УДК 544.41:544.344:544.43

В.Д.Калугін, В.В.Лук'янченко, Н.С.Опалєва, О.В.Сидоренко, О.А.Бешенцева ОСОБЛИВОСТІ ПРОЯВУ ЕФЕКТУ ГІДРОДИНАМІЧНОГО ОБМЕЖЕННЯ ШВИДКОСТІ ХІМІЧНОГО ОСАДЖЕННЯ СРІБЛА В РОЗЧИНАХ З РІЗНИМИ ВІДНОВЛЮВАЧАМИ

У розчинах AgNO₃ з окисно-відновною системою Co(II) / Co(III) встановлено повномаєштабний прояв ефекту гідродинамічного обмеження швидкості (ГДОШ-ефект) хімічного відновлення срібла (V_{Ag} =0) на активованій поверхні діелектрика Д (скло). Ефект впливу дисперсної фази в реакторі на характер залежності V_{Ag} — ω (ω —швидкість обертання Д-зразка) промодельовано шляхом введення в систему наноструктурних високодисперсних оксидів Al₂O₃ або Ta₂O₅. У присутності оксидів на залежності V_{Ag} — ω спочатку формується плато, яке тільки при більш високих значеннях ω приводить до ситуації повного прояву ефекту ГДОШ (V_{Ag} =0).

ВСТУП. Вплив природи та концентрації відновника на індукційний період і швидкість хімічного відновлення субмікро- і наношарів срібла в стаціонарному і гідродинамічному режимах з лужно-аміачних розчинів викладено в роботах [1, 2]. Експериментально встановлено [2], що менш глибокий прояв ГДОШ-ефекту, тобто вихід системи на більш низьке плато (після максимуму на залежності V_{Ag}—ω) спостерігається за умов $\tau_{\text{досл}} < \tau_{\text{інд}}$ ($\tau_{\text{досл}} \stackrel{n_{\text{б}}}{-}$ час досліду; $\tau_{\text{інд}}$ — індукційний період — час початку активного процесу коллоїдоутворення в об'ємі розчину в умовах конвективного перенесення). Проте досягти повного прояву ГДОШ-ефекту хімічного осадження срібла (V_{Ag}=0) навіть у цих умовах не вдається, оскільки при ω>0 прискорюються процеси утворення в об'ємі реактора коллоїдоподібних частинок, які візуально виявити важко. Між тим колоїдні структури, утворені в умовах гідродинамічного режиму хімічного осадження, можуть ефективно збільшувати концентрацію Ag⁺-іонів у міжфазному шарі, на межі каталітична поверхня/розчин, і таким чином підвищувати рівень плато на залежності V_{Ag}—ю і навіть приводити до практичної відсутності ГДОШ-ефекту.

З урахуванням сказаного і беручи наше припущення про причини часткового прояву ГД-ОШ-ефекту в аміачно-лужних розчинах хімічного сріблення, для досягнення мети роботи реалізовані два напрями дослідження: 1) на основі літературного пошуку обгрунтовано вибір системи хімічного осадження срібла, в якій не відбуваються процеси коллоїдоутворення [3]; 2) експериментально виконано моделювання умов зниження рівня прояву ГДОШ-ефекту за рахунок введення в систему індиферентних по відношенню до компонентів розчину мікрочастинок різних оксидів металів, які функціонували б так само, як і колоїдні частинки, що містять Ag⁺.

Завданням дослідження був комплексний експериментальний опис різноманітних видів електролітних розчинних систем хімічного осадження срібла (з різними відновниками), в яких спостерігаються або повністю відсутні процеси колоїдоутворення в об'ємі, на стінках реактора і діелектричних (неактивованих) зразках. У разі повної відсутності факторів, що викликають частковий прояв ГДОШ-ефекту, на залежностях V_{Ag} — ω повинно спостерігатися (після V_{Ag}^{max}) закономірне зниження V_{Ag} до нуля. В цих умовах підтверджується наше припущення про причини часткового прояву ГДОШ-ефекту в системах сріблення з некаталітичним механізмом розряду Ag^+ -іонів.

ЕКСПЕРИМЕНТ І ОБГОВОРЕННЯ РЕЗУЛЬ-ТАТІВ. Кінетика хімічного осадження срібла на діелектричних (Д) зразках у стаціонарному і гідродинамічному режимах (V_{Ag} — ω , δ_{Ag} — ω) розрахована за даними гравіметрії. Д-зразки (скляні пробірки) готували за методикою [1, 2]. Повноту реакції відновлення Ag⁺-іонів контролювали за методиками [2, 4]. Час хімічного осадження срібла становив 600 с. Відносна помилка при розрахунках V_{Ag} не перевищувала 1.0—1.5 %. Кваліфікація реактивів та ж, що і в роботах [1— 3]. Розчини готували на бідистильованій воді.

Результати експериментального дослідження різних систем хімічного осадження срібла (з

[©] В.Д.Калугін, В.В.Лук'янченко, Н.С.Опалєва, О.В.Сидоренко, О.А.Бешенцева, 2012

різними відновниками) представлені комплексно в таблиці, де подано повний опис поведінки систем хімічного сріблення (склад, V_{Ag} , δ , τ_{ihg} , якість покриття, наявність колоїдної фази в розчині і характеристика V_{Ag} — ω). Згідно з отриманими експериментальними даними (таблиця) встановлена однозначна залежність між $\tau_{iнд}$, наявністю осаду в об'ємі розчину та присутністю плато на залежності V_{Ag} —ю. В умовах $\tau_{iнd} < \tau_{досл}$ в усіх системах в об'ємі утворюється нова фаза

Вплив складу розчину на швидкість осадження (V_{Ag}) на активованому Д-зразку, товщину покриття (δ_{Ag}), індукційний період (τ_{iHd}), якість Ag-осаду і наявність осаду в розчині та на стінках реактора в різних системах хімічного сріблення

Номер розчину	Склад розчинів*	С, моль/л (мл/л)	V _{Ag} , мг/(см ² ·год)	δ, мкм	τ _{інд} , c	Якість Ад- покриття на Д-зразку	Осад **	Плато ***
1	AgNO ₃ NH ₄ OH (25 %) NaOH	0.088 (75) 0.375	0.64	0.10	2–3	Світло-сіре, блискуче, суцільне	+	+
2	Iнвертований цукор AgNO ₃ NH ₄ OH (25 %) NaOH C H OH	0.041 0.088 (75) 0.375 5.426	0.58	0.09	3.0	Світло-сіре, блискуче, суцільне	+	+
3	С ₂ н ₅ он Інвертований цукор AgNO ₃ NH ₄ OH (25 %) NaOH	0.041 0.088 (75) 0.375	0.34	0.050	13–15	Світло-сіре, блискуче, суцільне	+	+
4	Iнвертований цукор AgNO ₃ NH ₄ OH (25 %) NaOH	0.008 0.029 (75) 0.375	0.31	0.050	8–10	Світло-сіре, блискуче, суцільне	+	+
5	АдNO ₃ NH ₄ OH (25%) NaOH 5%-й спиртовий розчин йоду	0.008 0.029 (75) 0.375 (0.05)	0.08	0.050	900–1020	Блакитнувате, тонке, серпанкове, плямами	+	+
6	Iнвертований цукор AgNO ₃ NH ₄ OH (25 %) NaOH	0.041 0.088 (15) 0.375 0.028	0.83	0.13	50–60	Світло-сіре, блискуче, суцільне	+	+
7	AgNO ₃ NH ₄ OH (25%) NaOH	0.029 (15) 0.375 0.028	0.32	0.09	480–600	Світло-сіре, блискуче, суцільне	+	+
8	AgNO ₃ NH ₄ OH (25%) NaOH KNaC ₄ H ₄ O ₆ ·4H ₂ O	0.059 (15) 0.175 0.04	0.50	0.08	480–500	Світло-сіре, блискуче, суцільне	+	+

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2012. Т. 78, № 11

						Продовження п			
Номер розчину	Склад розчинів*	С, моль/л (мл/л)	V _{Ag} , мг/(см ² ·год)	δ, мкм	τ _{інд} , c	Якість Ад- покриття на Д-зразку	Осад **	Плато ***	
9	AgNO ₃ NH ₄ OH (25 %) NaOH Na ₂ S ₂ O ₃ KNaC ₄ H ₄ O ₆ :4H ₂ O	0.059 (15) 0.175 0.067 0.040	0	0	64800–68400	За 600 с досліду покриття Ад немає	_	- _	
10	$AgNO_{3}$ $NH_{4}OH (25\%)$ $NaOH$ $KNaC_{4}H_{4}O_{6}:4H_{2}O$	0.029 (12) 0.125 0.028	0.22	0.04	840	Світло-сіре, блискуче, суцільне, тонке	+	+	
11	$AgNO_{3}$ $NH_{4}OH (25\%)$ $NaOH$ $KNaC_{4}H_{4}O_{4}\cdot4H_{2}O$	0.029 (12) 0.125 0.028	0.20	0.03	1500	Світло-сіре, блискуче, суцільне, тонке	+	+	
12	$AgNO_{3}$ $NH_{4}OH (25\%)$ $NaOH$ $KNaC_{4}H_{4}O_{2}\cdot4H_{2}O$	0.029 (12) 0.125 0.021	0.20	0.023	1500	Світло-сіре, блискуче, суцільне, тонке	+	+	
13	$\begin{array}{c} \text{AgNO}_{3} \\ \text{NH}_{4}\text{OH} (25\%) \\ \text{NaOH} \\ \text{KNaC}_{4}\text{H}_{4}\text{O}_{6}\text{·}\text{4}\text{H}_{2}\text{O} \end{array}$	0.023 (12) 0.100 0.007	0.10	0.01	>3600	Світло-сіре, суцільне, тонке, ма- тове	+	+	
14	AgNO ₃ NH ₃ NH ₄ HSO ₄ CoSO ₄ ·7H ₂ O	0.029 2 0.50 0.15	0.50	0.078	>10800	Блискуче, суцільне, світло-сіре з коричневим відтінком	_	_	

* У розчинах 1–5 відновник (розчин Б) — інвертований цукор, 6–7 — глюкоза, 8–13 — КNа-виннокислий, 14 — CoSO₄; співвідношення об'ємів розчинів А/Б: 1–5 — 2:1, 6–14 — 1:1; ** наявність осаду в об'ємі розчину режимі (+), відсутність (-).

осаду з продуктів відновлення Ag⁺-іонів і окислення молекул відновника (розчини 1-13). У цих випадках обов'язково на залежностях V_{Ag} ди розчинів хімічного сріблення були вибрані з робіт [4, 5]. Згідно з уявленнями авторів [4, 5] про механізм в системах 1-7 (таблиця) процес відновлення реалізується за неавтокаталітичним механізмом відповідно до рівняння:

$$mAg^{+} + 3/2mOH^{-} + C_{6}H_{12}O_{6} = mAg\downarrow +$$

+ $mH_{2}O + 1/2mRCOOH$, (1)

де $m = f([C_6H_{12}O_6] / [Ag^+])$ і може приймати значення від 2 до 12.

Аналогічно здійснюється процес відновлен-

ня срібла і в системах 8–13 (таблиця). У разі розчину 14 (з системою $[Co(NH_3)_6]^{2+}/[Co(NH_3)_6]^{3+}$ в якості відновника) виявляється термодинамічно можливою реакція відновлення Ag⁺, яка локалізується тільки на поверхні активованого Д і відбувається за автокаталітичним механізмом відповідно до рівняння:

$$[Ag(NH_3)_2]^+ + [Co(NH_3)_6]^{2+} + 2H_2O =$$

$$= Ag \downarrow + [Co(NH_3)_6]^{3+} + 2NH_4OH . \quad (2)$$

Під час порівняння результатів систем 1– 13 з 14, що характеризуються присутністю плато (1–13) і відсутністю його (14), слід припустити, що в разі розчинної системи 14 ГДОШефект (після проходження V_{Ag}^{max}) повинен виявлятися повністю ($V_{Ag} = 0$). Справедливість цього затвердження показана нижче.

Виникнення плато на залежностях V_{Ag} —ю у системах 1–13 може бути пов'язано з ефектом підвищення концентрації відновлених Ag^+ -частинок в об'ємі розчину. У цьому випадку частота зіткнень їх з поверхнею обертового Д-зразка збільшується, а, отже, зростає і концентрація як Ag^+_{adc} -іонів, так і молекул відновника в міжфазному реакційному шарі.

З урахуванням сказаного слід припустити, що зі збільшенням обсягу (діаметра) реактора концентрація Ag⁰-частинок в міжфазному шарі повинна зростати, а, отже, має спостерігатися і під-

Рис. 1. Вплив об'єму розчину в реакторі на характер залежності V_{Ag} — ω . Склад розчинів активування, моль/л: a — сенсибілізація: SnCl₂·2H₂O – 0.09; HCl – 1.20; δ — активування: PdCl₂ – 0.002; HCl – 0.04. Склад розчину хімічного сріблення, моль/л: AgNO₃ – 0.09; NaOH – 0.38; NH₄OH – 1.95; C₆H₁₂O₆ (інвертований цукор) – 0.042. Об'єм розчину реактора, л: 1, 3 – 0.10; 2 – 0.25. $\tau_{досл} = 600$ с, $T = (286 \pm 3)$ К. Крива 3 гіпотетична залежність за відсутності дисперсної фази в об'ємі реактора.

вищення плато. На рис. 1 представлені результати експериментальної перевірки даного підходу до вивчення природи плато на залежностях V_{Ag}—ω. Виявилося, що зі збільшенням об'єму розчину в реакторі в 2.5 раза (діаметра — в 1.75 раза) плато на залежності V_{Ag}—ω підвищується з 0.85 до 1.05 мг/(см²·год), тобто на 25 % по відношенню до меншого об'єму реактора, а перехід на плато спостерігається при більш високих значеннях ш, які визначені за точками перетину дотичних спадаючих ділянок залежностей V_{Ag} — ω після досягнення V_{Ag}^{max} . Для малого реактора $\omega_{\text{крит}} = 1800 \text{ об/хв, для реактора}$ більшого діаметра $\omega_{\text{крит}} = 2100 \text{ об/хв. Між тим,}$ вихід на плато для обох об'ємів реакторів спостерігається в одному і тому ж діапазоні ω (920 -1000 об/хв).

Таким чином, на основі результатів прямого експерименту встановлено, що в реакторі більшого об'єму утворюється більша кількість нанодисперсних частинок срібла, які забезпечують більш високу концентрацію частинок типу Ag_2^+ ($Ag^0 + Ag^+$) і $Ag^0 \cdot C_6H_{12}O_6$ у реакційному шарі (при $\omega > \omega (V_{Ag}^{max})$), у результаті плато для реактора з великим об'ємом розчину буде вищим, ніж плато для реактора з меншим об'ємом розчину (за умов постійності поверхні осадження Ag на Д-зразку, тобто при завантаженні Дзразка в розчин на постійну висоту).

У зв'язку з висловленими уявленнями про механізм підвищення плато зі збільшенням об'єму розчину в реакторі в системах хімічного сріблення діелектриків за неавтокаталітичним механізмом нами зроблена спроба промоделювати функціональні властивості нанодисперсій срібла в об'ємі реактора і вплив дисперсної фази на динаміку хімічного відновлення в активній реакційній зоні. Для цього в розчинну систему сріблення на основі Ох-Red-системи Co(II)/ Co(III) вводили адекватні (отриманню срібла в об'ємі розчину системи 1 (таблиця)) кількості високодисперсних хімічно індиферентних оксидів A1 (Al₂O₃) або Та (Ta₂O₅). Результати цих досліджень (V_{Ag} — ω та δ_{Ag} — ω) представлені на рис. 2.

Як видно з рис. 2, *a* (крива *1*), в чистому розчині спостерігається повний прояв ГДОШефекту (при $\omega = 500$ об/хв $V_{Ag} = 0$), при цьому так само змінюється характер покриттів (рис. 2, δ , крива *1*). Товщини осадів срібла в інтервалі

Рис. 2. Характер зміни залежностей V_{Ag} — ω (*a*) та δ_{Ag} — ω (*б*) у присутності в розчині дисперсних оксидів Al_2O_3 або Ta_2O_5 . Склад розчинів, моль/л: *1* — AgNO₃ – 0.03; NH₄OH – 2.00; NH₄HSO₄ – 0.50; CoSO₄ – 0.15; 2 — розчин 1 + (Al₂O₃ – 0.032); 3 — розчин 1 + (Ta₂O₅ – 0.0072). $\tau_{\text{досл}} = 600$ с, $T = (298 \pm 3)$ К.

швидкостей осадження змінюються в межах (75 —5)·10⁻⁹ м.

При введенні високодисперсної індиферентної фази Al₂O₃ або Ta₂O₅ у розчин сріблення спостерігається спад V_{Ag} з 0.4 до 0.050 і 0.075 мг/(см²·год) відповідно (рис. 2, *a*, криві 2, 3), після чого для обох оксидів має місце плато в інтервалі $\omega = 100$ —400 об/хв, а потім — спад V_{Ag} до нуля (аж до 800—1000 об/хв). Специфіка різкого спаду V_{Ag} (без ділянки конвективного підйому) з переходом на плато може бути пов'язана з миттєвим відновленням Ag⁺-іонів на поверхні дисперсних оксидів, залишкова концентрація їх у розчині в подальшому і визначає наявність плато, яке зникає при $\omega > 400$ об/хв у зв'язку з практичною відсутністю Ag⁺-іонів у розчині.

На основі цих експериментів приходимо до висновку про те, що наявність в реакторі дисперсної фази, частинки якої здатні адсорбувати спочатку атоми Ag^0 , а в подальшому частинки Ag^+_2 ($Ag^+ + Ag^0$), а вже потім ці утворення у вигляді $Me_xO_y \cdot Ag^+_{2adc}$ і $Me_xO_y \cdot Co^{2+}_{adc}$ за рахунок гідродинамічного перенесення в реакційну зону (на активовану поверхню Д) можуть підтримувати процес на рівні V_{Ag} , визначеному величиною плато, поки концентрація окислювача або відновника не виявиться рівною нулю. В результаті при $V_{Ag} = 0$ і спостерігається повномасштабний (хоча і через плато) прояв ГДОШ-ефекту. Цілком подібно залежностям V_{Ag} — ω змінюються товщини осадів срібла (δ_{Ag} — ω) (рис. 2, δ , криві 2, 3).

ВИСНОВКИ. Експериментально встановлено, що в розчинних системах хімічного сріблення з використанням різних відновників (глюкоза, інвертований цукор, К-Na-тартрат) процес здійснюється з утворенням в об'ємі реактора дисперсного осаду срібла і продуктів окислення Red. Частинки дисперсного осаду здатні додатково транспортувати, за рахунок гідродинамічного переносу (при інтенсивному перемішуванні), в реакційну зону (на активовану поверхню Д) адсорбовані частинки Ag⁺ і Red. Внаслідок цього на залежностях V_{Ag} —ю з'являються (після досягнення V_{Ag}) плато,

паралельні осі ω (V_{Ag} = const). Природу плато перевірено в системах сріблення Д, в яких процес здійснюється за автокаталітичним механізмом, тобто тільки на активованій поверхні, в розчинах, що містять в якості відновника Ох-Red-систему Со(II)/Со(III). Нами встановлено, що в цьому випадку процес відновлення Ад відбувається лише на поверхні активованого діелектрика, а в об'ємі реактора протягом усього часу досліду відсутня дисперсно-колоїдна фаза. Встановлено, що в цих розчинах на залежностях V_{Ag}—ю немає плато і спостерігається повномасштабний ГДОШ-ефект ($V_{Ag} = 0$ при $\omega \ge \omega_{крит}$; $\omega_{крит}$ спостерігається при V_{Ag}). Специфічність впливу дисперсної фази в реакторі на характер V_{Ag}—ю підтверджена шляхом моделювання утвореної фази — введенням в систему, в якій відсутній процес фазоутворення в об'ємі, наноструктурних, високодисперсних оксидів Al₂O₃ або Та₂О₅. Встановлено, що в присутності цих оксидів на залежностях V_{Ag}—ю після різкого спаду V_{Ag} формується залишкове плато, яке тільки при більш високих ω приводить до ситуації повномасштабного прояву ГДОШ-ефекту (V_{Ag} =0). Результати досліджень у системі сріблення Д повністю підтверджують наші уявлення про механізм ГДОШ-ефекту на обертовому Д-зразку, який проявляється внаслідок динамічного відцентрового відштовхування однозарядних електроактивних частинок Ag^+ від поверхні Д, а не в результаті послідовного одноелектронного переходу, як це можна було б представити в разі хімічного відновлення Me^{n+} , де $n \ge 2$.

РЕЗЮМЕ. В растворах AgNO₃ с окислительновосстановительной системой Co(II)/Co(III) установлено полное проявлении эффекта гидродинамического ограничения скорости (ГДОС-эффект) химического восстановления серебра (V_{Ag} =0) на активированной поверхности диэлектрика Д (стекло). Эффект влияния дисперсной фазы в реакторе на характер V_{Ag} — ω (ω – скорость вращения Д-образца) промоделирован путем введения в систему наноструктурных высокодисперсных оксидов Al₂O₃ или Ta₂O₅. В присутствии оксидов на зависимости V_{Ag} — ω сначала формируется плато, которое только при более высоких значениях ω приводит к ситуации полного проявления эффекта ГДОС (V_{Ag} =0).

Науково-дослідний інститут хімії Харківського національного університету ім. В.Н.Каразіна

SUMMARY. In solutions of AgNO₃ with redox system Co(II)/Co(III) set full manifestation of the effect of hydrodynamic speed limit (HDSL-effect) of the chemical recovery of silver (V_{Ag} =0) on activated dielectric surface *D* (glass). The effect of dispersed phase in the reactor to the nature V_{Ag} — ω (ω -speed *D*-type) simulated by the introduction of the system fine nanostructured oxides Al₂O₃ and Ta₂O₅. In the presence of oxides depending on V_{Ag} — ω shaped plateau that only at higher values of ω leads to a situation of full manifestation of the effect HDSL (V_{Ag} =0).

ЛІТЕРАТУРА

- Калугин В.Д., Бешенцева О.А., Опалева Н.С., Сидоренко О.В. // Зб. наук. праць Міжнар. наук. конф. "Фізико-хімічні основи формування і модифікації мікро- та наноструктур". -Харків: НФТЦ МОН і НАН України, 2009. -Т. 2. -С. 462—466.
- Калугин В.Д., Опалева Н.С., Сидоренко О.В. и др. // Зб. наук. праць Міжнар. наук. конф. "Фізико-хімічні основи формування і модифікації мікро- та наноструктур". -Харків: НФТЦ МОН и НАН України, 2010. -Т. 1. -С. 284—288.
- Калугин В.Д., Опалева Н.С., Сидоренко О.В. и др. // XVIII Укр. конф. з неорганічної хімії за участю закордонних учених: Тези доп. -Харків, 27.06.2011– 01.07.2011 р., XHV ім. В.Н.Каразіна, 2011. -С. 245.
- Свиридов В.В., Воробьева Н.Т., Гаевская Т.В., Степанова Л.И. Химическое осаждение металлов из водных растворов / Под ред. В.В.Свиридова. -Минск: "Университетское", 1987.
- 5. Мелащенко Н.Ф. Гальванические покрытия диэлектриков: Справочник. -Минск: Беларусь, 1987.

Надійшла 06.07.2012