ЛИТЕРАТУРА

- 1. Demirbas A., Pehlivan, E., Gode F. et al. // J. Coll. & Interface Sci. -2005. -282, № 1. -P. 20—25.
- 2. Bergmann M.E.H., Iourtchouk T., Rittel A. // Electrochim. Acta. -2009. -54, № 9. -P. 2417-2424.
- Dzyazko Yu.S., Belyakov V.N. // Desalination. -2004.
 -162. -P. 179—189.
- 4. Alvarado L., Ramirez A., Rodriguez-Torres I. // Ibid. -2009. -249, № 1. -P. 423-428.
- 5. *Hybrid* materials; synthesis, characterization, and applications / Ed. by Guido Kickelbick. -New York: Wiley-VCH, 2007.
- 6. Alberti G., Casciola M., Capitani D. et al. // Electrochim. Acta. -2007. -52, № 28. -P. 8125-8132.
- Luo M.-L., Zhao J.-Q., Tang W., Pu C.-S. // Appl. Surf. Sci. -2005. -249, № 1–4. -P. 76—84.
- Yang Y., Zhang H., Wang P. et al. // J. Membr. Sci. -2007. -288, № 1-2. -P. 231—238.
- 9. Cumbal L., Sengupta A.K. // Environ. Sci. Technol. -2005. -39, № 17. -P. 6508—6515.
- 10. DeMarco M.J., Sengupta A.K., Greenleaf J.E. // Water

Институт общей и неорганической химии им. В.И.Вернадского НАН Украины, Киев Институт геохимии, минералогии и рудообразования им. Н.П.Семененко НАН Украины, Киев Res. -2003. -37, № 1. -P. 164-176.

- Беляков В.Н., Пономарева Л.Н, Дзязько Ю.С., Митченко Т.Е. // Доп. НАН України. -2011. -№ 3. -С. 134—140.
- 12. Мархол М. Ионообменники в аналитической химии. М.: Мир, 1985. Т. 1.
- 13. *Ярославцев А.Б., Никоненко В.В. //* Российские нанотехнологии. -2009. -4, № 3-4. -С. 33—53.
- 14. Brandell D., Karo J., Thomas J.O. // J. Power Sourc. -2010. -195, № 18. -P. 5962—5965.
- Кравченко Т.А., Полянский Л.Н., Калиничев А.И., Конев Д.В. Нанокомпозиты металл—ионообменник. -М.: Наука, 2009.
- 16. Helfferich F. Ion Exchange. -New Vork, USA: Dover., 1995.
- Berezina N.P., Kononenko N.A., Dyomina O.A., Gnusin N.P. // Adv. Colloid Interface Sci. -2008. -139, № 1-2. -P. 3—28.
- Ласкорин Б.Н., Голдобина В.А., Копанев В.М. // Изв. вузов. Цветн. металлургия. -1973. -16, № 11. - С. 22—24.
- 19. Бортун А.И., Квашенко А.П. // Журн. прикл. химии. -1990. -64, № 7. -С. 1963—1966.

Поступила 15.08.2011

УДК 546.831 + 54-161

Ю.П.Зайцев, Б.А.Мовчан, Г.Г.Дидикин, Е.И.Оранская

НАНОРАЗМЕРНАЯ СТРУКТУРА КОНДЕНСАТОВ ZrO₂—Y₂O₃, ОСАЖДЕННЫХ ИЗ ПАРОВОЙ ФАЗЫ В ВАКУУМЕ

Исследован химический и фазовый состав, размер частиц и текстура (удельная поверхность, пористая структура и средний радиус пор) конденсатов $ZrO_2 - Y_2O_3$ после осаждения из паровой фазы в вакууме и последующей термической обработки. В зависимости от условий получения и температуры подложки (T_s =30—50 °C) конденсаты диоксида циркония толщиной 70—210 мкм могут быть получены в виде рентгеноаморфных, частично закристаллизованных и кристаллических (кубическая фаза) образцов. Показана динамика агрегации аморфных областей и наноразмерных кристаллитов диоксида циркония при нагреве.

ВВЕДЕНИЕ. Электронно-лучевое испарение и последующая конденсация паровой фазы в вакууме (английское обозначение EB-PVD) находит широкое применение в получении неорганических материалов с микро- и наноразмерной структурой [1].

Среди конденсируемых из паровой фазы

соединений особое место занимает диоксид циркония, стабилизированный оксидом иттрия, который уже применяется в качестве теплоизолирующего покрытия в энергомашиностроении, твердо-оксидных электролитов топливных элементов, превращающих тепловую энергию в электрическую, сенсоров кислорода. В последнее вре-

[©] Ю.П.Зайцев, Б.А.Мовчан, Г.Г.Дидикин, Е.И.Оранская, 2012

мя он находит применение в качестве порошков-адсорбентов, ионообменников с регулируемой химией поверхности, носителей каталитических систем в различных химических реакциях [2—4], то есть предполагает использование этих материалов при относительно невысоких температурах.

Однако широкое применение нанопорошков диоксида циркония, полученных методом EB-PVD, невозможно без глубоких знаний физико-химических закономерностей влияния различных факторов, таких как температура, состав газовой среды, на их устойчивость.

Цель настоящей работы — исследование наноструктуры толстых конденсатов диоксида циркония с добавками оксида иттрия и влияние температуры нагрева до 1000 °С в инертной атмосфере (аргон) на их структурные характеристики и текстуру.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ. Материалом для получения конденсатов был выбран диоксид циркония, стабилизированный 6—7 % мас. Y_2O_3 . Этот состав широко используется в авиационной промышленности в качестве теплозащитного покрытия на лопатках газотурбинных двигателей.

Конденсаты, в соответствии с данными работы [5], получали прямым электронно-лучевым испарением слитка (прессовки диаметром 49 мм) диоксида циркония, стабилизированного 6.5 % оксида иттрия и осаждением парового потока на стационарную медную водоохлаждаемую подложку размером 490х490 мм, расположенную над испарителями на расстоянии 450 мм. При проведении экспериментов температура подложки варьировалась в пределах 30—50 °С. Скорость конденсации составляла 1.5—3.0 мкм/мин, толщина полученного конденсата была в пределах 70—210 мкм.

Элементный состав и структуру конденсатов исследовали с помощью растрового электронного микроскопа CamScan с рентгеновской приставкой INCA-200 Energy, используя рентгено-флуоресцентный анализатор X'Unique II фирмы Philips.

Исследование тонкой структуры конденсатов выполняли методами просвечивающей электронной микроскопии (на микроскопе HITA-CHIH-800 при ускоряющем напряжении 200 кВ).

Дифрактограммы образцов регистрирова-

ли на дифрактометре ДРОН-4-07 в излучении CuK_{α} линии анода с никелевым фильтром в отраженном пучке при геометрии съемки по Брэггу–Брентано в угловом интервале 10—80° с шагом 0.05. Запись проводили в цифровом виде в формате 2 θ (град)—*I* (интенсивность, c⁻¹).

Структурные характеристики конденсатов определяли из изотерм адсорбции азота, полученных на высокоскоростном газовом сорбционном анализаторе NOVA 2200e Qvantachrome instruments при температуре жидкого азота. Образец массой 0.4 г предварительно вакуумировали в течение 12 ч при температуре 150 °C. Структурные характеристики (удельную поверхность, объем и средний радиус пор) рассчитывали по стандартным методикам, прилагаемым к прибору.

Термический анализ конденсатов проводили на дериватографе TGA-7 фирмы Perkin Elmer. Скорость нагрева образца составляла 10 °C/ мин в температурном интервале 20—650 °C в воздушной среде. Для исследований использовали навески образцов массой 100 мг.

ИК-спектры образцов получали на спектрофотометре Specord M80 в области 400—4000 см⁻¹. Съемку производили, поместив 2 мг растертого в агатовой ступке образца в таблетку KBr.

Конденсаты ZrO₂ первоначальной массой 10 г нагревали в кварцевом реакторе, помещенном в трубчатую печь. Через реактор постоянно продували инертный газ (аргон) со скоростью потока 50 мл/мин. Температуру в печи задавали контроллером температуры TZN4S-14S. Время выхода печи на заданный температурный режим составляло 10 мин и принималось в расчет. Образцы нагревали до температур 200, 400, 600, 800 и 1000 °С и изотермически выдерживали при заданной температуре (прогревали) в течение 1 ч, после чего вынимали из печи и охлаждали до комнатной температуры в потоке инертного газа. После отбора части пробы, прошедшей нагрев, для проведения исследований оставшуюся массу образца подвергали дальнейшей термической обработке при другой температуре.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ. Химический состав полученных конденсатов приведен в табл. 1. Как видно из таблицы, основными компонентами нанодисперсных конденсатов являются диоксид циркония (около 93 %), а также оксид иттрия, являющийся стабилизатором куТаблица 1

					,		
Образе ц	ZrO ₂	Y ₂ O ₃	HfO ₂	Al ₂ O ₃	SiO ₂	CuO	La
1	94.3	5.8	_		0.090	0.042	0.082
2	93.7	6.0	—	—	0.150	0.093	0.062
3	91.8	6.0	1.81	0.066	_	0.280	0.061

Химический состав конденсатов, % мас.

бической модификации диоксида циркония. Остальные элементы, присутствующие в образце, находятся в малых количествах.

На рис. 1 приведены данные ИК-спектроскопии поверхности конденсата диоксида циркония (образец 1) после его удаления из вакуумной камеры и контакта с воздухом. В спектре присутствуют полосы с максимумами 550 см⁻¹, относящиеся к структурным колебаниям ZrO₂;

1, c⁻¹ .1, c^{−l} $I_{i} \in \mathbb{R}^{d}$ 10000 7300 3000 2000а Е 7000 2000 6000 1300 4000 1000 1000 2000 300 D٠ Ú סב SD Sù ΙD 70 zb zÒ Ϊù Śά. 40 έD 20. 29, град 29, rpag 219, 10,000

Рис. 2. Дифрактограммы образцов ZrO₂—Y₂O₃: a — образец 1; б — 2; в — 3.

Рис. 1. ИК-спектр образца ZrO₂—5.8 % Y₂O₃ (1).

1600 см⁻¹, относящиеся к деформационным колебаниям H_2O , и полосы с максимумом 3400 см⁻¹, указывающие на присутствие пленки физически адсорбированной воды и гидроксильных групп [6, 7].

Дифрактограммы полученных конденсатов представлены на рис. 2. Спектр образца 1 (рис. 2, а) состоит из двух обширных диффузных максимумов в области углов дифракции 30 и 55°, что свидетельствует об его рентгеноаморфном состоянии. На дифрактгорамме образца 2 (рис. 2, δ) на фоне двух гало в области углов дифракции 30 и 55°, уже упомянутых выше, наблюдаются дифракционные пики в положениях, характерных для кубической модификации диоксида циркония (JCPDS № 81-1550) со средним размером кристаллитов ZrO₂, рассчитанным по уравнению Шеррера (с использованием автоматизированной методики [8]), 12-14 нм. Это указывает на частичную кристаллизацию ZrO₂ при получении данного конденсата. Вид дифрактограммы образца 3 (рис. 2, в)) свидетельствует о его практически полной кристаллизации (отсутствие следов диффузных максимумов) с образованием кубической фазы ZrO₂ со средним размером кристаллитов 18 нм.

По данным просвечивающей электронной микроскопии конденсат 1 состоит из высокодисперсных кристаллитов порядка 3—5 нм. Из-за малых размеров областей когерентного рассеяния электронограмма, полученная от них в режиме дифракции, имеет сильно размытые кольца (рис. 3), что подтверждает наноразмерную структуру конденсата.

На рис. 4 приведены изотермы адсорбции

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2012. Т. 78, № 4

Характеристика структуры конденсатов ZrO ₂ —Y ₂ O ₃											
Образец	$S_{\rm yd}$, м ² /г	$V_{\rm oбщ}$, см ³ /г	$V_{\rm микр}$, см ³ /г	V _{микр} /V _{общ}	$S_{\rm BHeIII}$, ${\rm M}^2/{\rm \Gamma}$	$S_{\rm BHytp}$, ${\rm m}^2/{\rm r}$	<i>R</i> _{ср} , нм				
1	257	0.233	0.048	0.20	147	110	1.8				
2	108	0.065	0.036	0.55	24	83	1.2				
3	60.14	0.0507	0.0157	0.31	23.56	36.58	1.7				

Таблица 2 Характеристика структуры конленсатов ZrO₂—Y₂O₃

Примечания. S_{yg} — удельная поверхность пор; $V_{oбщ}$ — общий объем пор; $V_{микр}$ — объем микропор; $V_{микр}/V_{oбщ}$ — отношение объема микропор к общему объему пор; $S_{внеш}$ — внешняя поверхность образца; $S_{внутр}$ — внутренняя поверхность образца; R_{cp} — средний радиус пор.

Рис. 4. Изотермы адсорбции азота в конденсатах ZrO₂ — Y₂O₃: *1* — образец 1; 2 — 2; 3 — 3.

азота, снятые при температуре –196 °С на образцах конденсатов диоксида циркония. Изотерма образца 1 представляет собой S-образную кривую с четко выраженным гистерезисом, что сви-

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2012. Т. 78, № 4

детельствует о преобладании в нем конических мезопор на фоне микропористости. Изотермы образцов 2 и 3 расположены значительно ниже, чем предыдущая изотерма, и представляют собой менее выраженные S-образные кривые. Это указывает на меньший объем пористого пространства.

Рассчитанные по изотермам адсорбции азота параметры пористой структуры конденсатов приведены в табл. 2. Видно, что образцы обладают высокой удельной поверхностью, относительно большим объемом сорбционного пространства и наличием микропор. Аморфный образец обладает максимальной, среди изученных конденсатов, удельной поверхностью, свидетельствующей о более хаотичном расположении в нем первичных блоков ZrO2. У образцов, содержащих кристаллическую фазу, удельная поверхность значительно меньше, чем у аморфного образца, причем, чем выше степень кристалличности, тем меньше удельная поверхность. Общий объем пор почти в четыре раза меньше, чем у образца с аморфной структурой, в то время как объем микропор меньше всего на 25 %. Величины отношения объема микропор к общему объему пористого пространства у конденсатов свидетельствует о более рыхлой структуре образца 1 (составляет 0.2) по сравнению с образцами 2 и 3 (соответственно 0.55 и 0.31). Высокое значение этой величины у конденсата 2 по сравнению с образцом 3 может указывать на незавершенность процесса кристаллизации и будет объяснена ниже.

На рис. 5 приведены зависимости распределения пор конденсатов по радиусам, рассчитанные по методу DFT. Как видно из рисунка, характер строения пористого пространства у об-

Рис. 5. Распределение объема пор по радиусам, рассчитанное по методу DFT: 1 – образец 1; 2 - 2; 3 - 3.

Рис. 6. Данные термогравиметрического исследования образцов: *1*, *3* и *5* — кривые ТГ; *2*, *4* и *6* — кривые ДТА образцов 1, 2 и 3 соответственно.

разцов сильно отличается. Образец 1 обладает выраженной бипористой структурой с максимумами радиусов пор 1.8 и 2.4 нм. У образца 2 на кривой распределения появляется пик с максимумом 1.2 нм, при этом пик с максимумом 2.4 нм почти в пять раз меньше, чем у образца 1. Образец 3 имеет такой же характер распределения пор по радиусам, как и образец 2, но пик с максимумом 1.2 нм примерно в два раза меньше.

Дальнейшие исследования были направлены на изучение влияния термообработки на изменение структуры и текстуры образцов.

Из данных термогравиметрического ана-

лиза конденсатов (рис. 6, кривые ТГ 1, 3, 5) следует, что при нагреве до 150 °С на воздухе образец 1 теряет 9.6, образец 2 — 6.5, образец 3 — 4.1 % от первоначальной массы. Дальнейшее повышение температуры нагрева до 650 °С сопровождается у образца 1 потерей массы 15 % от первоначальной массы, у образцов 2 и 3 — 12.2 и 7.7 % соответственно.

Уменьшение массы конденсатов диоксида циркония при нагреве может быть связано с удалением физически адсорбированной влаги (до температуры 120—150 °C). При более высоких температурах (до 600 °C) удаляются гидроксильные группы [6, 9]. Дальнейшее повышение температуры нагрева до 750 °C не изменяет массы образца. Повторные нагревы образцов до температуры 650 °C не приводят к изменению их массы, что свидетельствует о необратимости процессов, прошедших в образцах при первичном нагреве.

О фазовых превращениях при нагреве образцов свидетельствуют результаты термогравиметрических исследований (рис. 6, кривые 2, 4 и 6). Наличие экзотермического пика на кривой ДТА для образца 1 (кривая 2) в интервале температур 405—430 °C с максимумом при температуре 418 °С указывает на фазовый переход. В соответствии с литературными данными [10] этот пик свидетельствует о кристаллизации образцов вследствие перехода аморфной фазы ZrO₂ в кубическую. Для образцов 2 и 3 экзотермический пик наблюдается в области температур 370 -400 °C с максимумом при 388 °C. Уменьшение температуры фазового перехода на 30 °С для образцов 2 и 3, по сравнению с образцом 1, можно объяснить изначальным присутствием в них центров кристаллизации в виде уже существующих кристаллитов кубической фазы ZrO₂.

Для выяснения характера процессов, протекающих в конденсатах при их нагревании, в качестве объекта исследования был выбран аморфный образец 1. На рис. 7 приведены дифрактограммы образцов конденсата 1, подвергнутых прогреву при разных температурах. Как видно из рис. 7, *a*, образец после прогрева при 200 °C остается рентгеноаморфным. После прогрева при 400 °C (рис. 7, *б*) наблюдается кристаллизация образца — появлется кубическая фаза диоксида циркония (JCPDS № 81-1550) со средним размером кристаллитов ZrO₂ 10–12 нм.

Рис. 7. Дифрактограммы образца 1 после прогрева в течение 1 ч в среде аргона при температуре: $a - 200; \delta - 400; \epsilon - 800$ °C.

Дальнейшее повышение температуры прогрева образца до 800 °С приводит к совершенствованию кристаллической структуры кубического ZrO₂, что проявляется в увеличении интенсивности и уменьшении полуширины дифракционных пиков. Средний размер кристаллитов увеличивается до 15—17 нм.

Влияние температуры прогрева образца 1 на его текстуру показано на рис. 8 и 9. Из рис. 8 видно, что с увеличением температуры прогрева его удельная поверхность уменьшается практически линейно — с 257 м²/г у исходного образца до 13.2 м²/г у образца, прогретого при температуре 1000 °С. При этом уже прогрев при 400 °С приводит к исчезновению мик-ропористости образца и полному совпадению величины внешней поверхности образца с его удельной поверхностью, что в соответствии с данными ДТА и рентгенографии свидетельствует об агрегации аморфных наночастиц и образовании более крупных кристаллитов кубической фазы ZrO₂. При этом происходит увеличение среднего радиуса пор в образцах (рис. 9), что хорошо согласуется с литературными данными [11]. Следует отметить, что при прогреве образца

Рис. 9. Зависимость общего объема пор (1) и среднего радиуса пор (2) конденсата 1 от температуры прогрева.

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2012. Т. 78, № 4

Рис. 10. Распределение объема пор по радиусам конденсата 1. Исходный образец (I) и образцы после прогрева в течение 1 ч в среде аргона при температурах: 200 (2); 400 (3); 800 (4); 1000 °C (5).

общий объем пор в нем изменяется в меньшей степени, чем его удельная поверхность. У образца 1 при нагревании до 1000 °С объем пор уменьшился до 66.5 % от первоначального, а удельная поверхность — на 94 %.

На рис. 10 показано распределение пор конденсата 1 по радиусам в зависимости от температуры прогрева. При прогреве при 200 °С происходит агрегирование первичных аморфных наночастиц с их "сжатием", о чем свидетельствует появление пор с радиусами 0.8 и 1.2 нм. Это явление происходит до момента начала кристаллизации. После прогрева при температуре 400 °С, когда уже произошла кристаллизация, что видно по дифрактограмме (рис. 10, δ), характер распределения пор по радиусам близок к исходному образцу — наблюдаются максимумы на кривой распределения пор при 1.8 и 2.4 нм. При дальнейшем повышении температуры прогрева исчезают максимумы для пор радиусом 1.8 нм и уменьшается количество пор радиусом 2.4 нм. При нагреве образца до температуры 1000 °C все максимумы на кривых распределения пор исчезают, остается незначительная пористость от пор с радиусом 2.4 нм и более. Это свидетельствует об укрупнении кристаллитов при указанной температуре нагрева, что также подтверждают рентгенофазовые исследования образцов.

ВЫВОДЫ. В зависимости от условий получения и температуры подложки ($T_s = 30-50$ °C)

конденсаты диоксида циркония толщиной 70 —210 мкм, осажденные в вакууме, могут быть получены в виде рентгеноаморфных, частично закристаллизованных и кристаллических (кубическая фаза) образцов и имеют наноразмерные элементы структуры — поры и кристаллиты. Максимальной удельной поверхностью (257 м²/г) обладают конденсаты с рентгеноаморфной структурой. Образцы с кристаллической фазой имеют удельную поверхность в 2—4 раза меньше. Общий объем пор образцов с кристаллической структурой также в 4 раза меньше по сравнению с образцами с аморфной структурой (0.233 см³/г). Средний радиус пор полученных образцов составляет 1.2—2.0 нм.

Исходная рентгеноаморфная структура конденсата состоит из частиц размером 3—5 нм. Термическая обработка аморфного образца в интервале температур 200—1000 °С приводит к формированию более равновесной структуры с огрублением ее элементов, с последующей кристаллизацией и частичной или полной трансформацией наноразмерной структуры в микроразмерную. При этом средний размер кристаллитов ZrO₂ составляет 10—12 нм. После нагрева до температуры 800 °С средний размер кристаллитов кубического ZrO₂ равен 15—17 нм.

Авторы выражают благодарность сотрудникам Института электросварки им. Е.О.Патона НАН Украины С.Е.Литвину и С.М.Романенко, а также сотруднику Института сорбции и проблем эндоэкологии НАН Украины Н.Н.Цыбе за помощь, оказанную при проведении исследований.

РЕЗЮМЕ. Вивчено вплив температури нагрівання в інертному середовищі (аргон) на структурні характеристики й текстуру рентгеноаморфного нанодисперсного конденсату системи ZrO_2 —6.5 % Y_2O_3 , отриманого за технологією електронно-променевого випару й осадження у вакуумі (EB-PVD). Досліджено фазову сполуку, розмір часток і текстуру (питому поверхню і середній радіус пор) конденсатів ZrO_2 — Y_2O_3 . Вивчено вплив термічної обробки на зміну агрегатного стану конденсатів, питому поверхню і середній радіус пор. Показано динаміку агрегації аморфних нанорозмірних кристалітів з утворенням кубічної фази діоксиду цирконію при нагріванні.

SUMMARY. Chemistry and phase structure, particle dimensions and texture (specific surface and average pore radius) of $ZrO_2 - Y_2O_3$ condensate after deposition from vaporized phase in vacuum and futher processing was studied. Depending on conditions of obtaining and substrate temperature ($T_s = 30-50$ °C) condensate of zirconium dioxide 70-210 micron thick can be obtained as amorphous, partially crystallized and cubic crystal samples. Dynamics of aggregation of amorphous regions and nanosized crystallites of zirconium dioxide during heating was shown.

ЛИТЕРАТУРА

- Мовчан Б.А. Электронно-лучевая гибридная нанотехнология осаждения неорганических материалов в вакууме. -Актуальные проблемы современного материаловедения. -Киев: Академпериодика, 2008. -Т. 1. -С. 227—247.
- Константинова Т.Е., Даниленко И.А., Токий В.В. и др. // Наносистемы, наноматериалы, нанотехнологии. -Киев: Академпериодика, 2008. -Т. 2, № 2. -С. 609—632.
- 3. Миронюк Т.В., Орлик С.Н., Стружко В.Л., Кази-

Институт сорбции и проблем эндоэкологии НАН Украины, Киев *миров В.П.* // Наносистемы, наноматериалы, нанотехнологии. -Киев: Академпериодика, 2004. -Т. 2. № 1. -С. 277—290.

- Zhu J., van Ommen J.G., Lefferts L. // Catalysis Today. -2006. -112. -P. 82—85.
- 5. Мовчан Б.А. // Наносистемы, наноматериалы, нанотехнологии. -Киев: Академпериодика, 2004. -Т. 2, № 4. -С. 1103—1126.
- Zhu D.J., van Ommen J.G., Lefferts L. // Catalysis Today. -2006. -117. -P. 163—167.
- 7. Raz S., Sasaki K., Maier J.I. // Solid State Ionics. -2001. -143. -P. 181-204.
- Оранская Е.И., Горников Ю.И. Фесенко Т.В. // Завод. лаборатория. -1994. -60, № 1. -С. 28.
- 9. Бевз В.В., Биков І.П., Брик О.Б. та ін. // Наносистемы, наноматериалы, нанотехнологии. -Киев: Академпериодика, 2007. -Т. 5. -С. 505—515.
- Bukaemskiy A.A., Barrier D. // J. European Ceram. Soc. -2006. -26. -P. 1507—1515
- Chen D-J. Mayo M.J. // Nanostructured Materials. -1993. -2. -P. 469—4787.

Поступила 21.11.2011

УДК 54-165

М.А.Зиновик, Е.В.Зиновик

ТЕРМОДИНАМИЧЕСКИЙ АНАЛИЗ ПРОЦЕССА ОБРАЗОВАНИЯ ШПИНЕЛЬНЫХ ОКСИДОВ С УЧАСТИЕМ ПЕРЕХОДНЫХ МЕТАЛЛОВ

С целью физико-химического обоснования термодинамического метода прогнозирования свойств шпинелей проведен термодинамический анализ процесса образования шпинельных оксидов в системе Ni—Mn—Fe—O в интервале 298—1700 К. Показано, что этот процесс включает в себя реакцию ионных превращений и процесс смешения; приближение $\Delta G_T^0 = \Delta H_{298}^0 - T\Delta S_{298}^0$ является достаточным для расчетов при температуре синтеза шпинелей T_C энергии Гибоса реакций ионных превращений ΔG_T^0 (и.п.) и выводов о направлении их протекания. Установлено, что энергия смешения ΔG_T^0 (см.) = $=\Delta G_T^0$ (обр.) – ΔG_T^0 (и.п.) и с достаточной точностью может быть определена при T_C по ΔG_T^0 (обр.) и ΔG_T^0 (и.п.), рассчитанным по указанному приближению; при температуре T_Z , лежащей ниже T_C , ΔG_T^0 (см.) < 0 и совпадает по знаку с ΔG_T^0 (и.п.), поэтому направление процесса можно установить по направлению реакции ионных превращений.

ВВЕДЕНИЕ. Ранее [1, 2] нами создан термодинамический метод прогнозирования образования соединений и структурно малочувствительных свойств твердых растворов со структурой шпинели MgAl₂O₄. Суть метода заключается в установлении термодинамическим расчетом участков твердых растворов с аддитивными свойствами, в которых компонентами, определяющими свойства, являются соединения, расположенные в их вершинах. Причиной формирования таких участков является самопроизвольное движение системы к устойчивому состоянию за счет протекания энергетически выгодных ионных превращений с образованием реальных компонентов раствора — химических соединений. Поэтому критерием образования сое-

© М.А.Зиновик, Е.В.Зиновик, 2012

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2012. Т. 78, № 4