УДК 546.284:549.753

Е.И.Гетьман, Е.В.Борисова, С.Н.Лобода, А.В.Игнатов СИЛИКАТЫ ЛАНТАНА И НЕОДИМА СО СТРУКТУРОЙ АПАТИТА И ИХ ТВЕРДЫЕ РАСТВОРЫ

Методом твердофазных реакций получены окси-гидроксиапатиты $Ln_9(SiO_4)_6O(OH)$, где Ln — La, Nd, и их твердые растворы $La_{9-x}Nd_x(SiO_4)_6O(OH)$, которые изучены методами рентгенофазового анализа, сканирующей электронной микроскопии и инфракрасной спектроскопии. В интервале составов при значениях x от 0 до 9 лантан и неодим неограниченно замещают друг друга. Методом Ритвельда уточненена кристаллическая структура окси-гидроксиапатитов.

ВВЕДЕНИЕ. Апатиты щелочно-земельных элементов достаточно давно известны и образуют широкий класс неорганических изоструктурных соединений природного и синтетического происхождения [1]. Несмотря на длительную историю исследований соединений данного структурного типа, интерес к ним не ослабевает в силу многообразия их элементного состава [2-6], структурных особенностей [7—11] и целого комплекса свойств (сорбционных, каталитических, люминисцентных, сенсорных и др.) [12—19]. Оксоапатиты кремния с редкоземельными элементами изучены в меньшей стенени и их можно представить производными от апатитов щелочно-земельных элементов состава Са₁₀(РО₄)₆-(OH,F,Cl)₂, путем сопряженного гетеровалентного замещения фосфора на кремний и кальция на лантаноид. При полном замещении кальция на лантаноид образуются оксоапатиты состава Ln₁₀(SiO₄)₆O₃ с избыточным содержанием кислорода по сравнению с классическим апатитом, при сохранении стехиометрии по кислороду с вакансиями в катионной подрешетке Ln_{9 33}(Si- $O_4)_6O_2$ [2, 17], описаны также оксоапатиты Ln₉(Si-О₄)₆О₁₅ с вакансиями в двух подрешетках [20]. Последние практически не изучены, поэтому в настоящей работе определены условия твердофазного синтеза и уточнена структура силикатов такого состава.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ. Для синтеза в качестве исходных реактивов использовали Nd₂O₃ (HдO-1), La₂O₃ (ЛаО-СС). Третьим реагентом был наноматериал "Орисил" — высокодисперсный, высокоактивный, аморфный диоксид кремния с размером частиц 10—40 нм, применение которого способствовало протеканию твердофазной реакции при сравнительно низких температурах. Образцы синтезировали керамическим методом. Взвешенные в стехиометрических соотношениях исходные вещества перемешивали в агатовой ступке в течение 20 мин. Выбор условий синтеза проводили при ступенчатом повышении температуры от 800 до 1400 °C (через 100 °C). После каждого прокаливания образцы исследовали методом рентгенофазового анализа. Продолжительность прокаливания при каждой температуре определялась постоянством фазового состава.

Рентгенофазовый анализ осуществляли на модернизированном дифрактометре ДРОН-3 (Си K_{α} -излучение, Ni-фильтр) с электронным управлением и обработкой результатов. Скорость вращения счетчика при обзорной съемке для определения фазового состава составляла 2°/мин. Для уточнения кристаллической структуры методом Ритвельда использовали массив данных, полученный из порошковой рентгенограммы, снятой в интервале углов от 15 до 115° (20). Шаг сканирования и время экспозиции в каждой точке составляли соответственно 0.05° и 3 с. Уточнение выполняли, используя программу FUL-LPROF.2k (версия 3.40) [21] с графическим интерфейсом WinPLOTR [22].

Оценку размеров зерен и элементный анализ проводили на растровом электронном микроскопе JSM-6490LV (JEOL, Япония) с применением рентгеновского энергодисперсионного спектрометра INCA Penta FETx3 (OXFORD Instruments, Англия). Инфракрасные спектры регистрировали на спектрофотометре Perkin–Elmer Spectrum BX с преобразованием Фурье в интервале 4000—400 см⁻¹.

[©] Е.И.Гетьман, Е.В.Борисова, С.Н.Лобода, А.В.Игнатов, 2013

Неорганическая и физическая химия

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ. Условия синтеза выбирали на примере образца состава $9La_2O_3 + 12SiO_2$ (табл. 1). Линии фазы со структурой апатита появляются на рентгенограмме после прокаливания при 900 °C, а прокаливание при температуре 1200 °C в течение 20 ч приводит к присутствию на рентгенограмме только пиков фазы апатита. Дальнейшее повышение температуры практически не вызывает изменений на рентгенограммах.

При синтезе в таких условиях образуется, по-видимому, не оксиапатит La₉(SiO₄)₆O_{1.5}, описанный в работе [20], а окси-гидроксиапатит La₉(SiO₄)₆O(OH). Как видно из инфракрасного спектра (рис. 1), наряду с полосами колебаний силикат-иона в интервале частот 403–543 см⁻¹ (v₂, v₄) и 844–988 см⁻¹ (v₁, v₃) [23] присутствует полоса при 3566 см⁻¹, характерная для валент-

Таблица 1

ж				$\mathbf{n} \mathbf{r} = 0$	1100:0	
Фазовыи	состав п	рокаленнои	смеси 2	9La2U	2 + 12 3 10	12

T, °C	Относительная интенсивность (I/I _{макс} ·100, %) максимальных линий фаз со структурой					
	La ₂ O ₃	SiO ₂	La ₂ Si ₂ O ₇	$La_9(SiO_4)_6O(OH)$		
800	100	71	_			
900	32	35	35	100		
1000	25	65	20	100		
1100	_	_	7	100		
1200	_	_	_	100		
1300	_	_	_	100		
1400	_	_	_	100		

Рис. 1. Инфракрасный спектр La₉(SiO₄)₆O(OH).

Рис. 2. Экспериментальная (•) и рассчитанная (|) рентгенограммы, а также их разность для La₉(SiO₄)₆O(OH).

Рис. 3. Зависимость параметров *a* и *c* элементарной ячейки образцов системы $La_{9-x}Nd_x(SiO_4)_6O(OH)$ от состава.

ных колебаний групп ОН⁻, расположенных в каналах структуры апатита [24].

Результаты уточнения кристаллической структуры для $La_9(SiO_4)_6O(OH)$ и $Nd_9(SiO_4)_6O(OH)$ приведены в табл. 1–3 и на рис. 2. Как видно из приведенных данных, экспериментальная и рассчитанная рентгенограммы $La_9(SiO_4)_6O(OH)$ удовлетворительно согласуются (рис. 2), факторы достоверности также имеют приемлемые значения (табл. 2).

Как видно из табл. 3, атомы лантана и неодима занимают преимущественно положение 6h, катионная вакансия в большинстве случаев находится в позиции 4f. Места в позиции O4 практически полностью заняты ионами кислорода и гидроксила, то есть вакансий в каналах структуры нет, что согласуется с результатами, полученными методом ИК-спектроскопии.

Таблица 2

Экспериментальные и кристаллографические данные для апатитов Ln₉(SiO₄)₆O(OH), где Ln — La, Nd

Характеристики	Состав Ln ₉ (SiO ₄) ₆ O(OH)				
nupuktophotniki	Ln = La	Ln = Nd			
Пространственная группа	P6 ₃ /m				
Структурный тип	Апа	тит			
Параметры ячейки, А: а	9.7693(3)	9.5904(9)			
С	7.1864(3)	7.0776(8)			
Объем ячейки, А ³	586.70(4)	573.7(3)			
Излучение Си K_{α} , λ_1 и λ_2 , Å	1.54056	1.54439			
Интервал съемки 20 _{мин} —20 _{макс}	15.000—115.000				
Количество измеренных рефлексов	856	840			
Количество уточненных параметров	36	37			
Факторы достоверности: R_B , R_F	7.01, 4.49	8.25, 5.71			
R_p, R_{wp}	9.50, 12.20	9.87, 13.40			
$\chi^2 \chi^2$	1.08	1.05			

Большинство расстояний Nd —О и расстояние Nd(2)—Nd(2) меньше соответствующих расстояний в силикате лантана примерно на величину ошибки измерений (табл. 4), что объясняется тем, что ионный радиус неодима меньше ионного радиуса лантана всего на 0.05 Å [25].

Методом рентгенофазового анализа установлено образование твердых растворов $La_{9-x}Nd_x$ -(SiO₄)₆O(OH) в области *x* от 0 до 9 после прокаливания в течение 20 ч при температуре 1200 °C. Об этом свидетельствует также и монотонное изменение параметров *а* и *с* элементарных ячеек, представленное на рис. 3. Замещение La³⁺, который имеет больший ионный радиус, чем Nd³⁺,

Таблица З

Координаты, тепловые параметры атомов и заполнение позиций для апатитов $Ln_9(SiO_4)_6O(OH)$, где Ln — La, Nd

Атом Пози-		1- Пара-	Состав Ln ₉ (SiO ₄) ₆ O(OH)		Атом Пози-	Пара-	Состав Ln ₉ (SiO ₄) ₆ O(OH)		
1110.11	ция	метр	Ln = La	Ln = Nd	1110.11	ция	метр	Ln = La	Ln = Nd
Ln1	4f	х	2/3	2/3	O2	6h	х	0.587(3)	0.614(8)
		у	1/3	1/3			у	0.468(3)	0.480(6)
		z	0.0005(1)	0.0006(3)			z	1/4	1/4
		$B_{iso}, Å^2$	0.31(9)	0.8(3)			$B_{iso}, Å^2$	1.9(4)	1.4(6)
		G	0.806	0.808			G	1	1
Ln2	6h	x	0.23027(3)	0.233(9)	O3	12 <i>i</i>	х	0.351(2)	0.343(4)
		у	0.98729(3)	0.99(2)			у	0.250(2)	0.253(4)
		z	1/4	1/4			z	0.069(2)	0.060(4)
		$B_{iso}, Å^2$	0.09(6)	0.05(1)			$B_{iso}, Å^2$	1.9(4)	1.4(6)
		G	0.963	0.960			G	1	1
Si	6h	х	0.402(2)	0.412(4)	OH	4e	x	0	0
		у	0.372(2)	0.373(3)			у	0	0
		z	1/4	1/4			Z	1/4	1/4
		$B_{\rm iso}, {\rm A}^2$	1.1(3)	2.1(6)			$B_{\rm iso}, {\rm A}^2$	1.9(4)	1.4(6)
		G	1	1			G	0.46(3)	0.48(3)
01	6h	Х	0.324(3)	0.349(8)	O4	4e	x	0	0
		у	0.486(4)	0.498(7)			у	0	0
		z	1/4	1/4			Z	1/4	1/4
		$B_{\rm iso},~{\rm \AA}^2$	1.9(4)	1.4(6)			$B_{\rm iso},~{\rm \AA}^2$	1.9(4)	1.4(6)
		G	1	1			G	0.46(3)	0.48(3)

обусловливает уменьшение параметров элементарной ячейки.

Результаты элементного анализа на содержание Nd, La, Si и O представлены в табл. 5. Как видно из приведенных данных, различие в величинах экспериментального и теоретического содержания элементов не превышало 1 %, что допустимо для этого метода анализа.

На примере $Nd_9(SiO_4)_6O(OH)$ методом электронной микроскопии показано (рис. 4), что элементы практически равномерно распределены по поверхности частиц, что свидетельствует об образовании однородного образца. Существующая неравномерность связана с его рельефом.

На рис. 5 представлены микрофотографии поверхности образца, снятые с помощью растрового электронного микроскопа.

Порошок мелкодисперсен, размеры агрегатов меньше 10 мкм, а зерен — до нескольких сотен нанометров.

ВЫВОДЫ. Определены условия синтеза окси-гидроксиапатитов $Ln_9(SiO_4)_6O(OH)$, где Ln — La, Nd. Методом рентгенофазового анализа показано, что между собой они образуют непрерывный ряд твердых растворов состава $La_{9-x}Nd_x(SiO_4)_6O(OH)$, о чем свидетельствует однофазность образцов и постепенное изменение

параметров ячеек во всем интервале составов. Наличие групп ОН⁻ установлено методом инфракрасной спектроскопии по присутствию на спектрах полосы 3566 см⁻¹, характерной для ва-

Рис. 4. Распределение элементов в образце $Nd_9(SiO_4)_6$ -O(OH): *a* — электронное изображение поверхности образца; *б* — кислород; *в* — кремний; *г* — неодим.

Таблица 4

Некоторые межатомные расстояния (Å) в структурах $Ln_9(SiO_4)_6O(OH)$, где Ln - La, Nd

Средние межатомные расстояния	La ₉ (SiO ₄) ₆ - O(OH)	Nd ₉ (SiO ₄) ₆ - O(OH)
<ln(1)—o(1, 2,="" 3)=""> <ln(2)—o(1, 2,="" 3)=""> Ln(2)—OH,O(4) Ln(2)—Ln(2)</ln(2)—o(1,></ln(1)—o(1,>	2.61(1) 2.57(2) 2.31(1) 3.99(1)	2.60(2) 2.53(2) 2.36(3) 3.94(4)

a

Рис. 5. Микрофотографии поверхности образца: *а* — увеличение в 2500; *б* — в 10000 раз.

Т	а	б	Л	И	Ц	а	5
---	---	---	---	---	---	---	---

Элементный состав (% мас.) образцов La9-xNdx(SiO4)6O(OH)

r		Si		Nd		La		0
л	теория	эксперимент	теория	эксперимент	теория	эксперимент	теория	эксперимент
0	9.18	9.12			68.10	67.97	22.66	22.91
6	9.02	8.92	46.34	45.92	23.17	23.02	22.27	22.14
9	8.95	8.44	68.92	68.47	_		22.13	23.09

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2013. Т. 79, № 7

лентных колебаний груп ОН⁻, расположенных в каналах структуры апатита, и подтверждено уточнением кристаллической структуры методом Ритвельда, так как в позиции О4 практически все места заполнены ионами кислорода и гидроксила. Лантан и неодим занимают преимущественно положение 6*h*, катионные вакансии расположены в позиции 4*f*.

РЕЗЮМЕ. Методом твердофазних реакцій отримано окси-гідроксиапатити $Ln_9(SiO_4)_6O(OH)$, де Ln - La, Nd, і їх тверді розчини $La_{9-x}Nd_x(SiO_4)_6$ - O(OH), які вивчено методами рентгенофазового аналізу, скануючої електронної мікроскопії і інфрачервоної спектроскопії. В інтервалі складів при значеннях x від 0 до 9 лантан і неодим необмежено заміщують один одного. Методом Рітвельда проведено уточнення кристалічної структури окси-гідроксиапатиту.

SUMMARY. Solid state reaction method derived oxy-hydroxyapatites $Ln_9(SiO_4)_6O(OH)$, where Ln - La, Nd, and their solid solutions $La_{9-x}Nd_x(SiO_4)_6O(OH)$, which have been studied by X-ray diffraction, scanning electron microscopy and infrared spectroscopy. In the composition range for the values of x from 0 to 9, lanthanum and neodymium indefinitely replace each other. Rietveld method refinement of the crystal structure of oxy-hydroxyapatite.

ЛИТЕРАТУРА

- 1. Elliott J., Wilson R., Dowker S. // Adv. X-ray Anal. -2002. -45, № 2. -P. 172—181.
- Masubuchi Y., Higuchi M., Takeda T., Kikkawa S. // J. Alloys Compd. -2006. -34, № 6. -P. 641—644.
- 3. Tao S., Irvine J. // Ionics. -2000. -6, № 5. -P. 389—396.
- Benmoussa H., Mikou M., Lacout J.L. // Mater. Res. Bull. -1999. -34, № 2. -P. 1429—1434.
- 5. Elkabouss K., Kacimi M., Ziyad M. et al. // J. Catal.

Донецкий национальный университет

-2004. -226, № 3. -P. 16-24.

- 6. Fresa R., Constantini A., Buri A. et al. // Biomater. -1995. -16, № 4. -P. 1249—1253.
- 7. Hoen Chr., Rheinberger V., Holand W. et al. // J. Eur. Ceram. Soc. -2007. -27, № 2. -P. 1579—1584.
- 8. Lakshminarasimhan N., Varadaraju U.V. // J. Solid State Chem. -2005. -178, № 5. -P. 3284—3292.
- 9. Masubuchi Y., Higuchi M., Kodaira K. // J. Cryst. Growth. -2003. -247, № 4. -P. 207-212.
- 10. Masubuchi Y., Higuchi M., Takeda T. et al. // Solid State Ionics. -2006. -177, № 6. -P. 263-268.
- Mathew M., Brown W.E., Austin M. et al. // J. Solid State Chem. -1980. -35, № 7. -P. 69—76.
- 12. Meis C. // J. Nuc. Mater. -2001. -289, №1-2. -P. 167-176.
- Naddari T., Savariault J.M., Feki H. et al. // J. Solid State Chem. -2002. -166, № 3. -P. 237—244.
- Ouenzerfi R.El, Goutaudier C., Panczer G. et al. // Solid State Ionics. -2003. -156, № 5. -P. 209—222.
- 15. Sugiyama S., Minami T., Moriga T. et al. // J. Mater. Chem. -1996. -6, № 3. -P. 459-464.
- 16. Yan B., Huang H., Sui Y. // J. Sol–Gel Sci. Tech. -2005. -36, № 2. -P. 95–102.
- 17. Nakayama S., Sakamoto M. // J. Eur. Ceram. Soc. -1998. -18, № 6. -P. 1413—1418.
- Meis C., Gale J.D., Boyer L. et al. // J. Phys. Chem. -2000. -104, № 3. -P. 5380—5387.
- Nakayama S. // J. Mater. Sci. Lett. -2001. -20, -№ 5. -P. 1627—1629.
- 20. Guiling W., Miolin Z., Hui Z. et al. // J.Inorg. Materials. -2006. -21, № 5. -P. 1258—1261.
- Rodriguez-Carvajal J. // Program FullProf.2k (version 3.40. November 2005. LLB JRC).
- Roisnel T., Rodriguez-Carvajal J. // Mat. Sci. Forum. Proc. of the Seventh Europ. Powder Diffraction Conf. (EPDIC 7). -Barcelona, 2000. -P. 118.
- 23. Bechade E., Masson O., Iwata T. et al. // Chem. Mater. -2009. -21, № 5. -P. 2508—2517.
- 24. Serret A., Cabanas M.V., Vallet Regi M. // Ibid. -2000. -12, № 2. -P. 3836—3841.
- Shannon R.D. // Acta Crystallogr. -1976. -32A, № 3. -P. 751—767.

Поступила 11.02.2013