УДК 543.272.7

С.М. Малеваный, Э.В. Панов, Е.А. Генкина, Т.С. Глущак, В.Ф. Лапшин ПОВЕРХНОСТНАЯ ЭЛЕКТРОПРОВОДНОСТЬ ДОПИРОВАННЫХ НАНОКРИСТАЛЛОВ ДИОКСИДА ОЛОВА

Изучена возможность модифицирования поверхности нанопорошка путем синтеза и допирования его в нитратном расплаве. Такой прием существенно трансформирует химические и электрофизические свойства поверхности SnO₂, что адекватно отражается на поверхностной электропроводности нанокристаллов SnO₂.

ВВЕДЕНИЕ. Изменение поверхностной электропроводности при адсорбции газов — примесей воздуха на поверхности полупроводников впервые изучил J. Bardeen в 1954 году [1]. Особенно чувствительна к газам электропроводность широкозонных полупроводниковых оксидов металлов SnO₂, ZnO, In₂O₃ и др. [2, 3]. Поведение электропроводности этих полупроводников отличается рядом особенностей. Их величина критически чувствительна к химическому и фазовому составу поверхности [4, 5]. При этом σ обратимо изменяется при протекании поверхностных газовых реакций с участием хемосорбированного кислорода воздуха (O_2^{-}, O^{-}, O^{2-}) и многих компонентов газовпримесей в воздухе. Такая обратимость сохраняется в области температур до 400 °C. Однако главная особенность широкозонных оксидов и, в первую очередь, кристаллов SnO₂ — коррозионная стабильность в атмосфере смесей воздуха с агрессивными газами при $T \le 400$ °C, относительная дешевизна и простота их получения в нанокристаллической форме. Все эти преимущества нанокристаллического SnO2 стали причиной большого количества исследований по выяснению возможностей использования поликристаллических пленок на основе SnO₂ в качестве чувствительных элементов твердотельных полупроводниковых газовых сенсоров. Ожидаемые преимущества таких сенсоров — дешевизна и простота их изготовления и применения, возможность модификации поверхности сенсорных материалов допантами — оксидами некоторых поливалентных металлов. При выборе допантов обычно руководствуются двумя подходами — структурно-фазовым и каталитическим. В первом случае допант изменяет стехиометрию, фазовый состав и концентрацию дефектов поверхности базового оксида, во втором — его каталитическую активность. Последнюю связывают либо с влиянием на зонную структуру оксидной матрицы, либо на реакционную способность поверхностных комплексов.

В настоящей работе суммированы результаты исследований по влиянию условий получения, состава и структуры допированных нанокристаллов $SnO_2+M_rO_v$ (M = Sb, Pb, Bi, Cu, Fe, Ni, Mo) на их поверхностную электропроводность и сенсорную чувствительность. В отличие от известных методов химического соосаждения оксидов сложного состава из растворов с последующей термообработкой, в настоящей работе использован альтернативный метод [6, 7], согласно которому допированные оксиды получают при взаимодействии прекурсоров базового оксида и допанта в специфической реакционной среде — ионном расплаве. В настоящей работе рассматривается синтез кристаллов SnO₂+M_xO_y в нитратных расплавах. Главными особенностями такого синтеза являются: сравнительно низкие (по сравнению с твердофазным) температуры взаимодействия (150-450 оС), высокая растворимость многих неорганических солей в этом расплаве, низкая растворимость в расплаве оксидов и, особенно, оксидных комплексов, высокая окислительная и средняя реакционная активность среды, высокая скорость собственно химической реакции и ее транспортных стадий.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ. Нанокристаллические допированные диоксиды олова SnO_2^+ + M_xO_y (M = Sb, Pb, Bi, Cu, Fe, Ni, Mo) были синтезированы в расплаве системы NaNO₃—KNO₃ при 400—450 °C. В качестве прекурсоров использовали $SnCl_2 \cdot 2H_2O$, нитраты или хлориды Sb, Pb, Bi, Cu, Fe, Ni и Na₂MoO₄. Прекурсоры вводили в кристаллическом виде в расплав и выдерживали реакционную смесь 2 ч при 400—450 °C. После этого расплав замораживали, размывали дистиллированной водой. Осадок отделяли центрифугированием и после тщательной отмывки от солей высушивали при 120 °C в течение 6 ч. В отдельных

© С.М. Малеваный, Э.В. Панов, Е.А. Генкина, Т.С. Глущак, В.Ф. Лапшин, 2010

случаях применяли термообработку порошка в вакууме при $T \le 400$ °C продолжительностью 2—3 ч.

При выборе оптимальных условий взаимодействия прекурсоров в реакционной среде (расплаве нитратов) использовали данные дериватографии указанных расплавов. Для идентификации синтезированных порошков применяли методы: химического анализа (содержание ионов К⁻, Na⁻, Cl⁻, контроль концентрации допантов), рентгенофазового (фазовый состав, средний размер частиц d, нм по формуле Шеррера), ИК-, ЯМР, ЭПР-спектроскопии (примесные и структурные дефекты), ПЭМ-, СЭМ-электронной микроскопии и локальной электронной дифракции (размер, форма частиц, агломераты, поверхность пленок, кристалличность образцов) и измерение электропроводности при постоянном напряжении зондовым методом, импедансную спектроскопию пленок SnO₂+M_xO_y в диапазоне частот переменного тока 10 Гц-1000 кГц с использованием импеданс-метра (определение поверхностной электропроводности, механизма электропроводности пленок, их сенсорной чувствительности). Пленки изготавливали на подложках из конденсаторной керамики Al₂O₃ по технологии spin-coating из смеси порошка и раствора PVDF в 1-метил-2-пиролидоне. Контактные площадки на подложку наносили серебросодержащей пастой и вжигали при 600 °C 2 ч. Измерения сопротивления сенсорных пленок на основе SnO₂+M_xO_y проводили в вакууме, сухом воздухе, смеси воздуха с парами этанола в области температур 20—350 °C.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ. Взаимодействие прекурсоров базового оксида и допанта в нашем случае существенно отличается от известного высокотемпературного гидролиза. По данным дериватографии при 120 °С на воздухе происходит гидролизное разложение по схеме: SnCl₂. $\cdot 2H_2O \rightarrow SnO_2 \cdot xH_2O + 2HCl^{\uparrow}$. В расплаве нитратов протекают три процесса — обменная реакция с образованием Sn(NO₃)₂ (100—220 °С), образование оксинитрата $SnO_{2-x}(NO_3)_{2x}$ с последующим доокислением (200—240 °C) и формированием выше 240 °C оксидных фаз SnO_{2-x}. Похожие схемы реализуются и при взаимодействии прекурсоров допантов в нитратном расплаве (реакционной среде). Обязательным условием при формировании допированного оксида является участие в реакции оксинитратов как формы с высокой реакционной способностью. Из-за благоприятных условий (массопереноса и кристаллизации) при синтезе в нитратных расплавах формируются нанопорошки $SnO_2+M_xO_y$ с хорошей кристалличностью, близкие по форме и размерам, с хорошей воспроизводимостью химического и фазового состава. Порошки представляют собой слабо агрегированные частицы размером 5—20 нм в зависимости от состава и условий получения (рис. 1).

Рис. 1. ПЭМ-фотография порошка $Sn_{0.95}Bi_{0.05}O_2$.

Введение в SnO₂ в процессе его синтеза в расплаве допирующей добавки приводит к изменению химических и физических параметров оксида. Для выяснения параметров, коррелирующих с поверхностной электропроводностью, изучена их зависимость от типа и концентрации допанта. В широком диапазоне концентраций изучены два допанта — Bi₂O₃ и Sb₂O₅. Первый (Bi₂O₃) может изменить структурно-фазовые характеристики кристаллов SnO₂, второй (Sb₂O₅) является электронно-донорной добавкой к полупроводнику SnO₂ *п*-типа. При допировании SnO₂ возможны два случая: образование твердого раствора с допантом или сегрегация допанта на поверхности базового оксида.

Проследим изменение параметров a и c элементарной ячейки SnO₂ при введении допанта. Для вычисления этих параметров из полученных спектров рентгеновской дифракции использовали отражения от граней 110, 101 и 211 (рис. 2).

Для чистого SnO₂ имеем a=4.738 Å, c=3.188 Å, для образца SnO₂+20 % мол. Bi₂O₃ получили $a=4.7445 \pm 0.0008$ Å и $c=3.2365 \pm 0.0014$ Å. Увеличение параметров a и c согласуется с соотношением ионных радиусов Sn⁴⁺ (0.69 Å), Bi³⁺ (0.66 Å) и происходит благодаря образованию твердого раствора (при малых x на основе касситерита). Здесь, по-видимому, реализуется схема гетеровалентного замещения Sn⁴⁺ на Bi³⁺ в катионной подрешетке SnO₂ с образованием кислородных вакансий

Рис. 2. Рентгеновская дифракция для образцов SnO_2 + +2 % Bi_2O_3 (1), SnO_2 +10 % Bi_2O_3 (2).

 V° по схеме: SnO₂ + *x*BiO_{1.5} \rightarrow Sn_{1-*x*}Bi_{*x*}O_{2-*x*/2} $V^{\circ}_{x/2}$. Кислородные вакансии играют существенную роль в процессе адсорбции и при прохождении газовых реакций на поверхности SnO₂. Ошибка определения величин *a* и *c* из рентгенографических данных для нанокристаллических образцов может быть значительной из-за сильного уширения рефлексов на дифрактограммах (см., например, рис. 3). Это означает, что при увеличении концентрации *x* допанта размер *d* частиц SnO₂ уменьшается.

Ниже приведены величины *d*, вычисленные по уширению рефлексов для 110 по формуле Шеррера:

Содержание Ві ₂ О ₃ , % мол.	0	2	4	10	15	20
Размер кристалла $SnO_2+Bi_2O_3$, нм	11.25	11.74	10.06	8.70	7.62	6.25

Видно монотонное уменьшение d с ростом x. Такой же характер имеет зависимость d от x (при x > 5 %) для Bi₂O₃, PbO и NiO (рис. 4). Это может означать локализацию твердого раствора вблизи поверхности базового кристалла SnO₂, что препятствует дальнейшему его росту.

Были рассмотрены два возможных механизма формирования твердого раствора в системе SnO_2 —Bi₂O₃.

1. Гетеровалентное замещение Sn⁴⁺ на Bi³⁺ в катионной тетрагональной подрешетке SnO₂. Этот процесс сопровождается образованием вакансий в анионной подрешетке для компенсации заряда по схеме: SnO₂ + xBiO_{1.5} \rightarrow Sn_{1-x}Bi_xO_{2-x/2} $V^{o}_{x/2}$.

2. В нашем случае KNO_3 является реакционной средой, то есть катионы калия присутствуют в избытке. Они могут включаться в кристалл SnO_2 для компенсации заряда. При таком внедрении образование вакансий не происходит, а имеет место

Рис. 3. Профиль рефлекса 110 касситерита порошка SnO₂+xPbO при значениях x, % мол.: 1.5 (1); 3 (2), 6 (3).

Рис. 4. Зависимость размера d кристаллов SnO₂ от концентрации x допантов: PbO (1), Bi₂O₃ (2), NiO (3).

реакция: SnO₂ + xBiO_{1.5} \rightarrow K_ySn_{1-x}Bi_xO₂. Для реализации этого механизма молярное содержание калия должно быть эквивалентно содержанию висмута. Химический анализ образцов SnO₂ + Bi₂O₃ (10 % мол.) показал содержание K⁺ не более 0.06 %. Это позволяет сделать вывод в пользу формирования твердого раствора по механизму образования вакансий (см. выше).

Образование твердого раствора означает возможность протекания двух процессов:

1. Скачок электрона как механизм формирования суперкислотного центра:

2. Скачок электрона как частичное восстановление SnO₂:

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2010. Т. 76, № 7

 $V^{o} \text{SnO}_{2} \rightarrow V_{o}^{e} \text{SnO}_{2-l/2} + l/4O_{2}$.

Образование кислородных вакансий подтверждено данными ЭПР-спектроскопии — величина сигнала ЭПР существенно зависит от режима сушки и термообработки, то есть от концентрации кислородных вакансий (рис. 5).

Процессы фазообразования, как будет показано ниже, существенно влияют на адсорбционные и каталитические свойства поверхности кристаллов $\text{SnO}_2 + M_x O_y$ и, в результате, на их электропроводность.

Рис. 5. Спектр ЭПР образца $\text{SnO}_2 + 7 \% \text{Bi}_2\text{O}_3$ после сушки (1) и термообработки при 400 °С в вакууме (2).

Рис. 6. Спектр ЯМР образца ${\rm SnO_2}+7~\%~{\rm Bi_2O_3}$ после сушки на воздухе при 120 °С (1) и в вакууме (2).

Помимо структурных дефектов, поверхность кристалла $\text{SnO}_2 + M_x O_y$ насыщена примесными дефектами — координированной поверхностью водой или ОН-группами. Уменьшить их концентрацию оказалось возможным с помощью термообработки в вакууме. Для контроля использовали данные ЯМР- (рис. 6) и ИК-спектроскопии, которые показали, что даже после термообработки при $T \leq 400$ °C в течение 2—3 ч в вакууме нельзя полностью удалить функциональные группы с поверхности нанокристалла.

Температурная зависимость электропроводности σ , 1/T объемного поликристаллического образца чистого SnO₂ имеет вид (рис. 7), характерный для полупроводников. Энергия активации E_a электропроводности σ переноса электронов, вычисленная по зависимости Аррениуса $\sigma = \sigma_0/T \cdot [\exp(E_a/RT)]$ из графика рис. 7, составляет 0.9 эВ. Подобный вид имеют графики σ , 1/T для наших пленок, отличающихся составом и условиями по-

лучения (рис. 8). Вычисленная по ним энергия активации электропроводности E_a пленок приведена в таблице. Обращает на себя внимание существенное отличие величин E_a для пленок различного состава и условий термообработки. Только для пленок SnO₂+5 % Fe₂O₃ в случае измерения **σ** в вакууме имеем $E_a = 0.9$ эВ. На воздухе эта величина уменьшается до 0.6 эВ. Уменьшение величины E_a для этой и других пленок (таблица), по-видимому, связано с тем, что в этом случае суммарная электропроводность включает в себя как элек-

тронную, так и ионную составляющую. Последняя может быть связана с ионным (протонным) переносом тока. Для пленок SnO_2 +5 % PbO такое предположение подтверждено экспериментально: после термообработки в вакууме по данным ЯМР-спектроскопии резко уменьшается содержание координированной поверхностью кристалла SnO_2 воды и, соответственно, увеличивается энергия активации с 0.33 до 0.66 эВ (таблица).

Измеренные спектры импеданса в диапазоне частот $10 \ \Gamma \mu$ — $1 \ M \ \Gamma \mu$ пленок $\text{SnO}_2 + 2 \ \% \ \text{Sb}_2 \text{O}_5$ и $\text{SnO}_2 + 2 \ \% \ \text{Sb}_2 \text{O}_5 + 2 \ \% \ \text{CuO}$ в форме годографа импеданса (Z'— действительная, Z'' — мни-

мая составляющие) представлены на рис. 9, кривая 2. Наличие одной полуокружности в коорди-

Рис. 7. Температурная зависимость электропроводности (G, 1/T) поликристаллического образца чистого SnO₂. Рис. 8. Температурные зависимости электропроводности (G, 1/T) поликристаллической пленки состава SnO₂ +5 % Fe₂O₃: на воздухе (1) и в вакууме (2).

Номер пленки	Состав образца	<i>Е</i> _а , эВ	Размер частиц, нм
46	$SnO_2 + 2 \% Bi_2O_3$	0.49	11.7
67	$SnO_2 + 5 \% PbO^*$	0.33	12.0
64	SnO ₂ + 5 % PbO**	0.66	19.0
80	$SnO_2 + 8 \% CuO$	0.16	6.2
45	$SnO_2 + 5 \% Fe_2O_3^{***}$	0.62	14.0
45	$SnO_2 + 5 \% Fe_2O_3^{****}$	0.90	14.0
50	$SnO_2 + 10 \% MoO_3$	0.19	20.0

Состав, энергия активации электропроводности (E_a), размеры кристаллов допированных пленок SnO₂

* Сушка при 120 °С на воздухе, 2 ч; ** термооброботка при 400 °С в вакууме, 2 ч; *** электропроводность измерена на воздухе, **** в вакууме.

Рис. 9. Годограф импеданса Z', Z'': 1 — эквивалентной схемы 3; 2 — поликристаллической пленки состава $\operatorname{SnO}_2 + 2\% \operatorname{Sb}_2\operatorname{O}_5 + 2\%$ CuO на воздухе, t=20 °C. Номера точек 1-6 на кривой 2 соответствуют частоте f, кГц: 20, 30, 70, 350, 830, 1740.

натах Z', Z'' с центром на оси Z' свидетельствует о том, что процесс можно моделировать согласно [8] простой эквивалентной схемой из параллельно включенных конденсатора и резистора. Это означает, что электронный ток через пленку контролируется переносом через объем зерен SnO₂ + + M_xO_y при отсутствии лимитирующей стадии переноса на границах зерен. С помощью программы EIS Spectrum Analyser и измеренных нами значений импеданса проведен анализ импеданса эквивалентной схемы (рис. 9, кривая 3). Найдены значения величин ее элементов: C_1 =3.70·10⁻¹¹ Ф, R_1 =800 Ом, R_2 =19700 Ом. Этим значениям отвечает годограф импеданса, приведенный на рис. 9, кривая *I*. Наблюдаемое характеристическое время процесса переноса заряда через пленку составляет: $\tau = R_2 C_1 = 7.5$ мкс. Емкость C_1 отвечает за релаксационные процессы на границе зерен SnO₂ + +M_xO_y, а сумма R_1+R_2 характеризует электропроводность пленки.

Газовые реакции на поверхности кристалла SnO₂ способствуют существенному изменению концентрации поверхностных электронов проводимости и, соответственно, величины поверхностной электропроводности полупроводника *n*-типа SnO₂. Это видно на примере хемосорбции кислорода воздуха, которая протекает на поверхности SnO₂ при T > 200 °C по схеме: $\frac{1}{2}O_2 \leftrightarrow O_s$; $O_s + e^- \leftrightarrow O_s^-$. Эта адсорбция сопровождается переходом электронов проводимости на адсорбированный кислород и, соответственно, уменьшением σ (рис. 10). Переходный процесс адсорбции-десорбции кислорода (рис. 10) протекает на SnO₂ обратимо с постоянной времени т ≈ 5 с. Взаимодействие паров этанола с хемосорбированным кислородом О, при наличии на поверхности SnO2 сильных кислотных центров протекает по схеме окислительного дегидрирования:

$$C_2H_5OH + O_s^- \rightarrow CH_3CHO + H_2O + e^-.$$

Эта реакция, напротив, способствует увели-

Рис. 10. Релаксация тока в образце $SnO_2 + 4 \% MoO_3$ при замене воздуха (1) вакуумом (2), t = 280 °C.

Рис. 11. Релаксация тока в образце $\text{SnO}_2 + 10 \% \text{ MoO}_3$ при изменении атмосферы воздуха (*1*) на атмосферу паров этанола (*2*). *C*=329 мкг/л, *t* =280 °C.

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2010. Т. 76, № 7

чению концентрации поверхностных электронов на SnO_2 и соответствующему росту, как видно на рис. 11, поверхностной электропроводности σ .

ВЫВОДЫ. В солевом расплаве в "мягких" условиях (450 °C) можно синтезировать нанокристаллы диоксида олова с одновременным допированием их оксидами Sb, Pb, Bi, Cu, Fe, Ni, Mo. Введение допантов с концентрацией 0.5-10 % мол. в базовый оксид олова имеет двоякое действие — приводит к образованию либо твердого раствора, либо нанокомпозита допанта со SnO2. Формирование твердого раствора со ${\rm SnO}_2$ по механизму гетеровалентного замещения ${\rm Sn}^{4+}$ на ${\rm M}^{3+}$ вызывает образование вакансий в анионной подрешетке, которые стимулируют процессы формирования суперкислотных центров и частичного восстановления SnO₂. Эти два типа центров активно участвуют в поверхностных реакциях SnO₂. Твердый раствор, как и допант, не образующий твердого раствора, локализуется у поверхности SnO₂ и существенно влияет на химию поверхности и ее электропроводность. При этом наблюдается определенная корреляция этих свойств. С помощью допанта возможно изменение фазового, химического состава, стехиометрии, структуры, дефектности поверхности, размеров кристаллов SnO₂. Указанные параметры влияют на поверхностную электропроводность σ кристалла SnO₂ и соотношение ее составляющих (электронной и ионной). Вклад ионной составляющей о уменьшается при снижении концентрации поверхностных ОН-групп. Поверхностные и газовые реакции с участием кислорода и паров этанола изменяют концентрацию электронов приповерхностного слоя кристаллов SnO₂ и тем самым его о. Введение в поверхностный слой оксидов-катализаторов (Fe, Mo, Cu) позволяет также управлять окислительно-восстановительными свойствами кристаллов SnO₂ и, таким образом, величиной σ.

РЕЗЮМЕ. Нанокристали SnO_2 , доповані оксидами Sb, Pb, Bi, Cu, Fe, Ni, Mo, одержано в нітратному роз-

Институт общей и неорганической химии им. В.И. Вернадского НАН Украины, Киев

плаві. Продукти синтезу ідентифіковано методами РФА, ПЕМ, ЕПР, ЯМР. Показано, що допування суттєво трансформує хімічні і електрофізичні властивості поверхні SnO_2 . Допант змінює розмір часток SnO_2 і такі фактори поверхні, як фазовий состав, стехіометрію, склад і концентрацію дефектів і, в результаті, концентрацію активних центрів на поверхні. Вивчено кореляцію між вказаними параметрами модифікування і поверхневою електропровідностю о плівок SnO_2 , виготовлених з цих порошків, індивідуальність модифікуючого фактору окремих допантів. Для цього було досліджено залежності о від температури та складу газового середовища.

SUMMARY. SnO₂ nanocrystals, doped with Sb, Pb, Bi, Cu, Fe, Ni, Mo oxides, have been synthesized in nitric melt. Products of the synthesize have been indetificated with X-ray phase analysis, TEM, EPR, NMR methods. It is showed that the doping considerably transforms chemical and electrophysical properties of SnO₂ surface. The dopant changes the size of SnO₂ particles and so surface factors as phase composition, stehiometry, composition and concentration defects and as result — surface concentration of active centers. The correlation between modification parametrs mentioned and surface electroconductivity σ SnO₂ films, made from these powders, individuality of modificating factor of single dopants have been studied. σ , 1/T dependences and σ of gas atmosphere dependence have been studied for it.

- 1. Bardeen J. Morrison S.R. // Physica. -1954. -20. -P. 873-878.
- Noboru Yamazoe // Sensors and Actuators: Chemical. -2005. -108. -P. 2—14.
- 3. Gopel W., Schierbaum K.D. // Ibid. -1995. -26. -P. 1-12.
- 4. Румянцева М.Н., Коваленко В.В., Гаськов А.М., Панье Т. // Рос. хим. журн. -2007. -11, № 6. -С. 61—70.
- 5. Korotcenkov G. // Sens. Actuators. -2005. -107. -P. 209-232.
- 6. Волков С.В., Малеваный С.М., Панов Э.В. // Журн. неорган. химии. -2002. -47, № 11. -С. 1749—1754.
- 7. Генкіна О.О., Панов Е.В., Мальований С.М. // Укр. хим. журн. -2003. -69, № 3. -С. 13—15.
- Stoynov Z., Vladikova D. Differential Impedance Analysis. -Sofia: Marin Drinov Academ. Publ. House, 2005. -P. 40—42.

Поступила 22.02.2010