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DIFFUSION PROCESS WITH EVOLUTION
AND ITS PARAMETER ESTIMATION

Abstract. A discrete Markov process in an asymptotic diffusion environment
with a uniformly ergodic embedded Markov chain can be approximated by
an Ornstein—Uhlenbeck process with evolution. The drift parameter estimation is
obtained using the stationarity of the Gaussian limit process.
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We consider a random evolution §(z), >0, that depends on a random
environment Y (¢), ¢t >0, which in turn, is switched by an embedded Markov chain
X, k=>0. The connection between the continuous-time ¢ > 0 and the discrete-time
k>0 will be explained in the sequel.

The purpose of this work is to prove the convergence (in distribution) of the
process §(2), t >0, to the Ornstein—Uhlenbeck process under some scaling of the
process and its time parameter.

The limit will be considered by a small series parameter e>0, ¢ - 0.

ASYMPTOTIC DIFFUSION ENVIRONMENT

Consider a discrete Markov process in a semi-Markov asymptotic diffusion
environment, determined by a solution of the following scaled difference stochastic
equation:

Lo, ) ==V (V)L (th) +eo(Y)Aut (15, ), (1

n

where 1&:=ne?, hence ° =t +e2, n>0, e>0, for the process increments
n n+1 n

AGE (e, =818, )=C (1), n20.
The asymptotic diffusion environment Y,5, n>0, is also a random evolution

process generated by a solution of the following scaled difference evolutionary
equation:

€€

AY (tn+1)

with the embedded Markov chain X :=X(¢f), n>0.

The terms A, (y;x) and A(y;x) are Lipschitz functions, together with the first
derivative A4j,();x).

=edo (Y, XE)+e2 A XE), n>0, )

Here the predictable evolutional component in (1) is determined by the following
conditional expectation [1]:

VL ()= EIAGE (15, IV EE (UGS (1h),

where it is assumed that the drift regression function V' (z) is positive: V' (z)>0 Vz.
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The martingale difference Au® (¢°, ), n> 1, generated by the process AZ (¢°, ),

n>1, is determined by the following conditional second moment:
—e%oP (V) =E[(A LS (¢5, )+ V(Y)Y ]

The embedded Markov chain X & := X (¢f), t€:=ne, n>0, is supposed to be

homogeneous ergodic Markov chain with transition probabilities P(x,B), x €E,
B €&, having a stationary distribution p(B), B €&, which satisfies the condition

p(B)= [, p(d)P(x,B); p(E)=1.

The stochastic difference equations (1), (2) generate a discrete stochastic basis
[2, Ch. 1] with filtration F,, (C5,Y ) =0{E%(t5),Y £ (t5), n< m}, m>0.

Now we consider three components (£°(¢5),Y ¢ (¢5), X5), n>0, as piecewise

constant functions with continuous time:
S OETIS ()
YE() =Y E(t)} for ne? <1< (n+1)e.
& &
X=X,

In what follows, a solution of equations (1), (2) is given by martingale characterization
[3, Section 4.4] of three-component Markov process (§°(#),Y (1), X,), t>0:

ME) =5 (), Y (1), X ) =p(E(0).Y*(0), Xo)-

J-ez[t /&

e 50,159, X s

and the generator of three-component Markov process (§%(¢),Y ¢(¢), X,), t>0, is
represented as follows [4, Ch.5]:

(e, y.x) = E[p(c+ALE (¢, .Y (t5, ), X, )

Eo(ty) =Y *(1y) = ». X, =x].

APPROXIMATION OF A DISCRETE MARKOV PROCESS
IN A SYMPTOTIC DIFFUSION ENVIRONMENT

Let the singular term A, (y;x) satisfies the balance condition

[P 4y (522)=0. 3)

The approximation of a discrete Markov process in asymptotic diffusion

environment gives the following theorem.

Theorem 1. Let the Markov chain X
stationary distribution p(B), B €€&.

The finite-dimensional distributions of the discrete Markov process (1), together

n» 120, be uniformly ergodic with the

with asymptotical diffusion Y (¢), t>0, converge, as ¢ -0, to a diffusion
Ornstein—Uhlenbeck process with evolution:

CE), Y () —2E%), Y1), e >0, 0<t<T.
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The limit two-component diffusion process with evolution (Co(t), Y O(t)) , >0, is
set by the generator

22 (e, y) =V (Mepl (e y)+%a2 (Mplic y)+

. A 4)
AN (e )+ B2 (6 ). <CF (R.D),
where by definition .
A= [ p(O[A() + 4 (1)), 5)
Ay (yix):= Ao (¥ x)PRoAg , (13 x) (6)
B2(y) =, pd)B(yx),
B(3) = A ()P [Ro +3 1o (1:). @

Here 1 is the standard identity matrix, P is the transition operator of the Markov
chain X;, t>0, and the potential kernel R is defined as in [3, Section 5.2]:

Ro=(Q+I)'-11, Q := P-1, H¢(x)::JEp(dx)¢(x). (8)

Remark 1. The limit two-component diffusion process (§ 0 ®,Y 0 (¢)),t>0, set

by the generator (4)—(8), has a stochastic representation by the stochastic differential
equation

dg® () =-v () di+o(x * (0)am (1),
dy O (6) = Ay  (0))dt + B(Y ° (£))dW, (0).
Consequently, the parameters of the limit diffusion ¢ O(t), t>0, depend on the

diffusion process Y 0 (1), t=0.

Proof of Theorem 1. The basic idea is that any Markov process is determined by
its generator on the class of real-valued test functions, defined on the set of values of
Markov process [5].

First of all, the extended three-component Markov chain is used

CE (), YE(ty), XE (1)) = X)), 1, =ne?, €0, ©)

with operator characterization in the following form.
Lemma 1. The extended Markov chain is determined by the generator

LE(x) @ (c, »x) = 2T (A5 (x) P gl 1 x), (10)

where the transition operators are defined as follows:
CE(np(e) = Elp(c+ AL (5 IEE (1) = Y (1) = 3, X (1) =x],

A ()p(y)=E[p(y+AY “ ()Y (65x) = 3, X (1) = x], an

Pop(x): :jEp(x, dz)p(z).
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The assertion of Lemma 1 follows from the next argumentation. The extended
three-component Markov chain (11), under the additional condition Y ¢(¢)= y,

X (1) = x, has independent components. So its transition probabilities are given by the

product of transition probabilities of each component.
An essential step in the proof of Theorem 1 is realized in the next lemma.
Lemma 2. The generator (10), (11) of three-component Markov chain (9) on the
class of real-valued test functions ¢(c, y, x), having bound derivatives up to the third
order inclusively, admits an asymptotic representation

L° () (¢, 3, x) = (12)
=[e7Q+e 'Ag()P+AX) P + L7 () P+R, (3:0)}p(c, . X);
Ao ()p(¥) = Ag (32)p" (), AX)p(¥) = A(3: )¢’ (); (13)

L (3) p(c) =¥ (Mg’ (0) %02 (D" ().

The residual term is expressed as:
R, (33x)¢(c, 3, %) >0, € >0, peC> (R?).

Here one intends the uniform convergence for all the arguments.
Proof of Lemma 2. We use transformation of generator (12) by the formula

L () p(c, y,x) =

= 2 [Q+(4° ()~ L) P +T* (1) -D P +R, (33)]0(c, 3, x). (14)

The residual term has the following form:

R, (132)p(c, 3,x) = (T (1) =D(4A° ()= P p(c, 3, x).

Then we calculate
e 2[TF (»)~M]p(c) = e {E[p(c+ALE (1; ) |CF (15 ) = c]—p(c)} =

=[1° (1) +B, (130)lp(c);

The next term in (17) has the next representation:
e [4° ()~ Np(y) = HE[p(r+AY (6 )) |Y (5 9)= Y- p (1)} =

:g—z[E[Ayf(z; P+ EIAY (5P p" () +e R, (x)so(y)} -

=17 g (23)+ A (5" () +3 A (230" () +Re (10p(3).
gives the asymptotic expansion in Lemma 2:
LE (x)p(c, »,x)=[e 2Q+& ' Ag(x) P +A(x) P +
2 Ao@ P +L°(0)]p (6 )+ R, (5x)p(e. 3 3).

Next, we use the solution of singular perturbation problem for the truncated
operator [3].
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Lemma 3. The solution of the singular perturbation problem for the truncated
operator is realized on perturbed test functions:

LE ()9° (e, y.x)=[e 2 Q+e" Ay (x)P+A(x)P +
+%(Ao(x)[P)2+ 10 (Mlp(e. »)+epr (e yox)+e2ps (e yox)]=

=2° (Mp(c ») +R, (X)p(c, ¥). (15)

The averaging parameters are determined by the formulas (4)—(8).
The limit operator is calculated by the formula

22 (Mp(c, » =L’ (Mp(e 1+ AP, (c y)+%é2 (Me"(c.y).  (16)

Proof of Lemma 3. To solve the singular perturbation problem for the truncated
operator, consider the asymptotic representation by the powers of ¢:

L (x) 9% (e, 32 x) =2 Qp(c, y)+& ' [Qoy (e, 3 x)+
+AO (x)‘P(Cy J’)]JF[Q‘PZ (09 Vs X)+A0 (X) P ng (C! W X)+
+[A(x)+%(Ao(x) Q) +L° (Mg (¢ MI+R, ()p(c, ¥).

Obviously that Q¢(c, ) =0.
The balance condition (3) is then used. The solution of the equation

ngl (Cs y, X)+AO (x)‘P(Cs y) =O
is given by the formula [4, Section 5.4]:
P1(c, »,x) =RoAg (x)p(c, y).
Lemma 3 implies the following equation
Qp2(c 20+ B@+A@+LY (Mple N =L W y. 1D

Here, by definition i
B(x):=Ag (1) P RgAg (x)+- (Ao (x) P)°.

The limit operator is calculated using the balance condition

&% (Mp(e, y) =TBE)+ AW+ L (np(e ). (18)
Recall the projector’s operation:
MB()TI= [, p(d) Bwx), - BO3) = Ay (55) P Ry (56)+ (4o (307,

Taking into account the definition of evolutionary operators (13), the limit
generator is determined by formula (16).

The limit operator (18) provides a solution of equation (17), which is a function of
¢, (c,»,x). The existence of perturbing functions ¢;(-), i=12, ensures the
asymptotical representation (15). That completes the proof of Theorem 1.

The volatility is generated by introduction of a random environment Y 0 (t),t20,

into the diffusion parameter of the Ornstein—Uhlenbeck diffusion process CO (t),t>0.
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PARAMETER ESTIMATION OF THE LIMIT PROCESS

The limit Ornstein—Uhlenbeck diffusion process parameters estimation is
substantiated in this section without the assumption of volatility, which greatly
changes the kind of estimates. The stationarity of the Gaussian statistical
experiment is essentially used [6].

It is known [7], that a diffusion type processes are given by stochastic differential

d&, =a,(&,)dt+dW,. (19)

The predictable component satisfies the conditions

PUOTaf(g,)dKooj:L T< o, (20)

P(J(:Oatz(gt)dt:oonl,

which ensures the absolute continuity of the measure ug (B ):=P{w:& eB} and the
measure Uy (B):=P{w:W eB} for all BeBr=0(§,:0<¢<T).
The Radon—Nicodemus derivative specifies the density of the measure

dl

tr @)= 1), @)
Uy

d,
which for processes of diffusion type (19) has the following representation.

Theorem 2 [7]. The measure density (21) for processes of diffusion type (19)
with additional conditions (20) is given by exponential martingale

d/.t:g- T 1T
d/tW(gt’T):eprO az(gt)dgt_i_[o atz(é‘t)dt] (22)

In particular, the exponential martingale (21) is determined by a solution of the
stochastic Doléans—Dade equation [2]

dCr (&) =Cr BarE)dsr, &y =1, (23)

or in equivalent form:

Er @) -1=8rEar)dr .

The relationship of the density (22) with the stochastic Doléans—Dade equation
(23) can be explained, using the Ito formula for exponential function (&)=

=expl 7 (&)= @7 1. with 17 €)= [ @, @)t ((EVri= [} o @), namely
(see [2]): 1 |
dp(Er) = (Ep)ldny (€)= dnEDr 1+ 9" Er)dnEr

Taking into account equality ¢(§7)=¢' (§7)=¢"(§7) for exponential function
¢(§), we have a stochastic Doléans—Dade differential equation for exponential

martingale (22). According to the results of the previous section, the limit diffusion
process for normalized discrete Markov processes is the Ornstein—Uhlenbeck process
with a linear predictable component

do, =-Vya,dt+odW,, 0<t<T,

Without limiting of generality, let us put o=1.
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The maximum likelihood method for estimating the parameter V|, of a diffusion
process with a stochastic differential (19) (0 =1) is realized for the logarithm of the
measure density (22):

LV, T):=1 -V ata
V. 1) i=InCp €)=V [  adt-—[ aidr
Therefore the equation for estimating the maximum likelihood method is

T T,
OLW.TY/ OV =— [ a,dt—V dt =0,
max ALV, T) [, adi=vr[

and the estimate of the maximum likelihood method has the following form:
T T ,
Vr =—I0 ada, /Io a;dt.

The least square method estimation of parameter V|, of diffusion process with
stochastic differential (19) (o =1) is implemented using equality

T T 5 T
.[0 o ,da, :—VOIO a,dt+jo o dW;.
So we have a relationship
T T 5
Vo~Vr =, awdW, /jo aldt.
The estimation of the least squares method has a representation

o_ (T T 2
Ve :jo a,dﬂt/jo a;dt.

Corollary 1. The estimates of maximum likelihood and least squares coincide:
_ 0
Vr=Vv,.
Corollary 2. Estimation by the least squares method, and hence estimation by the
method of maximum likelihood of the parameter V|, are strongly consistent:

Pl lim V) =V,. (24)

T—o

Remark 2. In the presence of volatility (see [8]), the maximum likelihood
estimate and the least squares estimate are different, but the property of strong
consistency (24) is retained.
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Haoitiwna oo peoaxyii 22.03.2020

B.C. Kopoawxk|, /I. Kopoawok, C.O. doBruii

JU®Y3IMHAN MPOIEC 3 EBOJIIOIIEIO TA OIHIOBAHHS MOIO MAPAMETPA

AHotauis. [loka3aHo, 0 TUCKPETHUH MapKOBCHKUHN MPOLEC B aCUMITOTHUYHOMY
IUQy3iHHOMY CEepelOBHINI 3 PIBHOMIPDHUM EProJHYHHM BKJIAJACHUM JAHIFOTOM
MapkoBa Moxxke Oyt HaOmmwkenuit npornecom OpHmreitHa—YienOeka 3 eBo-
momniero. OuiHky mnapamerpa apelidy OTpUMaHO 3 BHKOPHCTAHHSAM CTalliOHAp-
HOCTI TayCiBCBKOTO T'PAaHHYHOTO IIPOIIECY.

KurouoBi ciioBa: auckpeTHuil MapKOBChbKHMH mporec, andy3siiiHa ampokcumaris,
acuMnToTHyHe audysiiiHe cepenosuine, mnporec OpHmTeliHa—YneHOeka, (a3oBe
YKpPYITHEHHsI, OI[IHKa IapaMerpa 3CyBY.

B.C. Kopomok |, /I. Kopoatok, C.A. loBruii

JAD®Y3UOHHBIN IMTPOMECC C 3BOJIIOIMEN W OIEHKA EI'O ITAPAMETPA

Annoramus. [Toka3aHo, 9TO AUCKPETHHIH MapKOBCKHH IPOIECC B aCHMITOTHYCC-
kol 1ud(dy3noHHON cpee ¢ PaBHOMEPHOW HSProNYecKOil BIIOKEHHOH IICIbIO
MapkoBa MokeT OBITh MpHOIMKEH mporeccoM OpHInTeiiHa—YIIeHOeKa ¢ IBOJIIO-
mueid. OneHka mapamerpa Japelia moixydeHa ¢ UCIOJIb30BAHUEM CTAllMOHAPHOCTH
rayCCOBCKOTO TPEAENbHOTO Ipolecca.

KawueBble c10Ba: TUCKPETHBI MapKOBCKHI Tporece, nuddy3unoHas ammpoKkcH-
Marys, acumnroruyeckas auddy3noHHas cpena, nporecc Opuirreitna—YieHOe-
Ka, (a3oBoe YKpyIHEHHE, OIECHKAa Iapamerpa CIBHra.
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