrence”: the error frequency process deviation
S (k+1)—p from the stationary value p at each stage k +1 decreases in proportion to
Sy (k) at this stage £ with the coefficient of proportionality, set by the drift parameter .

The use of statistical estimates (11), (12) of parameters V/, o2 allows us to move
from the generic model (1) to the model of discrete Markov diffusion (3).

As shown in [7, Ch. 3, 4], discrete Markov diffusion (3) is an effective tool for
mathematical modeling and the corresponding numerical analysis of the process,
determined by the normalized sum of random indicators of an attribute, in particular, the
error process of packet data reception and transmission over communication channels.
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C.O. [oBruii, O.I. IOpikoB, M.O. 30310k

MPO OJIHY CTATUCTUYHY MOJEJb YACTOTH MOMHJOK ¥V MOTOMI MAKETHOI
HEPEJAYI JAHUX KAHAJIAMU 3B’A3KY

AHoTauisi. 3arpONOHOBAHO CTATUCTHYHY MOJIEIb YAaCTOTH TOMHJIOK Y ITOTOLI Ma-
KETHOI Tepejadi CUTHaJly KaHajlaMU 3B’S3Ky — CTOXACTHUYHY IOCIiJOBHICTb, 110
BU3HAYAETHCS K YCepeJHEHa CyMa IHAMKATOPIB IOMMJIKOBHX IMAKETiB [aHUX.
3actocoBaHo u(ys3iiiHe HAaOMMKEHHsS Takol MOCIIIOBHOCTI — JUCKPETHY Map-
KOBCBKY An(y3if0, 10 BHU3HAYAETHCS PI3HUIEBUM CTOXACTUYHHM PiBHSIHHSM.
OIiHIOBaHHS TapaMeTpiB MOJENi 3/IMCHEHO 3 BUKOPHCTAHHSAM KOBapiamiiHUX
CTATUCTHK 3@ TPAEKTOPISIMM CTOXACTHYHOI MOCIIZOBHOCTI MOMHJIOK Iepesadi cur-
Hay.

KirouoBi cioBa: crarucTMuHa MoOJeENb, pI3HUIEBE CTOXACTUYHE pPIiBHSHHS,
CTalllOHApHUI Tpolec, piBHOBara, KoBapialliiiHa CTaTHCTHKA, OI[HKa MapaMeTpiB
32 TPAEKTOPISIMH.

C.A. Josruii, A.. KOpuxos, M.O. 30310k

OB OJJHOM CTATHCTHYECKOMN MOJEJHA YACTOTHI OIIUMBOK B MOTOKE MAKETHOM
MEPEJAUYM JAHHBIX IO KAHAJIAM CBSI3U

Annotamus. [Ipeanoxkena cTaTHCTHYECKash MOJENb YacTOTHI OIIMOOK HpH Iiepe-
Jadye MaKeTHBIX MAHHBIX [0 KaHajlaM CBSI3H — CTOXAaCTHYeCKas IMOCIeI0BATEb-
HOCTb, OIpejensieMasl KaK yYCPEIHCHHas [O0Jis1 OMIMOOYHBIX IAKETOB aHHBIX.
Hcnonb3oBano anddy3uoHHOE NPHOIIKEHUE TaKoil I10CIeA0BAaTeIbHOCTH —
JCKpeTHAsT MapKoBcKas auddysus, KoTopasi ompeaesseTcss pa3HOCTHBIM CTOXac-
THYeckuM ypaBHeHHeM. OIleHKa IapaMeTpOB MOJENH BBHINOJIHEHA C HCIIOIb30Ba-
HHEM KOBapUALHOHHON CTATHCTHKU II0 TPACKTOPHSIM CTOXAaCTHUECKOM IOCIeNOo-
BaTEIFHOCTH OIIMOOK Tepe/iadyd CHTHAIA.

KiroueBble ci10Ba: CraTHCTHYECKas MOJENb, Pa3HOCTHOE CTOXACTHYECKOE ypaB-
HEHHE, CTAllMOHAPHBIA MNPOIIECC, PABHOBECHE, KOBAPUALMOHHAS CTaTHCTHKA,
OLICHKA I1aPaMETPOB I10 TPACKTOPHSIM.
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