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A new projective exact penalty function method is proposed for the equivalent reduction of constrained
optimization problems to unconstrained ones. In the method, the original objective function is extended to
infeasible points by summing its value at the projection of an infeasible point on the feasible set with the
distance to the set. The equivalence means that local and global minimums of the problems coincide. Nonconvex
sets with multivalued projections are admitted, and the objective function may be lower semicontinuous. The
particular case of convex problems is included. So the method does not assume the existence of the objective
Jfunction outside the allowable area and does not require the selection of the penalty coefficient.

Keywords: nonconvex constrained optimization, lower semicontinuous functions, closed constraint set, exact penalty
Junction method, projection operation.

Introduction. The classical approach to the exact reduction of a constrained optimization prob-
lem to an unconstrained one consists in adding to the objective function some nonsmooth penalty
term for the violation of constraints [1—3]. The problem in this method consists in selecting the
correct penalty scale. In the present paper, we propose a new projective exact penalty function
method of equivalent reduction of constrained optimization problems to unconstrained ones. The
equivalence means that local and global minimums of the problems and the corresponding objec-
tive function values at the minimums coincide. In the proposed method, the original objective
function is extended to infeasible points by summing its value at the projection of an infeasible
point on the feasible set with the distance to the projection. Nonconvex feasible sets with mul-
tivalued projections are admitted, and the objective function may be lower semicontinuous. The
special case of convex problems is included. So the method does not assume the existence of the
objective function outside the allowable area and does not require the selection of the penalty co-
efficient. The method was introduced in [4] and was motivated by the application of the smooth-
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ing method to constrained global optimization. Later, a similar method for convex problems was
proposed and studied in [14]. Here we validate it for general convex and nonconvex constrained
optimization problems.

Let it be necessary to solve the problem of conditional global optimization:

f(x)— min |, (D)

xeCcR"
where f(x) is a lower semicontinuous (Isc) function defined on a closed set C < R"; R" is n-di-
mensional Euclidian space with norm ||||, for x,y e R" define d(x,y) =||x — y|| and the distance
dc (x) from x to C as d¢ (x)=min,c d(x,y). For example, the set C may be given by some
other lower semicontinuous function g (x), C ={xe R" : g (x) <0}.

Proposition 1 [5, Example 1.20] (A distance function and projections). For any nonempty,
closed set C c R”, the distance d (x) of a point x from C depends continuously on x, while the
projection T, (x), consisting of the points of C nearest to x is nonempty and compact. Whenever
yte o (x*)and x* — x, the sequence {y*} is bounded and all its cluster points lie in T (x), e,
the mapping x — m, (x) is compact valued and upper semicontinuous.

Lemma 1 (A simple geometric lemma). Let y, be a projection of point xe R" on a
closed set C cR". Then the point y, is the unique common projection on C of all points
1, =(1-Mx+Ay,, Le (0,1].

There are several ways to reduce constrained problem to an equivalent nonsmooth uncon-
strained one.

For example, if C ={x |g]- (x)<0,j=1,....J;h, (x)=0,k =1,.., K}, then in the exact penalty
function method the Lipschitz function f(x) is replaced by

F (x)=f () +M (S ;max{0, g; ()} + Xy (1))
or by
F(x)=f(x)+Minf . ||y —x”

with a sufficiently large penalty parameter M and then one considers the problem of uncondi-
tional optimization of F (x) [5, Proposition 9.68], |6, Theorem 18.2]. Note that here it is assumed
that functions f, g It h,, are defined over the whole space R".

Convex nonsmooth exact penalty functions were introduced in [1—3], and have been re-
viewed and studied, for example, in works [7—9] and many others. Recent advances in the exact
penalty function method and references can be found in [10—12]. In this approach, the problem
lies in the correct choice of the penalty parameter M.

The projective exact penalty function method. Consider the problem:

F(x)= minyenc(x)f(y)+MdC (x)—>min M >0. (2)

xeR™’

The problem is well defined, since d, (x)=d (x,y) for all ye n.(x)=J; f(y) is Isc on C,
e (x)=C is a compact, so there exists y, € mp () such that min . () /(y)=/(y,). Remark
that function @(x)=min,, (., f(y) is lower semicontinuous [13, Proposition 21] and function
d. (x)is continuous, so function F (x) is lower semicontinuous.
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Theorem 1 (A general projective penalty function method). Let function | be lower semicontin-
uous on a non-empty closed set C. Any M > 0 is admitted. Then problems (1) and (2) are equivalent,
i.e., each local (global) minimum of one problem is a local (global) minimum of the another, and the
optimal values of the problems in the corresponding minima coincide.

Proof. Let 1" € C be a global minimum of (1). Take an arbitrary xe R" and find y, € m, (x)
such that f(y,)=min . /(y). Then F (x) >f(y,)>f(x)=F(x"), thus xis a global mini-
mum of (2) with the same minimal value f(x").

Let 2 be a global minimum of (2). First let us show that ¥~ € C, suppose the opposite, x~ ¢ C.
By Proposition 1, there exists acompact projection set . (¥ )cCand y earg Inin J( y)
Consider points x, =(1-A)x" +Ay ,Ae[0,1]. By Lemma 1,in the Eucleadran space nC (xxg Yy,
i.e. projections of points x;, A€ (0,1], comcrde with y " the projection of x" on C. Define function

g\)=d(x,,y" ), Ae[0,1] It holds

S+ Mde ()= [y )+ Md (7).

It holds x ™ € C, otherwise F (x;, ) <F (x "), d (x;,x )=Ad(y ,x" ) for any Ae (0,1], a con-
tradiction. But for xe C it holds d, (x)=0 and f(x)=F (x)>F (x" )=f(x ), hence x_ is a
global minimum of (1).

Let x* be a local minimum of (1). Then there exist a neighborhood V (x7) of x” such that
f@)=f(x") for all xeV (x")NC. Let us show that x™ is a local minimum of F (x). Since
n.(x )=« and 7, (-) is upper semicontinuous, then for V (x") there is an open vicinity o (x") of
¥ such that . (x)cV(x") for all xev (x"). Consider xe v (x") and find y, e, (x) such that
do(x)=d(x,y,)and f(y,)= in{ )f(y). Then for x e v (x") it holds

yeng (x

F(x))= mrnyenc(x

Feo= inf [@)+Mde()=f(y)+Md(xy)> [ ()= [ (@)

If ™ is a local minimum of (2), then, as was proven before, it is impossible that ™ does not
belongto C,i.e.x e C. But since on C functions F (x)and f(x) coincide, then x™ is a local mini-
mum of (1).

Remark 1. Theorem 1 implies also that both problems (1) and (2) either have local (global)
minima or do not have them.

Remark 2. The projective penalty function method is extendable to those metric spaces where
statements of Proposition 1 and Lemma 1 hold.

3. The convex case. Let us consider problem (1) in the case of a convex constraint set C.

If f(x)is convex on a convex set C, then F (x) in (2) is not necessarily convex on R". Ex-
ample: if f(x)=x,C ={re R':x <0}, M <1, then F (x) =min {x, Mx}.

If C is a convex closed set, then function d, (x) is continuous [5, Example 1.20], and the map-
ping 7, (x) is single valued and continuous on R” [5, Example 2.25]. If function f is continuous
(lower semicontinuous) on a convex closed set C, then function (2) is continuous (lower semi-
continuous) on R”,

If the non-convex feasible set C =C, u...uC,, is the union of a finite number of convex sets
Cy, .., C,, then the original problem (1) splits into m problems of form (1) with convex feasible sets
C,i=1,..,m,which can be reduced to equivalent unconstrained optimization problems of form (2).
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Theorem 2. (Lipschitz property of the penalty function). If function f is Lipschitzian with
constant L on a convex closed set C, then the function F (x) defined by equality (2) is also Lipschit-
zian with constant (L +2M ) on the whole space R".

Proof. Let us take two points x,y € R". Denote ¥,y the projections of the points x,y
on C. Due to the non-expanding property of the projecting operation onto a convex set
C, it holds ||3?—y_|| < ||x—y|| [5, Corollary 12.20], and due to the quadrilateral inequality,
[ ~l-ly 7 <[ -7l e - therefoe

|F (0)=F ()| =]/ @)+ M |x -7~/ ) -My 7] | <
<@~/ @)+ M |-z -Jy -7 | <
<L|F-g|+M (T -7+ |~y < L +2M)|x~y]. o

If some admissible point x € C is known, the exact penalty function can be constructed as
follows. Let x ¢ C and y (x) be the nearest to x point from the set C lying on the segment con-
necting x, and x. Let us define the mapping

X, xeC,

T, (*) :{y (x), reC,

and the penalty functions r, ¢ (x)= “x —Ty C (x)” and F (x):=/(m, ¢ (x))+Mr, c(x). Con-
sider the unconstrained optimization problem:

F(x)=f(n, ¢ (x))+Mr, ¢(x)—>min M >0. 3)

xeR"’
Theorem 3 (Non-Euclidian projection). Let C be a non-empty closed convex set. Then problems
(1) and (3) are globally equivalent, i.e., the global minimum of one task is the global minimum of the
other. Moreover, any local minimum of problem (3) is a local minimum of problem (1). In the case
when C is a convex closed set and x, is an interior point of C, any local minimum of problem (1) is a

local minimum of problem (3).
Proof. If x is a global minimum of problem (1), x” € C, then for any x € R” it holds

Fx)=/f(m, ¢ )+Mr, c(x)=f(m, c()=f(x)=F (). (4)
Let x~ be a point of local (global) minimum of the function F, i.e., for some neighborhood

V(x")cR" the point x™ is the global minimum of the function F on the set V (x™). Let us show
that x~ e C. Assume the contrary, x ¢C,then

F)=f (o CN+M " =1 o 6>/ (0 7))
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Denote x; =(1-Ma” +7me7C (7). Let us consider a convex function y(A)=F (),
A€ [0,1]. Obviously,

YA =F (1) SUA-MF (x ) +AF (m, ¢ (x )<
=F(x")=AF (x)=F(m, o (x )=
=F (") =MF @)=/ (my o (@ N<F (), re(0,1].

For all sufficiently small A, we have x, € V (x” ) and F (x, )<F (x"), i. e, we obtain a contradic-
tion that «™ is not a local minimum of the function F In this way, x~ € C Forall, xeV (x")nC
it holds f(x)=/f(m, o (x))= F(x)>F(x ) f(x™), ie., the point x is also a local (global)
mlnlmum point for j‘0 onCand F(x )=f(x").

If x" is a local minimum of problem (1), i.e., in some neighborhood V (x") this point x” is a
global minimum on the set V (x )N C. Since x, is an interior point of a convex closed set C, the
mapping T, ¢ (x)is contlnuous Therefore, there is a smaller neighborhood W (x YV (x")such
that forany xe W (x) 1t holds T, c(@)eV (x"). Therefore, for any x € W (x"), inequality (4) is
true, which means that x” is a local minimum of problem (3). The proof is complete.d

Let f:C — R!and the convex set C = R" in (1) has a representation

C={x|g;(x)<0,j=1., Jih (x)=0,k =1,..,K},

where functions g; are continuous and convex, and A, are linear. Denote n; (x) the projection
of point x on the set C . For a simple set C given by linear constraints, the problem of searching
projection . (x) is either solved analytically or reduced to a quadratic programming problem.
We introduce a new penalty function

D (x) =/ (7 () +M (T]_ ymax{0, g; ()} + 5 _|2, (0)), M >0, ()
and consider the problem of unconstrained optimization:

®(x)— min . (6)

xeR"

Note that in (5) function / may not be defined outside the feasible domain C.

Theorem 4. (A projective penalty function for a convex constraint set given by equalities and
inequalities). Let function [ be lower semicontinuous on a non-empty closed convex set C. Then prob-
lems (1) and (5)—(6) are equivalent, i.e., each local (global) minimum of one problem is a local (global)
minimum of the another, and the optimal values of the problems in the corresponding minima coincide.

Proof. Let x” € C be a local minimum of problem (1), i.e., for some neighborhood V, (x") of
the point x ', it is also a global minimum point of f(x) on the set V, (x" )N C. Obviously, for any
xeV,(x"), due to the non-stretching property of the projection operator m. (-) onto a convex set
[5, Corollary 12.20], it is satisfied . (x)e V, (x") and, thus,

D)=/ (e (N))+M(E max{0,g; (}+3 | >f (e () =f(x)=D(x),

. *® .. .
i.e. x isalocal minimum of the function ®.
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Let x° be a local minimum point of function ®, i.e., for some neighborhood V(x™) c R"
point 2~ is the global minimum of the function ® on the set V (x" ). Let’s show that 1™ e C.
Assume the contrary, x ¢C,then

O )=/ (e (7 NFM (B max{0,g;(x WAL | @ N> f(re (2.

Denote, x, =(1-A)x" +An. (x ). By Lemma 1, it holds . (x, ) =x". Let us consider a con-
vex function

W)= () = (me () +M (S max {0, g, (2, )} + S5 |y (v )] =
=/ (re (¢ )+ M (S max{0, g (e, )+ S5y (e, ), 2 [01]

Obviously,

V() =B () <(A-M)D () +AD (1 (v7)) <
(") - M@ (x")-D(n, (x7)) =
=0 ) -M@@ )~ f(me (N <@ET),  re(01].

For all sufficiently small A, we have x, eV () and D(x,)< @(x"), ie., we obtain a
contradiction with that x" is a local minimum of the function F. In this way, x eC. For all
xeV (x )NC, it holds f(x)=f(rn (x))=®(x)>®(x )=f(x ), ie.,the point ¥ isalso a lo-
cal minimum point for f on C and ®(x" )=f(x" ). The proof of the coincidence of global minima
is carried out in a similar way. O
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HOBA IPOEKTVMBHA TOUHA IITPA®HA ©®YHKILIA
JUIs1 BATAJIBHOT YMOBHOT OITUMIBAILIT

Kuiacuuuuil 1mixi/1 10 TOYHOTO 3BEIeHHST 3a/1aui YMOBHOI onTuMizarii 0 3agadi 6e3 o6MesKeHb MoJIITac B 10/1a-
BaHHI 10 I[iJTbOBOT QYHKIIT JESIKOTO HErJIaaKoro mrpadHoro ujieHa 3a nopyienns ooOmexensb [ Eremin (1966,
1967), Zangwill (1967)]. IIpobiema 11bOTO METOY TIOJIITae Y BUGOPI MPaBUIBLHOTO ITPahHOr0 MHOKHUKA, Y il
Po6OTI MU ITPOTIOHYEMO HOBY TIPOEKTUBHY TOUHY IITpadHy GYHKIIIO A/ €KBIBAJIEHTHOTO 3Be/IeHHs 3a/iad OTITH-
Mizarlii 3 0OMesKeHHsIMY 710 3a1a4 6e3 oOMexkeHb. EXBiBaseHTHICTh 03HAUAE, 110 JIOKAJIbHI i T1006aIbHi MiHIMYMM
3aj1a4 i 3HAUEHHS TTH0BOI (DYHKITIT Ha BiITOBITHUX MiHIMyMax 30iTaloThes1. Y 3aIPOTIOHOBAHOMY METO/I BUXiTHA
1/Ib0Ba (DYHKILiS TIONTUPIOETHCS HA HEJOTYCTUMI TOYKU MIJISTXOM IT/ICYMOBYBAHHSI 11 3HAUE€HHS B ITPOEKITil HE0-
MyCTUMOI TOYKM Ha JOTMYCTUMY MHOXWHY Ta BiZICTaHi 0 MHOKWHU. J{OMycKatOThCst GaraTo3HauHi TPOEKTIii, a
1isboBa GyHKIN Moke OyTH HalliBHENIEPEPBHOKO 3HU3Y. PO3IIIANAEThCS OKPEMUH BUIIAJ0K ONMYKAUX 3a1a4. Ta-
KM YIHOM, METOJT He Tiepeibauae icCHyBaHH TiIb0BOT (GYHKIII 32 MeKaMU TOMYCTUMOI 06TaCTi Ta He BUMarae
nig6opy mrpaduoro koediiienta. Meroa 6ys 3anpornoHosanuii y po6ori [Hopxkin (2020)] (i misHime BuBueHuii
y [Galavan et al. (2021)]) 6yB MOTHBOBAaHUI 3aCTOCYBAHHIM METOLY 3IJIAJKYBAHHS IJIST YMOBHOI IJ100aJbHOT
onuMizartii. B ganiit craTti MU 06rpyHTOBYEMO HOTO /IS 3araJbHUX OTYKJIMX 1 HEOMYKJIUX 3aj1a4 ONTUMIzaIlii 3
00OMEKEHHSAMM.,

Kntouoei crosa: neonyxna ymosua onmumisayis, nanisnenepepeni 3uusy Qynkiii, 3amxnena 0onycmuma MHONCU-
Ha, Memo0 MOUHUX WMPADHUX PYHKYTLL, Onepayis npoexyii.
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