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Introduction
Modern radar systems operate in a 

wide variety of dynamically changing sce-
narios: the detection, tracking and classifi-
cation of very small and slow targets. Such 
objects as drones, missiles, boats, along with 
a complex spectrum are important system 
requirements. Cognitive radars, combining 
many well-known and new methods, offer 
a promising solution to these problems. We 
consider the functional architecture of cog-
nitive radar from the perspective of the user 
and the manufacturer.

Cognitive radar is an updated tech-
nology, the origins of which go back to sci-
ence - «cybernetics», human-machine inter-
action, signal processing. The evolution of 
cognitive radar is aimed at achieving cogni-
tion, as in its natural counterparts, such as 
the radar capabilities of bats and dolphins, 
or human intellectual decision-making. This 
article provides an overview and trends in 
the development of cognitive radar systems.

Organization of cognitive 
computing

The term «cognitive radar» was first 
introduced by Dr. Simon Haikin [1], follow-
ing the ideas of cognitive neurology, which 
is based on works of cybernetics, artificial 
neural networks, self-organized learning 
and solutions of Bayesian theory. Engineer-
ing analogues for the implementation of 

the main cognitive features identified by 
Faster: memory, attention and intelligence 
(PAC Perception-Action-Cycle: Cycle-per-
ception-action) have been proposed [2]. In 
studies of cybernetics, Rasmussen [3], [4] 
described human behavior in terms of three 
levels: based on skills, rules and knowledge. 
He described behavior-based behavior as a 
subconscious that reflects basic signal pro-
cessing and generation blocks in a radar 
system [5]. Rule-based behavior is used 
in familiar situations. The basis of parallel 
work is modeling and analysis of previous 
experience.

Build cognitive radar developers 
have inspired research in the field of bio-
mimetics. Artificial intelligence is modeled 
on the basis of observations of living intel-
ligence. Thus, masters of echolocation - 
bats and dolphins can detect and track very 
small prey, using complex waveforms that 
are changed dynamically [6]. Moreover, 
knowledge of the intelligence of living be-
ings allows us to better understand living 
nature. It helps to create artificial intelli-
gence, which is superior to «living» and is 
used in technical systems.

Information in the radar system is 
perceived by «smart» sensors, i.e. sensors 
with primary processing and control of the 
measurement process [7], as well as through 
network sensors that demonstrate «distrib-

УДК517.9:621.325.5:621.382.049.77                            http://doi.org/10.15407/pp2022.01.75                   

M. Коsovets, L. Tovstenko 

THE PROBLEM OF DEVELOPING 
THE ARCHITECTURE 

OF MODERN COGNITIVE RADAR SYSTEM
The problem of developing the architecture of modern cognitive radar systems using artifi cial intelligence 
technologies is considered. The main diff erence from traditional systems is the use of a trained neural 
network. The heterogeneous multiprocessor system is rebuilt in the process of solving the problem, providing 
reliability and solving various types of problems of one class and deep learning of the neural network in 
real time. This architecture promotes the introduction of cognitive technologies that take into account the 
requirements for the purpose, the infl uence of external and internal factors.
Keywords: Perception-Action Cycle, Artifi cial Intelligence, Signal to Noise Ratio, Active Electronically 
Scanned Array, Environmental Dynamic Database, Signal to Noise Ratio, Radar Resource Management, 
multiprocessor.

© M. Коsovets, L. Tovstenko, 2022
ISSN 1727-4907. Проблеми програмування. 2022. № 1



76

Моделі та методи машинного навчання

uted intelligence» with self-monitoring ca-
pabilities, automatic solution of changes in 
their environment [8] , [9]. Cognitive radar 
has the ability to adapt to transmission in 
the probing process, imitating human per-
ception as an interactive process where the 
cognitive entity responds to or changes its 
behavior as a result of external stimuli.

In traditional radar systems, the flow 
of information is one-way: the radar inter-
rogates the environment by transmitting a 
fixed, predetermined pulse signal, regard-
less of any changes in the environment. 
Adaptive processing is performed on recep-
tion, but the results of such processing do 
not control any radar function for transmis-
sion. An overview of the cognitive direc-
tions of radar construction research over 
the last decade gives an idea of   the methods 
being developed for a wide range of radar 
applications. Technical problems in the de-
velopment of cognitive radars are the moti-
vation for further work in this area. Central 
to these works is the idea of   closed-loop 
data collection, where the dynamic state 
is interpreted as an adaptive measurement 
determined by Kalman filtering. This ap-
proach allows the antenna array to be adap-
tively directed in the direction and width of 
the beam, as well as to place zeros so as to 
reject any unwanted signals or noise outside 
the main particle.

A database of problems has been 
developed that allows comparing methods 
that use beam control of phased array an-
tennas to optimize tracking, minimizing 
false alarms [10], [11]. Sometimes several 
hypotheses and filtering interactions of sev-
eral tracking models are tested [12-13] to 
optimize performance: such as signal-to-
noise ratio, interference effects, track, and 
detection threshold.

Common features of increasing 
adaptability: prediction of adaptive sched-
uling review time, adaptive choice of de-
tection thresholds (eg, constant false alarm 
rate detectors) [14], and adaptive interfer-
ence suppression using adaptive-spatio-
temporal processing mode [15] to improve 
target detection. Adaptive tracking meth-
ods vary the measurement time, as well as 
the signals used to update the trajectory, 

based on the measurements obtained by the 
tracker. This feedback is used to control 
the radar so that frequent measurements 
are made during an unpredictable or rapid 
dynamic maneuver, while infrequent mea-
surements are made during predicted peri-
ods or steady dynamics.

The simultaneous change of intra-
pulse signal modulation is studied on the 
basis of the provided measurements on the 
tracker. This leads to the choice of optimal 
signal methods [16-17] and their adaptive 
extensions [18-19]. Optimization of radar 
signal in dynamics, to maximize perfor-
mance according to specific scenarios and 
tasks, includes the use of some components 
of radar, such as antenna, radiation pattern 
(both transmission and reception), time, 
frequency, coding and polarization. The 
signals are selected from several classes 
of signals, such as linear or nonlinear fre-
quency modulation, phase or encoding fre-
quency, and ultra broadband signals. This 
also includes adapting parameters within 
the signal class, such as changing the pulse 
repetition interval, bandwidth, or center 
frequency [20]. The optimal signal, which 
maximizes the signal / noise, arises as a so-
lution of the generalized eigenvalue on the 
waveform [21], developing in the frame-
work of «joint optimization of transmission 
and reception by the choice of waveform. 
The approach was used in Bayesian theory 
of decision making and development, de-
signed to optimize the system by selecting 
the signal at the transmitter and minimiz-
ing interference at the receiver. There are 
also difficulties in choosing the criteria of 
optimality and accurate distribution of in-
terference.

According to the IEEE, the defini-
tion of «cognitive radar» is a radar that has 
the ability to learn: «Radar system, which 
automatically generates a constant percep-
tion of the target scene and takes appropri-
ate action. It can use short-term and long-
term memory to increase the performance 
of a given function. Compared to adaptive 
radar, cognitive radar is trained to adapt 
operating parameters as well as processing 
parameters, and can do so over longer pe-
riods of time.”
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Fig.1. FMCW Radar Imaging Cognitive 
Ability Modeling Complex 

with Deep Learning Package.

Cognitive radar diff ers from traditional 
active radar due to the following features: de-
velopment of rules of conduct for self-orga-
nization through a process called experiential 
learning, which is the result of long-term in-
teraction with the environment. According to 
Charlish, cognitive radar is a radar system that 
acquires knowledge and understanding of the 
work environment through online assessment 
and training from databases that contain con-
textual information. Cognitive radar uses this 
knowledge to improve information: search, 
data processing and management of radar re-
sources. With the development of cognitive 
radars began a new era in the creation of mod-
ern radar systems. The number of publications 
on the development of cognitive radar archi-
tecture with artifi cial intelligence is increas-
ing avalanche. Artifi cial intelligence is used in 
the construction of neural networks, methods 
of deep learning, signal processing, pattern 
recognition, classifi cation. It should be noted 
that elements of cognition in the construction 
of radars have always been presented (power, 
pulse width, repetition rate, modulation, etc.). 
There is also the ideology of the neural net-
work, and accordingly their in-depth training 
(multiprocessor with restructuring). The ex-
plosive growth of the latest developments in 
radar systems is related to public demand (de-
fense, security, medicine, subsurface sound-
ing, mine search, unmanned aerial vehicles) 
and the ability to meet them: the use of artifi -
cial intelligence technology and the develop-
ment of a new component base.

Cognitive radar methods use mimic 
elements of human cognition, such as the 
cycle of perception-action, deep learning, in-
telligence and the use of existing knowledge 
[22]. Cognitive radar vision methods use ra-
dar spectrum [23], [24], radiation optimiza-
tion [25], tracking [26-28], beam control [29], 
interference reduction [30], network [31], re-
source management [32] .

To develop a cognitive radar system 
that adapts in real time, the multiprocessor 
must be an integral part of the simulation tool. 
It helps to analyze the behavior of the radar at 
the simulation stage. The post-process stage 
consists of two steps. In the fi rst step, a radar 
sensor and a proven circuit are developed us-
ing non-adaptive settings. In the second step, 
the multiprocessor is tested and confi gured, 
replacing the Front-end sensor. Pre-recorded 
raw datasets that include all radar parameters 
are optimized. Such datasets use the same 
measurement for all parameters of environ-
ment, target, and trajectory. At this stage of 
development, the feedback cycle is closed by 
obtaining an interval of coherent processing 
of raw data relating to the selected optimal pa-
rameters in real time.

The modeling complex consists of 
an adaptive radar sensor that perceives the 
environment with optimized radar param-
eters and a multiprocessor that tracks the 
target and selects the optimal radar param-
eters for each new measurement. The sensor 
consists of an adaptive signal generator, a 
radar interface, an ADC and a real-time sig-
nal converter and a display. The controller 
consists of a Kalman filter tracker and an 
optimizer that selects both optimal signals 
and real-time processing parameters based 
on the latest measurements. Multiprocessor 
processing is simulated in Matlab and runs 
on an Ubuntu Linux PC.

The radar data processing system 
consists of three modules: FPGA, worksta-
tion and graphics processing unit. FPGA 
provides primary signal processing and 
hardware management. Its most important 
role in signal processing is to perform digi-
tal down-conversion of the received signal 
so that the true baseband can be transmitted 
to the workstation for further processing. 
Subsequent implementation of the appro-
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priate fi lter on the FPGA can be useful for 
freeing resources on the graphics processor 
for its other tasks: fi ltering, discrete Fourier 
transform, and processing the constant rate 
of false alarms (CFAR). The detection task 
is implemented on a graphics processor. The 
CPU is an Intel multi-core processor.

LabView National Instruments sup-
port control functions. In addition, LabView 
can be used to write FPGA software. Simula-
tion on FPGA Xilinx, RF-path on on-a-chip 
is used. The shell is written in Python for the 
C ++ library. Algorithms are tested on fl ex-
ible radar equipment. We use digital trans-
ceiver systems - such as Universal Software 
Radio Peripheral (USRP).

In recent years, research on cognitive 
radar design has been conducted covering a 
wide range of programs, using many diff er-
ent methods based on previous advances in 
Bayesian theory, information theory, theoret-
ical solutions, approaches, including fuzzy 
logic, rule-based systems, metaheuristic al-
gorithms and Markov solutions. processes, 
dynamic programming, optimization and 
game theory.

Future systems are learning the abil-
ity to predict the behavior of radars in the 
operational environment and to adapt its 
transmission in the available spectrum. Ra-
dar cognition in this case is based on two 
main concepts: spectrum probing and spec-
trum distribution. The sounding spectrum is 
aimed at recognizing the frequency used by 
other systems and occupying the same spec-
trum in real time.

System  performance is measured in 
terms of standard metrics such as target de-
tection probability and false alarms, root 
mean square error in tracking systems, and 
classifi cation accuracy in automated target 
recognition systems - cognitive systems re-
quire additional metrics that quantify perfor-
mance gains and achievement use of system 
resources. Two key issues for cognitive radar 
research are the development of assessment 
and assessment tools, as well as experimental 
testing of the methodology.

A related but unique problem with 
the cognitive design of radar is experimental 
testing, as the shape of the transmitted signal 
and the settings are adapted during opera-

tion. With more sophisticated modeling, new 
development and qualifi cation processes can 
be developed, including software testing that 
will help test cognitive radars.

Cognitive radars are evaluated 
through simulations, or using pre-recorded 
data. The infrastructure of testing, calibra-
tion and debugging tools is being developed 
in parallel. For example, SPC Quantor has 
developed real-time tests for cognitive ra-
dars. Reliability of modeling and compu-
tational errors is an important issue that 
should be investigated [33].

Radars differ in their qualitative and 
quantitative parameters. A typical approach 
is to determine the number of worst cases 
and make them work in the worst cases. This 
is true for non-cognitive radar systems that 
do not change the configuration depending 
on the current environment, because a sin-
gle radar configuration is used. Cognitive 
radars change their configuration, rebuild-
ing the neural network and learning or self-
learning to solve various problems within 
certain limits. Moreover, with the develop-
ment of neural network design tools, cogni-
tive radars will have better characteristics 
and lower design costs and the ability to 
self-improvement.

The power of the transmitter should 
not exceed the limits imposed by regulatory 
requirements, because there is unwanted ra-
diation due to the nonlinearity of the transmit-
ter and a sharp increase and decrease in radar 
pulses [34]. Especially in cognitive systems, 
dynamic reconfi guration of the transmission 
spectrum is not always easy to implement and 
can lead to out-of-band transmissions, which 
cause a slight spectral expansion outside the 
designated radar band.

    Cognitive radar architecture
The cognitive radar architecture is 

built through the extension of the perception-
action cycle by introducing an evaluation 
process that forms a perception-evaluation-
action cycle (PEAC). The purpose of this ad-
ditional step is to emphasize the assessment 
of the currently perceived situation supported 
by artifi cial intelligence. It is done regarding 
the purpose of the sensor and depends on the 
purpose certain perception results will lead 
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to very diff erent actions, such as observation, 
where the overall picture is important. When 
observed, all identifi ed targets will receive an 
equal share of available resources.

Fig.2. Functional diagram 
of the cognitive radar.

The radar sensor, which operates in 
PEAC, consists of a programmable sensor that 
provides data processing and data evaluation, 
and management of resources generated de-
pending on recently received environmental 
information. In future systems, much of the 
intelligence will be located in a multiplatform 
cloud. Cognitive radar responds intelligently 
to real-time scenario variations.

A software-defi ned sensor is a system 
that performs radar measurements, ie emits, 
receives and processes electromagnetic sig-
nals in accordance with the requirements of 
the sensor in order to obtain new informa-
tion in its environment. A software-defi ned 
sensor requires hardware capabilities (eg, in-
stantaneous bandwidth, operating bandwidth, 
waveform, polarization, etc.) to meet resource 
management requirements.

Radio compatibility is achieved by 
methods relating to the emission of radar sig-
nal or signal processing. Methods of reduc-
ing interference from other radio frequency 
systems are achieved by dividing in time, fre-
quency, space or signal modulation. Consider 
the main measures that allow coexistence: 
waveform, illumination in radar images, 
adaptive zeroing of interference, frequency 
adaptation, dynamic adaptation of the search 
circuit and the level of radiation power, de-
tection of interfering samples in the receiving 
signal, suppression of interfered samples in 
the radar signal [35].

A Doppler shift around a target ap-
pears if the target contains moving, vibrat-

ing, or rotating parts and can be observed 
externally. For example, the wings of birds, 
the wheels of cars, the arms and legs of peo-
ple walking, as well as the rotors of helicop-
ters and tank tracks have a unique Doppler 
spectrum, which is observed using a radar 
system with a fairly high Doppler resolu-
tion. The spectrum of Doppler shift strongly 
depends on such parameters as the angle of 
illumination, the absolute velocity of the 
target and the composition of the underly-
ing surface.

To adjust the detection thresholds ac-
cording to the actual background, it is nec-
essary to determine and assess the level of 
interference. This assessment can be per-
formed on a one-time basis or over a long 
period of time by studying the characteristics 
of the obstacles. The mapping features can 
be characterized by its spatial composition, 
amplitude statistics and Doppler spectrum. 
This allows you to reliably adjust the detec-
tion thresholds according to the character-
istics of the interference, while maintaining 
a low level of false positives and providing 
the ability to detect targets against the back-
ground of interference.

Multi-beam radiation on the sea surface 
is characteristic of marine radars. The imposi-
tion of a direct and refl ected path on the sea 
surface leads to the appearance of zones with 
attenuation and loss of target detection, as 
well as to errors in altitude measurement. By 
detecting fading situations, tracking can be 
more resistant to detection errors by changing 
the transmission frequency and thus avoiding 
the fading situation.

Active grating and electronic scanning 
antennas, which are the latest in modern radar 
systems, provide great fl exibility in the direc-
tion of the beam and waveforms.

The various actions that require re-
sources from the system are called tasks. Each 
task is an implementation of the radar func-
tion that the sensor is capable of. Examples 
of such tasks: search tasks, tracking tasks, 
classifi cation tasks, visualization tasks, envi-
ronmental detection tasks, externally assigned 
search and tracking tasks ordered by a higher 
system.

QoS resource management techniques 
use quality measures to optimize overall sys-
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tem performance for this metric and avail-
able resources. Therefore, this approach 
requires a good understanding of the qual-
ity measures used. Especially when a large 
number of diff erent tasks are used, which 
will certainly be the case in future cognitive 
radars, it is necessary to fi nd a strong bal-
ance between individual tasks and mission 
needs. The advantage of the QoS approach is 
that even in dense scenarios, the available re-
source is distributed among the tasks still to 
maximize system performance, and no pre-
determined priority, which may or may not 
be applied in the current situation, should be 
used to resolve confl icts. However, adaptive 
rules as well as the QoS approach require 
more environmental information to adapt the 
waveform to the evolving situation, taking 
into account the various infl uences imple-
mented in the model used to assess the ex-
pected performance of the system. In addi-
tion, for QoS it is necessary to keep a list of 
all active tasks of the radar sensor.

The hardware capabilities needed to 
take advantage of modern resource manage-
ment capabilities are high if you use the full 
potential of algorithms. In this case, you need 
a fully fl exible interface that allows you to 
confi gure all available parameters (such as 
waveform, parameters, and viewing direc-
tions) within the physical boundary of the 
external interface. However, to speed up the 
process of optimizing resource management, 
the available degrees of freedom can be lim-
ited in advance, for example, by limiting the 
repetition rates of the selected pulses. If the 
limit is chosen adequately, the decrease in 
productivity is insignifi cant.

Deep learning of the cognitive 
radar neural network

Probably, today only the lazy are not 
engaged in machine learning. But when we 
look at cognitive radar software, we are talk-
ing about deep learning. This is when the 
feedback covers the entire radar.

The backpropagation algorithm is an 
extension of the perception of multilayer 
neural networks. Thus, the backpropagation 
algorithm uses three or more levels of pro-
cessing units (neurons). In a typical 3-tier 
network architecture for a backpropagation 

algorithm, the leftmost layer of ones is the 
input layer that receives the input data. Lat-
er, this is a hidden layer, where processing 
blocks are linked to the layers before and af-
ter it. The rightmost layer is the output layer. 
The levels are fully interconnected, which 
means that each processing unit is connected 
to each unit at the previous level and at the 
next level. However, the units are not linked 
to other units in the same layer. Backpropa-
gation networks are not fully interconnected, 
which means that any number of hidden lay-
ers can be used. [31].

Traditional event detection in cogni-
tive imaging radar is based on batch or offl  ine 
algorithms: it is assumed that there is one 
event in each radar information stream. The 
stream is usually processed using a prepro-
cessing algorithm that requires a huge amount 
of computation. Neural networks can eas-
ily cope with such tasks with the appropriate 
deep learning. This is an analogue of infor-
mation processing tasks “on the fl y” as they 
become available.

Neural networks are also an eff ective 
method for diagnosing faults based on non-
linear mapping of input and output data, par-
allel processing and a high degree of self-or-
ganization and self-learning ability [36]. In 
the structure of closed-loop neural networks 
the only suitable connections are between 
the outputs of each level and the input of the 
next level [37]. A backpropagation neural 
network is one known method for creating a 
trained machine or system that can provide a 
fi nal classifi cation decision through a series 
of learning processes. It can be developed 
using the tools provided in MATLAB, but 
sometimes this leads to diff erent detection 
and recognition accuracy of objects for each 
experiment [30–31].

We achieve troubleshooting by rebuild-
ing the computational resource of the neural 
network. Moreover, a quick response occurs 
by changing the course of the computing pro-
cess and in case of failures, readjustment of 
the network with a change in its resource. It 
is possible to draw an analogy with a living 
intellect, where homeostasis is provided at 
the hormonal level and a quick response to 
changes in the external environment by ner-
vous signaling.
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We always willingly or unwillingly 
use bionic models. Now it has resulted in a 
separate science of imitation of nature - bio-
mimetics. Creating a model in biomimetics 
is half the battle. To solve a specific prac-
tical problem, it is necessary not only to 
check the presence of the model properties 
of interest to practice, but also to develop 
methods for calculating the predetermined 
technical characteristics of the device, to 
develop synthesis methods that ensure the 
achievement of the indicators required in 
the problem.

And therefore, many bionic models, 
before they receive technical implementa-
tion, begin their life on a computer. A math-
ematical description of the model is con-
structed. Based on it, a computer program 
is compiled - a bionic model. On such a 
computer model, various parameters can be 
processed in a short time and design flaws 
can be eliminated.

Traditionally, deep learning algorithms 
update the weight of the network, while the 
architecture of the network is selected manu-
ally using the trial-and-error method. This 
study proposes two new approaches that auto-
matically update the structure of the network, 
as well as studying its weight. The novelty 
of this approach is parameterization, where 
depth or additional complexity is constantly 
encapsulated in the space of parameters that 
give additional complexity. 

Deep learning includes several levels 
of nonlinear information processing. This al-
lows us to study architectures that implement 
functions through repetitive compositions of 
simpler functions, thereby exploring levels of 
abstraction with the best generalization and 
representation.

Although in-depth training is useful, 
keeping multiple layers can be problematic. 
First, when more layers, weight, space, and 
computational complexity are higher; second, 
when there are more free parameters, there is 
a higher risk of retraining; third, if the net-
work is deep, there is the problem of disap-
pearing gradients when the error spreads over 
many layers.

There have been many approaches to 
optimizing the network architecture - from 
early incremental methods of bringing hid-

den modules one after the other (or start-
ing from a large network and reducing it) to 
more sophisticated modern approaches such 
as evolutionary algorithms or reinforced 
learning and stimulus style techniques. The 
purpose of the study is to study network ar-
chitecture based on data. The main differ-
ence is that instead of searching in discrete 
space for all architectures that have param-
eterized models in such a way that the very 
notion of complexity or depth is itself con-
tinuous, making the model differentiated 
from beginning to end.

Two methods are proposed for con-
structing and studying the structure of a 
deep neural network, where the complexity 
of the network at the level of a hidden block 
or layer is encoded by continuous parame-
ters. These parameters are adjusted together 
with the network weights during the gradi-
ent descent, which implies a slight change 
in the structure of the network together with 
the network weights. The first method in 
tunnel networks associated with each hid-
den block is a continuous parameter. If this 
parameter is not active, the block simply 
copies its input to its output to bypass non-
linearity, effectively increasing the depth of 
the network. In the second method, the per-
ceptron has parameters associated with each 
layer, indicating whether further nonlinear 
processing is required. We start with one 
layer first, and when training with a gradient 
descent, when necessary, this parameter can 
become active, which causes the creation of 
another complete layer, increasing the depth 
of the network.

Experiments on synthetic double-
helix data like tunnel networks and novice 
perceptrons can be adapted to different sizes 
for different complexity of problems using 
the same set of hyperparameters, adapting 
the number of units for the tunnel networks 
and the number of layers for the initial per-
ceptrons. With regard to real problems of 
recognition of numbers and images, we ob-
serve that tunnel networks achieve better 
performance, providing a better regularized 
model and using fewer parameters com-
pared to backbone networks. Also, novice 
perceptrons showed comparable or better 
performance. Compared to tunnel networks, 
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novice perceptrons appear to grow larger 
and shrink less. By setting the learning rate 
in descending order, it is observed that dif-
ferent layers grow at different rates and are 
used in different ways. Combined with reg-
ularization, this allows tunnel networks to 
keep some of the unused upper layers lin-
ear, thus effectively removing them from 
the network at the end.

Deep learning is an AI function that 
mimics the workings of the human brain in 
such a way that it processes data and cre-
ates patterns for use in decision making 
[35]. Cognition is a fundamental feature of 
natural intelligence. Sensory cognitive net-
works provide new technological support to 
dramatically increase the quantity and qual-
ity of information that can be collected and 
transmitted in complex adaptive systems. 
Their application can significantly increase 
the level of intelligence in the design and 
implementation of the system to the levels 
at which the effects of cognition will begin 
to manifest themselves. Cognitive abilities 
can be thought of as a shared sensory net-
work. The detection system learns to detect 
changes not only in signal levels, but also in 
the shape and parameters of the sensor sig-
nal, which is a more difficult task. The ar-
chitecture can significantly reduce resource 
consumption without sacrificing change 
detection performance. Experiments prove 
that a neural network-based change detec-
tion system is feasible for developing sensor 
network applications and can be success-
fully implemented on available technology 
platforms.

Designing cognitive radars has sev-
eral stages. At the first stage we develop 
user requirements. The second is the for-
malization of user requirements. Next, we 
develop a model of radar operation, check 
the receipt of the declared quality charac-
teristics of the radar. In the fourth stage, 
we conduct in-depth training of the gener-
ated neural network with an inverse loop, 
for which the radar is calibrated. Based on 
the calibration results, the development 
of the developing cognitive radar system 
is adjusted. Consider in more detail the 
calibration of 3D-Imaging radar, devel-
oped and manufactured in SPC «Quantor» 

on the example of obtaining a 3D image 
of the internal structure of the multilayer 
material.

The possibility calibration of is 
studied in the exploring of material proper-
ties to the example of multilayer structure, 
depending on the distance between the 
sample and the antenna using an absorber. 
The results of preliminary studies indicate 
the possibility of measuring the thickness 
of the material. On the calibration, a small 
metal plate and several measurement cy-
cles for averaging the noise were used. It is 
shown that the accuracy of measurements 
is influenced by the width of the radiation 
pattern, the number of measurement cycles 
at one point, the accuracy of positioning 
and moving the head during the measure-
ments, and the time interval between the 
calibrations.

We have developed algorithms and 
have obtained the required accuracy.  We will 
try to test the radar system, having previously 
calibrated it.

Before carrying out the measurements, 
we set:          

1. The horn and the sample close the
absorber to reduce the refl ections;

2. We measure the signal without a
sample;

3. We place the sample (5-10) mm and
begin to measure;

4. Very carefully, a thin conductive
fi lm is pasted from above and measurements 
are taken;

5. Very gently fl ip back with a conduct-
ing medium and measure.

Fig.3. Implementation of 3D scanning 
of small objects by cognitive FMCW 
3D-Imaging Radar terahertz range.
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Fig.4. Functional diagram of 3D Imaging 
FMCW Terahertz Radar.

If all done carefully, there should be a 
shift of even a fraction of a millimeter. Scan 
must be disabled. We will make a point of 50 
measurements.

Fig.5. Propagation of radar radiation 
in a multilayer material.

1. Diff erent materials have a diff erent 
permittivity and diff erent velocity of phase 
of electromagnetic wave. This gives that real 
thickness between upper and lower plane of 
samples is equivalent to virtual thickness be-
tween real upper and virtual lower plane in 
air. We can estimate equivalent virtual thick-
ness between metal planes in air and then cor-
rect result for real material. 

2. In real materials we have a multiple 
refl ection. This gives several spectral lines for 
one thickness of the sample.

3. Refl ections from virtual metal 
planes do not fully correspond to refl ections 
from real metal planes during calibration. 

There are numerous errors of discrepancy 
between virtual planes and the nearest cali-
bration levels. This gives multiple errors in 
the spectral lines and creates some diffi  cul-
ties in estimating the thickness.

4. Some calibration levels must be pre-
sented lower than baseline to estimate posi-
tions of virtual metal planes.

5. We try to fi x existing mathematic 
problems and to get a mathematical tool for 
universal measurement device. 

6. We check the additional measure-
ment confi guration. For calibration, we use 
a special sample with a higher accuracy – 
Plexiglas.

As a result of the measurement cycle, 
a frequency dependence of the attenuation in 
the microwave channel D (f) =Uref (f)/Uinc (f) 
is obtained.

Unknown parameters of the dielec-
tric structure are determined by procedure of 
global minimization of discrepancy between 
the measured attenuation in channel D(f) and 
one calculated theoretically Dth(f, p)

f
th fDfDF 2,pp .

Here Dth(f, p)  is defi ned according to 
the formula

2

233
10 )1)(1( cc

c
th VVkVkVk

VVkkD
,

and 0 3( ),.., ( )k f k f  are complex coeffi  cients, 
which are determined experimentally using 
reference samples and describe properties of 
the microwave channel; f is the frequency of 
sounding waves; VC (f) is the complex refl ec-
tion coeffi  cient (CRC) of the reference arm 
3; V (f,p) is a theoretically calculated CRC 
of the dielectric structure, which depends on 
a vector of the structure parameters p (thick-
ness of layers and electrical parameters of 
materials).

We consider that in free space extends 
a plane electromagnetic wave and normally 
incident on the infi nite (M-1)-layer medium 
with fl at boundaries. The CRC V (f, p) is relat-
ed of the CRC of the structure in free space VS
(f, p) through the scattering matrix of the an-
tenna S, which is determined experimentally:

S

S
VS

VS
SV

22

21
11 1

.
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The CRC of the structure in free space 
depends on the thickness and electrophysical 
parameters of structure layers:

VS=VS(f,h1,..,hM-1,ε1,..,εM,tgδ1,...,tgδM),
where hm, εm, tgδm is thickness, permittivity 
and loss tangent of m-th layer. The CRC of 
the plane wave from dielectric plane-lay-
ered medium VS(f,p) is determined by the 
known formulas:

10

10

YW
YW

VS
, 

 
,

)1(exp)1(exp
)1(exp)1(exp

1

1

mmmm

mmmm
mm qYqW

qWqYWY

,MM WY

0/mmW ; 
 

)sin1(22 2
0mmm hfjq ; 

)tg1(0 mmm j , 

where ε0, is permittivity and μ0 is the perme-
ability of free space.

During the setup process, we do not 
need to change the distance between the sig-
nal and the base line, but we need to will 
move the device and perform a calibration at 
the center of each step. This calibration pro-
cess is simpler and can be performed in auto-
matic mode without an additional table with a 
micrometer.

Сonclusions
This article provides a summary of 

the development of modern radar systems. 
It is shown that with the development of 
Artificial Intelligence technologies, mod-
ern radars use deep learning neural net-
works, as a result, radars have become 
cognitive. There is no alternative to satisfy 
the consumer in terms of quality indicators 
using old technologies. Scientific, techno-
logical, information base is ready for such 
challenges. The need for modern radars is 
also huge: medicine, security, defense, the 
Internet of things, and others. Scenarios 
are becoming more complex and require 
creative solutions. Cognitive radar is one 
potential solution that has long been dis-
cussed in the literature.

It has been shown that cognitive ra-
dars can coexist in a congested spectrum, 
including with random and intentional in-
terference, and be invisible. Cognitive radar 
systems can adapt to a changing environment 
using internal and external sources of infor-
mation. It is possible to control the resources 
of the radar, and therefore, the radars are in-
herently fault-tolerant.
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