АЛФАВИТНЫЙ УКАЗАТЕЛЬ Т. 56, 2020 г.

	Nº,	, С.
Бабич С.Ю., Дихтярук Н.Н. Передача нагрузки от бесконечного неоднородного		
стрингера к защемленной одной гранью упругой полосе с начальными напря-		
жениями	6,	69 - 78
Багно А.М. Распространение волн в упругом полупространстве, взаимодействую-		
щем с вязким жидким слоем	6,	57 - 68
<i>Барсегян В.Р.</i> О задаче оптимального управления колебаниями струны	4,	87 –96
Басараб В.А. Исследование динамических параметров вибрационной машины		
для уплотнения строительных смесей	6,	116 - 129
Беспалова Е.И., Борейко Н.П. О колебаниях составных оболочечных систем при		
докритических нагрузках		27 - 37
Биан Я.Х., Жан К. Анализ термомагнитоупругих эффектов в тонкой токопроводя-		
щей конической усеченной оболочке	1,	128 - 143
Бисвас С. Подход пространства состояний к термоупругим задачам в рамках		
модели запаздывания трех фаз.	2,	130 - 144
Від редколегії журналу «Прикладна механіка». Міністерство освіти і науки		
України присвоїло Міжнародному науковому журналу «Прикладна механіка»		
вищу категорію «А»	1,	3
Голуб В.П., Павлюк Я.В., Резник В.С. К расчету деформаций ползучести и релак-		
сации напряжений в тонкостенных трубчатых элементах из линейно-вязко-		
упругих материалов. 1. Суперпозиция сдвиговой и объемной ползучести	2,	36 - 52
Горик А.В., Ковальчук С.Б. Решение задачи упругого изгиба слоистой консоли		
нормальной линейно распределенной нагрузкой на продольных гранях	1,	78 - 93
<i>Григоренко А.Я., Борисенко М.Ю., Бойчук Е.В.</i> Свободные колебания незамкну-		
той цилиндрической оболочки эллиптического поперечного сечения	4,	3 - 14
<i>Григоренко А.Я., Григоренко Я.М., Лоза И.А.</i> Численный анализ динамических		
процессов в неоднородных пьезокерамических цилиндрах (обзор)		3 - 55
<i>Григоренко А.Я., Лоза И.А.</i> Вынужденные осесимметричные колебания полого ш		
из непрерывно неоднородного пьезокерамического материала при электричес	-	
ком способе возбуждения	6,	28 - 45
<i>Григоренко А.Я., Лось В.В., Маланчук В.А., Тормахов Н.Н.</i> Напряженное состо-		
яние резьбового соединения в системе дентальный имплантат – кость		44 - 51
<i>Григоренко Я.М., Григоренко А.Я., Крюков Н.Н., Яремченко С.Н.</i> Расчет цилинд	-	
рических оболочек с косыми срезами в уточненной постановке на основе		
сплайн-аппроксимации	. 3,	76 - 83
$\it \Gamma$ узь $\it A.H.$, $\it Багно A.M.$ Влияние начальных напряжений на квазилэмбовские моды		
в гидроупругих волноводах	1,	4 - 22
Дадашзаде Б., Аллахвердизаде А., Есмаэйли М., Фекрманди Х. Исследование вли	1-	
яния мышц типа Хилла на механическую эффективность двуногой ходьбы	4,	133 - 144
Довжик М.В. Разрушение полуограниченного композитного материала с близко-	_	- 0 00
расположенной приповерхностной дискообразной трещиной при сжатии		, 78 – 82
Жук А.П., Жук Я.А. Действие радиационной силы на гибкую сферическую частиц		46 56
у свободной поверхности жидкости	6	46-56
Жук Я.А., Остос А.Х. Влияние предварительного нагружения на резонансные		
колебания и диссипативный разогрев прямоугольной термовязкоупругой		45 60
пластины	4	. 47 – 60

Залюбовский М.Г., Панасюк И.В. Об исследовании основных конструктивных		
параметров семизвенного пространственного механизма машины для обра- ботки деталей	1,	67 – 77
Залюбовский М.Г., Панасюк И.В. Об исследовании основных конструктивных		
параметров пространственных механизмов машин с двумя рабочими емкос-		
тями для обработки деталей	6,	130 - 141
<i>Калюх Ю.И.</i> О применимости квазистатического подхода для расчета		
характеристик буксируемой системы при ее ускорении	3,	138 - 144
<i>Каминский А.А., Курчаков Е.Е.</i> О закономерностях развития области пассивной		
деформации в нелинейном упругом ортотропном теле с трещиной	4,	15 - 26
Карлаш В.Л. К вопросу о моделировании колебаний пьезокерамических резона-		
торов высокой мощности эквивалентной схемой.	2,	60 - 70
Карнаухов В.Г., Козлов В.И., Карнаухова Т.В. Параметрические колебания шар-		
нирно опертой термовязкоупругой прямоугольной пьезоэлектрической		
пластины с учетом деформаций сдвига и диссипативного разогрева	3,	84 - 89
Киричок И.Ф., Чернюшок О.А. Осесимметричные колебания и виброразогрев		
термовязкоупругой цилиндрической оболочки с пьезоактуаторами при		
учете деформации сдвига	3,	90 - 98
Киричок И.Ф., Чернюшок О.А. Вынужденные колебания и виброразогрев подат-		
ливой на сдвиг термовязкоупругой цилиндрической оболочки с пьезоэлектри-		
ческими актуаторами и сенсорами	6	, 86 – 94
<i>Кифоренко Б.Н., Ткаченко Я.В.</i> Эффективность инвариантного управления дви-		
жением в атмосфере		79 - 85
Ковальчук С.Б., Горик А.В., Зиньковский А.П. Аналитическое решение задачи о т		
моупругом деформировании неравномерно вращающегося слоистого диска		104 - 119
Кубенко В.Д., Янчевский И.В. Аномальные частоты в полубесконечном цилиндри	-	
ческом сосуде с жидкостью при динамическом возбуждении сферическим		
излучателем	2,	18 - 35
Ларин В.Б., Туник А.А. Об исключении переключения при отказе датчика в сис-		
теме управления боковым движением квадрокоптера.	2,	53 – 59
<i>Легеза В.П.</i> Брахистохронное движение материальной точки на трансцендентной		
поверхности	3,	112 - 121
Лимарченко В.О., Лимарченко О.С., Сапон Н.Н. Динамика трубопровода		
с жидкостью на вращающемся основании.	3,	104 - 111
Лимарченко О.С., Нефедов А.А., Семенович Е.А. Проявление вторичных резо-		405 445
нансов при маятниковых колебаниях резервуаров с жидкостью		
лизацией перевернутого маятника с маховиком. Часть 1.	4	, /8 – 86
Ловейкин В.С., Ромасевич Ю.А., Хорошун А.С., Шевчук А.Г. Об оптимальном по быстродействию управлении движением подвижного математического		
по оыстродеиствию управлении движением подвижного математического маятника. Часть 2	2	05 102
маятника. часть 2		
		, 32 – 43
Луговой П.З., Мейш В.Ф., Орленко С.П. Численное моделирование динамики тресслойных сферических оболочек с дискретным ребристым заполнителем при		= 0.00
действии ударной волны		
Максимюк В.А. О явлении запирания в численных методах теории оболочек		, 99 – 103
Максимюк В.А., Сущенко Е.А., Фетисов И.Б. Методика измерения динамических	(
характеристик исполнения музыкальных произведений на ударных инстру-	•	71 77
ментах средствами тензометрии	2	, /1 – //
Мартынюк А.А. Прямой метод А.М. Ляпунова на основе матричных вспомога-	2	3 - 75
тельных функций: 40 лет развития (обзор)		, 3 – /3
подобных уравнений возмущенного движения		56 64
подооных уравнении возмущенного движения	3	, 50 – 04
полиномиальных систем	1	23 _ 31
		, 23 – 31
<i>Марчук А.В., Ренейская С.В., Лещук О.Н.</i> Трехмерный анализ свободных колеба-		
ний слоистых композитных плит на основе полуаналитического метода	,	07 116
конечных элементов	4,	9/-116

<i>Мейш В.Ф., Мейш Ю.А., Белова М.А.</i> Нестационарная динамика изотропных ко-		
нических оболочек эллиптического сечения при распределенных загрузках	4,	38 - 46
<i>Мирошников В.Ю.</i> Напряженное состояние упругого слоя с цилиндрической		
полостью на жестком основании	3,	127 - 137
Михайленко В.В., Карнаухова Т.В. Об энергетической теории коэффициента		
электромеханической связи при колебаниях пьезоэлектрических тел	2,	120 - 129
<i>Мольченко Л.В., Лоос И.И.</i> Влияние физических свойств материала на термо-		
магнитоупругое поведение гибкой конической оболочки с ортотропной		
электропроводностью и джоулевым теплом	5,	109 - 121
<i>Мольченко Л.В., Лоос И.И., Васильева Л.Я., Пархоменко А.Ю.</i> Магнитоупругое		
деформирование изотропных оболочек вращения переменной жесткости: учет		
джоулевого тепла и геометрической нелинейности.	2	, 83 – 94
Мольченко Л.В., Лоос И.И., Дармосюк В.Н. Термомагнитоупругое деформирова-		
ние гибких ортотропных оболочек вращения переменной жесткости с учетом		
джоулевого тепла	4,	117 - 132
Никитина Н.В. Аттракторы трехмерных систем в базовых моделях механики	5,	89 - 108
Острик В.И. Симметрия инверсии решений краевых задач теории упругости для		
полупространства	5,	122 - 135
Петрищев О.Н., Романюк М.И. Возбуждение пространственно развитых волн		
Лэмба системой объемных и поверхностных нагрузок (Часть 2)	1,	105 - 127
Рущицкий Я.Я., Юрчук В.Н. О влиянии третьего приближения при анализе		
эволюции нелинейно упругой Р-волны. Часть 1	5.	65 – 77
Рущицкий Я.Я., Юрчук В.Н. О влиянии третьего приближения при анализе	,	00 77
эволюции нелинейно упругой Р-волны. Часть 2	6.	17 - 27
Рыжков Л.М. Матричный метод определения ориентации тела		
Семенюк Н.П., Жукова Н.Б. Устойчивость трехслойной цилиндрической оболочки	- /	
с заполнителем при внешнем давлении с учетом давления во внутреннем		
цилиндре	1.	52 - 66
Старовойтов Э.И., Леоненко Д.В. Деформирование трехслойного стержня со		
сжимаемым заполнителем в нейтронном потоке	1	94 104
	1,) - - 10-
<i>Хома И.Ю., Стрыгина О.А.</i> О кручении трансверсально-изотропной пластины с		(1 77
некруговым цилиндрическим отверстием		
Хорошун Леонид Петрович		144
Хорошун Л.П. Трехконтинуумная механика проводников как основа теории элект-		
ромагнитных волн и проводимости.	2,	3 - 17
Хорошун Л.П. Влияние межслоевых дефектов на эффективные упругие свойства		
композитов продольно-поперечной намотки	6,	3 - 16
<i>Ядао А.Р.</i> Экспериментальное подтверждение влияния различных свойств жид-		
кости на колебания консольного ротора	5,	136 - 144
Янчевский И.В., Кириченко В.В. Нестационарные колебания электроупругой		
сферической оболочки в акустическом слое	6,	95 - 104