Clean coalgebras and clean comodules of finitely generated projective modules^{*}

N. P. Puspita, I. E. Wijayanti, and B. Surodjo

Communicated by R. Wisbauer

ABSTRACT. Let R be a commutative ring with multiplicative identity and P is a finitely generated projective R-module. If P^* is the set of R-module homomorphism from P to R, then the tensor product $P^* \otimes_R P$ can be considered as an R-coalgebra. Furthermore, P and P^* is a comodule over coalgebra $P^* \otimes_R P$. Using the Morita context, this paper give sufficient conditions of clean coalgebra $P^* \otimes_R P$ and clean $P^* \otimes_R P$ -comodule P and P^* . These sufficient conditions are determined by the conditions of module P and ring R.

Introduction

In this paper a commutative ring with the identity is denoted by R. A ring R is said to be a clean ring if every element of R can be express as a sum of a unit and an idempotent element [1]. Moreover, a clean ring is one of the subclasses of exchange rings [2,3]. The previous authors have given some notions of clean rings and exchange rings for example [4–9].

Some authors have been studied the endomorphism structure of Rmodules M. It is proved that the ring of a linear transformation of a countable linear vector space is clean [10] and the result is also true for arbitrary vector spaces over a field and any vector space over a division

^{*}This research is supported by Doctoral Research Grant, Directory of Higher Education, the Ministry of Education and Culture, Indonesia, 2019-2020.

²⁰²⁰ MSC: 16T15, 16D90, 16D40.

Key words and phrases: clean coalgebra, clean comodule, finitely generated projective module, Morita context.

ring, it is has been proved in [11] and [12]. An *R*-module *M* is called a clean module if $\operatorname{End}_R(M)$ is a clean ring [13]. We recall the important result of [13], i.e., necessary and sufficient conditions of clean elements in an endomorphism ring (see Proposition 2.2 and Proposition 2.3). Furthermore in [14] the authors prove this property in a shorter way by proving that every non *M*-singular self-injective module *M* is clean (see Lemma 4).

The structure of comodules and coalgebras has been introduced in 1969 by Sweedler. He introduced a coalgebra over a field as the dualization of algebras over a field. Later, this ground field has been generalized to any ring with multiplicative identity [15]. Furthermore, a comodule over a coalgebra is well-known as a dualization of a module over a ring. For any *R*-coalgebra *C* we can construct $C^* = \operatorname{Hom}_R(C, R)$, where C^* is an algebra (ring) over convolution product. We called C^* as a dual algebra of *C*. Hence, we have an important result, i.e. if *M* is a right *C*-comodule, then *M* is a left module over the dual algebra C^* . Moreover, for any $M, N \in \mathbf{M}^{\mathbf{C}}$ and $\operatorname{End}^C(M, N) \subseteq_{C^*} \operatorname{End}(M)$. Thus, the category of right *C*-comodule ($\mathbf{M}^{\mathbf{C}}$) is a subcategory of left C^* -module ($_{C^*}\mathbf{M}^{\mathbf{C}}$). In [15], the *R*-coalgebra *C* satisfies the α -condition if and only if $\mathbf{M}^{\mathbf{C}}$ is a full subcategory of $_{C^*}\mathbf{M}^{\mathbf{C}}$. Moreover, the $\operatorname{End}^C(M) =_{C^*} \operatorname{End}(M)$ if and only if *C* is locally projective as an *R*-module (see [15]).

Recall the structure of comodules and coalgebras [15]. We applied the notions of clean modules to comodule and coalgebra, and introduced the following definition.

Definition 1. Let R be a ring and (C, Δ, ε) an R-coalgebra. A right (left) C-comodule M is called a clean comodule if the endomorphism ring of right (or left) C-comodule M (denoted by $\operatorname{End}^{C}(M)$ (or $C \operatorname{End}(M)$) is a clean ring.

Definition 1 means that if C satisfies the α -condition, the right Ccomodule M is a clean comodule if and only if the ring $_{C^*} \operatorname{End}(M)$ is a
clean ring, since $\operatorname{End}^C(M) =_{C^*} \operatorname{End}(M)$. Since every R-coalgebra C is a
right and left comodule over itself, based on Definition 1 we introduce a
clean coalgebra.

Definition 2. Let R be a ring. An R-colagebra C is called a clean coalgebra if C is a clean comodule over itself.

If C satisfies the α -condition, Definition 2 means that C is a clean coalgebra if C is clean as a C^{*}-module. We present the trivial of clean coalgebra. Consider any ring R as an R-coalgebra with the trivial comultiplication $\Delta_T : R \to R \otimes_R R, r \mapsto r \otimes r$, and counit $\varepsilon_T : R \to R$, $r \mapsto r$, for any $r \in R$. Hence, the dual algebra of R, i.e., $(R^*, +, *)$ where $R^* = \operatorname{End}_R(R)$ is isomorphic to the ring R by mapping $f \mapsto f(1)$ for all $f \in R^*$. Then we have a trivial R-coalgebra $(R, \Delta_T, \varepsilon_T)$ is a clean if and only if R is a clean ring.

Furthermore, since every ring R can be considered as the trivial Rcoalgebra $(R, \Delta_T, \varepsilon_T)$, any R-module M is a (right and left)comodule over
coalgebra $(R, \Delta_T, \varepsilon_T)$ with coaction

$$\varrho^M: M \mapsto M \otimes_R R, m \mapsto m \otimes 1.$$

It implies any *R*-module *M* is clean if and only if (M, ϱ^M) is a clean (right and left) *R*-comodule, since $R \simeq R^*$.

Throughout P is a finitely generated (f.g) projective R-module and P^* is a set of all R-module homomorphism from P to R. In [15] we have already know that for any f.g projective module P and P^* , we can construct tensor product of P and P^* , i.e., $P^* \otimes_R P$. An R-module $P^* \otimes_R P$ is an R-coalgebra by a comultiplication Δ and counit ε as below:

Lemma 1. [15] Let P be a finitely generated projective R-module with dual basis $p_1, p_2, ..., p_n \in P$ and $\pi_1, \pi_2, ..., \pi_n \in P^*$. The R-module $P^* \otimes_R P$ is an R-coalgebra with the comultiplication and counit defined by

$$\Delta \colon P^* \otimes_R P \to (P^* \otimes_R P) \otimes_R (P^* \otimes_R P);$$
$$f \otimes p \mapsto \Sigma_i f \otimes p_i \otimes \pi_i \otimes p$$

and

$$\varepsilon \colon P^* \otimes_R P \to R, \qquad f \otimes p \mapsto f(p).$$

By the properties of the dual basis,

$$(I_{P^*\otimes_R P}\otimes \Delta)\varepsilon(f\otimes p)=\Sigma_i f\otimes p_i\pi_i(p)=f\otimes p,$$

that is ε is a counit and the coassociativity of Δ is proved by the following equality

$$(I_{P^*\otimes_R P}\otimes\Delta)\Delta(f\otimes p) = \sum_{i,j}f\otimes p_i\otimes\pi_i\otimes p_j\otimes\pi_j\otimes p$$
$$= (\Delta\otimes I_{P^*\otimes_R P})\Delta(f\otimes p).$$

Furthermore, consider P and P^* as an R-module, then P and P^* respectively can be consider as a right and left comodule over R-coalgebra $P^* \otimes_R P$. By using the Morita context, which is we refer to [16], in this paper we investigate the sufficient conditions of clean R-coalgebra $P^* \otimes_R P$ and the cleanness of P and P^* as a $P^* \otimes_R P$ -comodule. In Morita context we already know there are relationship between the structure of P, P^*, R and $S = \operatorname{End}_R(P)$ [16]. The following theorem explain the relationship between P and its dual, in which it is important to prove our main result.

Theorem 1. [16] Let R be a ring, P be a right R-module, $S = \text{End}_R(P)$ and $Q = P^* = \text{Hom}_R(P, R)$. If P is a generator in R-MOD, then

1) $\alpha: Q \otimes_S P \to R$ is an (R, R)-isomorphism;

2) $Q \simeq \operatorname{Hom}_{S}({}_{S}P, {}_{S}S)$ as (R, S)-bimodules;

3) $P \simeq \operatorname{Hom}_S(Q_S, S_S)$ as (S, R)-bimodules;

4) $R \simeq \operatorname{End}(_{S}P) \simeq \operatorname{End}(Q_{S})$ as rings.

Theorem 2. [16] Let R be a ring, P be a right R-module, $S = \text{End}_R(P)$ and $Q = P^* = \text{Hom}_R(P, R)$. If P is finitely generated projective in R-MOD, then

- 1) $\beta: P \otimes_R Q \to S$ is an (S, S)-isomorphism;
- 2) $Q \simeq \operatorname{Hom}_R(P_R, R_R)$ as (R, S)-bimodules;
- 3) $P \simeq \operatorname{Hom}_R({}_RQ, {}_RR)$ as (S, R)-bimodules;
- 4) $S \simeq \operatorname{End}(P_R) \simeq \operatorname{End}(_RQ)$ as rings.

Since the cleanness of coalgebra and comodule are determined by the structure of its endomorphism, using Theorem 2 and Theorem 1, we observe when $\operatorname{End}_{(P^*\otimes_R P)^*}(P^*\otimes_R P)$, $\operatorname{End}_{(P^*\otimes_R P)^*}(P)$ and $\operatorname{End}_{(P^*\otimes_R P)^*}(P^*)$ are clean.

1. The clean *R*-coalgebra $P^* \otimes_R P$

Let P be an R-module. Here, we can construct tensor product of Pand P^* . Furthermore, since R is a commutative ring, $P^* \otimes_R P \cong P \otimes_R P^*$ as an R-module. In this section we give some results which are related to some conditions when the R-coalgebra $P^* \otimes_R P$ is clean. Let P be a finitely generated projective R-module with basis $p_1, p_2, ..., p_n \in P$ and dual basis $\pi_1, \pi_2, ..., \pi_n \in P^*$. Based on Theorem 2 we have $P \otimes_R P^* \cong \operatorname{End}_R(P)$ as an (S, S)-bimodule where

$$P \otimes_R P^* \to \operatorname{End}_R(P), p \otimes f \mapsto [a \mapsto pf(a)].$$

Now, consider the *R*-module $P^* \otimes_R P$ as an *R*-coalgebra, using the Morita Context we have the following proposition.

Theorem 3. Let P be a finitely generated projective R-module with dual basis $p_1, p_2, ..., p_n \in P \; \pi_1, \pi_2, ..., \pi_n \in P^*$. If P is a clean R-module, then the R-coalgebra $P^* \otimes_R P$ is clean. Proof. Let P be a finitely generated R-module and $P^* = \operatorname{Hom}_R(P, R)$ is an R-module. Suppose that P is a clean R-module. Since P and Ris a finitely generated projective R-module, $P^* = \operatorname{Hom}_R(P, R)$ is also a finitely generated projective R-module [17]. Here, we need to prove weather R-coalgebra $P^* \otimes_R P$ satisfies the α -condition by proving the tensor product of $P^* \otimes_R P$ is a projective R-module.

To show that $P^* \otimes_R P$ is projective as an *R*-module, we must show that for any surjective map $f: A \to B$ of *R*-module, the map

$$f_* : \operatorname{Hom}_R(P^* \otimes_R P, A) \to \operatorname{Hom}_R(P^* \otimes_R P, B)$$

is also surjective. Since P^* is a projective *R*-module so that

$$h: \operatorname{Hom}_R(P^*, A) \to \operatorname{Hom}_R(P^*, B)$$

is surjective. By projectivity of P we obtain

$$h_*: \operatorname{Hom}_R(P, \operatorname{Hom}_R(P^*, A)) \to \operatorname{Hom}_R(P, \operatorname{Hom}_R(P^*, B))$$

is also surjective. Put C = A or B, then by [17] (see page 425) we have

$$\operatorname{Hom}_R(P, \operatorname{Hom}_R(P^*, C)) \simeq \operatorname{Hom}_R(P^* \otimes_R P, C)$$

It implies that f is isomorphic to h_* , and moreover f is a surjective map. Thus, $P^* \otimes_R P$ is a projective *R*-module. Therefore as an *R*-coalgebra, $P^* \otimes_R P$ satisfies the α -condition. Then we have

$$(P^* \otimes_R P)^*$$
 End $(P^* \otimes_R P) \simeq (P^* \otimes_R P)^*$.

We are going to show that $P^* \otimes_R P$ is a clean *R*-coalgebra, it means we need to prove that $(P^* \otimes_R P)^*$ is a clean ring (see Proposition 4.1.8). Based on [17], we have a relationship between tensor product and *R*module homomorphism. Furthermore, since *P* is finitely generated, the dual algebra $P^* \otimes_R P$ is isomorphic to the ring $\operatorname{End}_R(P)$ by the bijective map as below:

$$(P^* \otimes_R P)^* = \operatorname{Hom}_R(P^* \otimes_R P, R) \simeq \operatorname{Hom}_R(P, \operatorname{Hom}_R(P^*, R))$$
$$\simeq \operatorname{Hom}_R(P, P^{**}) \simeq \operatorname{End}_R(P)(\operatorname{since} P^{**} \simeq P).$$

Hence, if P is a clean R-module, then $\operatorname{End}_R P$ is a clean ring. It means $(P^* \otimes_R P)^* \simeq \operatorname{End}_R(P)$ is a clean ring. Since $P^* \otimes_R P^* \simeq \operatorname{End}_{(P^* \otimes_R P)^*}(P^* \otimes_R P)$ is a clean ring, $P^* \otimes_R P$ is a clean R-coalgebra. \Box

For P = R we obtain $P^* = R^* = \operatorname{End}_R(R) \simeq R$ and $R^* \otimes_R R \simeq R$ is a coassociative *R*-coalgebra with counital. Thus, if *R* is a clean *R*-module (i.e., *R* is clean as a ring), then (R, Δ, ε) is a clean coalgebra over itself.

Recall the example of *R*-coalgebra $M_n(R)$ (see [15]). The matrix ring $M_n(R)$ is an *R*-coalgebra by the coproduct and counit as below

$$\Delta: M_n(R) \to M_n(R) \otimes_R M_n(R), e_{ij} \mapsto \Sigma_{i,j} e_{i,k} \otimes e_{kj}, \tag{1}$$

and

$$\varepsilon: M_n(R) \to R, e_{ij} \mapsto \delta_{i,j}.$$
 (2)

It is called the (n, n)-matrix coalgebra over R. Throughout, the Rcoalgebra $M_n(R)$ with the comultiplication (1) and the counit (2) denoted by $M_n^C(R)$. Furthermore, we will show that the R-coalgebra $M_n^C(R)$ can be identified as an R-coalgebra $P^* \otimes_R P$ when $P = R^n$.

Lemma 2. Let $P = R^n$. Then the comultiplication and counit on R-coalgebra $(R^n)^* \otimes_R R^n$ is equivalent to the comultiplication and counit of R-coalgebra $M_n^C(R)$. It means $(R^n)^* \otimes_R R^n \approx M_n^C(R)$.

Proof. Suppose that the canonical basis of \mathbb{R}^n is $\{(0, 0, .., 1_i, 0, ..0)\}_{i \in \mathbb{N}}$ and basis of $(\mathbb{R}^n)^*$ is $\{\pi_i\}_{i \in \mathbb{N}}$ where $\pi_i((0, 0, .., 1_j, 0, ..0)) = 1$ for i = j and 0 for $i \neq j$. Therefore

1) The comultiplication

$$\Delta : (R^n)^* \otimes_R R^n \to ((R^n)^* \otimes_R R^n) \otimes_R (R^n)^* \otimes_R R^n$$
$$f \otimes p \mapsto \sum_i f \otimes p_i \otimes \pi_i \otimes p$$

For any $f = \sum_{i} a_i \pi_i$ and $p = \sum_{i} b_i p_i \in \mathbb{R}^n$ we have

$$\Delta(f \otimes p) = \sum_{k} (\sum_{i} a_{i} \pi_{i}) \otimes p_{k} \otimes \pi_{k} \otimes (\sum_{j} b_{j} p_{j})$$
$$= \sum_{k} (\sum_{i} a_{i} \pi_{i}(p_{k})) \otimes (\sum_{j} b_{j} \pi_{k}(p_{j}))$$

Since $(R^n)^* \otimes_R R^n \approx M_n(R)$ as an *R*-module by mapping $\pi_i \otimes p_j \mapsto e_{ij}$ for any i, j, we have

$$\Delta(f \otimes p) \simeq \sum_{k} (\sum_{i} a_{i} e_{ik} \otimes \sum_{j} b_{j} e_{kj}).$$

It implies the case $f \otimes p = \pi_i \otimes p_j \approx e_{ij}$, we have

$$\Delta(f \otimes p) = \Delta(e_{ij}) = \Delta(\pi_i \otimes p_j) = \sum_k \pi_i \otimes p_k \otimes \pi_k \otimes p_j$$
$$= \sum_k \pi_i(p_k) \otimes \pi_k(p_j) = \sum_k e_{ik} \otimes e_{kj}$$

Therefore,

$$\Delta(\pi_i \otimes p_j) \approx \Delta(e_{ij}) = \sum_k e_{ik} \otimes e_{kj}.$$

Consequently, this result similar to the comultiplication on R-coalgebra $M_n^C(R)$.

2) The counit of $(R^n)^* \otimes_R R^n$ is $\varepsilon(f \otimes p) = f(p)$. For any $f \otimes p \in (R^n)^* \otimes_R R^n$ where $f = \sum_i a_i \pi$ and $p = \sum_j b_j p_j \in R^n$ we have

$$\varepsilon(f \otimes p) = \varepsilon(\sum_{i} a_{i}\pi_{i} \otimes \sum_{j} b_{j}p_{j}) = \sum_{i} a_{i}\pi_{i}(\sum_{j} b_{j}p_{j})$$
$$= \varepsilon(f \otimes p) = \sum_{i} a_{i}\sum_{j} b_{j}\pi_{i}(p_{j}) = a_{i}b_{i}.$$

Related with an *R*-coalgebra $M_n^C(R)$, for canonical basis $e_{ij} \approx \pi_i \otimes p_j$ (see Lemma 2). Putting $f \otimes p = \pi_i \otimes p_j \in (\mathbb{R}^n)^* \otimes_R \mathbb{R}^n$ (see Lemma 2), then

$$\varepsilon(e_{ij}) = \varepsilon(\pi_i \otimes p_j) = \pi_i(p_j) = \delta_{i,j}$$

It is analogue to the counit of $M_n^C(R)$.

It is clear that every ring is a trivial coalgebra over itself ([15]). On the other hand, we have already known that a ring R is clean if and only if $(R, \Delta_T, \varepsilon_T)$ is a clean R-coalgebra. Furthermore, if R is a clean ring, then the ring $M_n(R)$ is a clean ring [1]. Now, let consider the matrix ring $M_n(R)$ as a coalgebra over itself by the trivial comultiplication (Δ_T) and counit (ε_T) , denoted by $(M_n(R), \Delta_T, \varepsilon_T)$. Hence, if $M_n(R)$ is a clean ring, then $(M_n(R), \Delta_T, \varepsilon_T)$ is a clean coalgebra over itself. The following corollary explains the cleanness of R-coalgebra $M_n^C(R)$ with Δ and ε in Equation (1) and (2).

Corollary 1. If R is a clean ring, then the R-coalgebra $M_n^C(R)$ is clean.

Proof. By Lemma 2 $M_n^C(R)$ is a special case of $P^* \otimes_R P$ when $P = R^n$. Suppose that $P = R^n$. Since R is a clean ring, then R^n is a clean R-module [13]. By the Theorem 3 $(R^n)^* \otimes_R R^n = M_n^C(R)$ is a clean R-coalgebra, since R^n is a clean R-module.

2. The cleanness of P and P^* as a $P^* \otimes_R P$ -comodule

Let R be a commutative ring with multiplicative identity and P be a finitely generated projective R-module. In [15] if P is a clean R-module, then the R-coalgebra $P^* \otimes_R P$ is clean. If P is a finitely generated projective R-module with basis $p_1, p_2, ..., p_n \in P$ and dual basis $\pi_1, \pi_2, ..., \pi_n \in P^*$, then P is a right $P^* \otimes_R P$ -comodule with the coaction

$$\varrho^P: P \to P \otimes_R (P^* \otimes_R P), p \mapsto \Sigma_i p_i \otimes \pi_i \otimes p.$$

P is a subgenerator in $\mathbf{M}^{P^* \otimes_R P}$ and there is a category isomorphism

$$\mathbf{M}^{P^*\otimes_R P} \simeq \mathbf{M}_{\mathrm{End}_R(P)}.$$

The dual P^* is a left $P^* \otimes_R P$ -comodule with the coaction

$$^{P^*}\varrho: P^* \to (P^* \otimes_R P) \otimes_R P^*, f \mapsto \Sigma_i f \otimes p_i \otimes \pi_i.$$

Here, we will investigate the conditions under which P and P^* are clean comodules over $P^* \otimes_R P$.

Theorem 4. Let P be a finitely generated projective R-module with basis $p_1, p_2, ..., p_n \in P$ and dual basis $\pi_1, \pi_2, ..., \pi_n \in P^*$. If R is a clean ring, then P is a right clean $P^* \otimes_R P$ -comodule and P^* is a left clean $P^* \otimes_R P$ -comodule.

Proof. 1) Suppose that P is a projective R-module. Consider P as a right $P^* \otimes_R P$ -comodule. We want to prove that P is a right clean $P^* \otimes_R P$ -comodule, i.e., $(P^* \otimes_R P)^* \operatorname{End}(P)$ is a clean ring.

Based on [15], since $P^* \otimes_R P$ is a finitely generated projective *R*-module, *R*-coalgebra $P^* \otimes_R P$ satisfies the α -condition and we have the following condition:

$$(P^* \otimes_R P)^* \mathbf{M} \simeq \mathbf{M}^{P^* \otimes_R P}.$$
 (3)

On the other hand, it is true that the ring $(P^* \otimes_R P)^* \simeq \operatorname{End}_R(P)$. Therefore,

$$\mathbf{M}^{P^*\otimes_R P} \simeq_{(P^*\otimes_R P)^*} \mathbf{M} \simeq_{\mathrm{End}_R(P)} \mathbf{M}.$$

We are going to prove that the ring $(P^* \otimes_R P)^* \operatorname{End}(P) \in (P^* \otimes_R P)^* \mathbf{M}$ is clean. Based on Equation (3) and using the Morita Context (see Theorem 1), since P is a generator, $R \simeq \operatorname{End}_{\operatorname{End}_R(P)} P$) as a ring. Therefore,

$$(P^* \otimes_R P)^*$$
 End $(P) \simeq$ End_{End_R} (P) (P) and End_{End_R} (P) $(P) \simeq R$

as a ring. Hence, $_{(P^*\otimes_R P)^*} \operatorname{End}(P) \simeq R$ as an *R*-module. Noted that *R* is a clean ring if and only if *R* is a clean *R*-module. Then

$$(P^* \otimes_R P)^* \operatorname{End}(P) \simeq R$$

is a clean ring. Consequently, P is a clean $P^* \otimes_R P$ -comodule.

2) Consider P^* as a left $P^* \otimes_R P$ -comodule. We want to prove that P^* is a left $P^* \otimes_R P$ -comodule, i.e., $\operatorname{End}_{(P^* \otimes_R P)^*}(P^*)$ is a clean ring. Analogue with point (1) we have

$$P^* \otimes_R P \mathbf{M} \simeq \mathbf{M}_{(P^* \otimes_R P)^*} \simeq \mathbf{M}_{\mathrm{End}_R(P)}.$$

We going to prove that the ring $\operatorname{End}_{(P^*\otimes_R P)^*}(P^*) \in \mathbf{M}_{(P^*\otimes_R P)^*}$ is clean. From Equation (3) we have

$$\operatorname{End}_{(P^*\otimes_R P)^*}(P^*) \simeq \operatorname{End}_{\operatorname{End}_R P}(P^*).$$

Furthermore, from Theorem 1 we have $R \simeq \operatorname{End}_{\operatorname{End}_R(P)}(P^*)$. Therefore,

$$\operatorname{End}_{(P^*\otimes_R P)^*}(P^*) \simeq R$$

Consequently, if R is a clean ring then $(P^* \otimes_R P)^*$ End $(P) \simeq R$ is a clean ring. Hence, P^* is a left clean $P^* \otimes_R P$ -comodule.

Remark 1. Let $P = R^n$. As a special case for any $n \in \mathbb{N}$ then R^n is a comodule over the coalgebra $M_n^C(R)$. On the other hand, if R is a clean ring (i.e., a clean R-module), then R^n is a clean R-module. Therefore, if R is a clean R-module, then R^n is a right clean $M_n^C(R)$ -comodule.

This paper gives the sufficient conditions of clean R-coalgebra $P^* \otimes_R P$ and the cleanness of P and P^* as a $P^* \otimes_R P$ -comodule. We already get some conclusions i.e., if P is a clean R-module, then the R-coalgebra $P^* \otimes_R P$ is clean and if R is a clean ring, then P (resp. P^*) is a right (resp. left) clean $P^* \otimes_R P$ -comodule. We see that the cleanness of $P^* \otimes_R P$ depends on R if P is a finitely generated projective R-module (i.e., it is very closed to free R-module).

References

- Nicholson, W.K., Lifting Idempotents and Exchange Rings, Trans. Amer. Math. Soc., 229, 1977, 269–278.
- [2] Warfield, Jr., R. B., Exchange rings and decompositions of modules, Math. Ann. 199, 1972, 31–36.
- [3] Crawley, P., and Jónnson, B., Refinements for Infinite Direct Decompositions Algebraic System, Pacific J. Math., 14, 1964, 797–855.

- [4] Camillo, V.P., and Yu, H.P., Exchange Rings, Units and Idempotents, Comm. Algebra, 22(12), 1994, 4737–4749.
- [5] Han, J., and Nicholson, W.K., *Extension of Clean Rings*, Comm. Algebra, 29(6), 2001, 2589–2595.
- [6] Anderson, D.D., and Camillo, V.P., Commutative Rings Whose Element are a sum of a Unit and Idempotent, Comm. Algebra, 30(7), 2002, 3327–3336.
- [7] Tousi, M., and Yassemi, S., Tensor Product of Clean Rings, Glasgow Math. J, 47. 2005, 501–503.
- [8] McGovern, W. Wm., Characterization of commutative clean rings, Int. J. Math. Game Theory Algebra, 15(40), 2006, 403–413.
- [9] Chen, H., and Chen, M., On Clean Ideals, IJMMS, 62, 2002, 3949–3956.
- [10] Nicholson, W. K., and Varadarajan, K., Countable Linear Transformations are Clean, Proceedings of American Mathematical Socienty, 126, 1998, 61–64.
- [11] Scarcoid, M.O., Perturbation the Linear Transformation By Idempotent, Irish Math. Soc. Bull., 39, 1997, 10–13.
- [12] Nicholson, W.K., Varadarajan, K. and Zhou, Y., Clean Endomorphism Rings, Archiv der Mathematik, 83, 2004, 340–343.
- [13] Camillo, V.P., Khurana, D., Lam, T.Y., Nicholson, W.K. and Zhou, Y., Continous Modules are Clean, J. Algebra, 304, 2006, 94–111.
- [14] Camillo, V.P., Khurana, D., Lam, T.Y., Nicholson, W.K. and Zhou, Y., A Short Proof that Continuous Modules are Clean, Contemporary Ring Theory 2011, Proceedings of the Sixth China-Japan-Korea International Conference on Ring Theory, 2012 165–169.
- [15] Brzeziński, T., and Wisbauer, R., Corings and Comodules, Cambridge University Press, United Kingdom, 2003.
- [16] Lam, T.Y., Graduated Texts in Mathematics: Lectures on Modules and Rings, Springer-Verlag, New York, inc, 1994.
- [17] Adkins, W.A., and Weintraub, S. H., Algebra "An Approach via Module Theory", Springer-Verlag New York, Inc., USA, 1992.

Nikken Prima	Department of Mathematics, Faculty of
Puspita,	Mathematics and Natural Science, Universitas
Indah Emilia	Gadjah Mada, Yogyakarta, Indonesia
Wijayanti,	E-Mail(s): nikken.prima.p@mail.ugm.ac.id
Budi Surodjo	<pre>(nikkenprima@gmail.com),</pre>
	ind_wijayanti@ugm.ac.id,
	surodjo_b@ugm.ac.id
	Web- $page(s)$: www.indahwijayanti.staff.
	ugm.ac.id,
	www.acadstaff.ugm.ac.id/
	MTk2NTExMjYxOTkxMDMxMDAx

CONTACT INFORMATION

Received by the editors: 10.07.2019 and in final form 23.10.2020.