УДК 543.064:543.544:543.51

М.М. Скринник, М.В. Милюкин

ОПРЕДЕЛЕНИЕ ХЛОРОРГАНИЧЕСКИХ ПЕСТИЦИДОВ И ПОЛИХЛОРИРОВАННЫХ БИФЕНИЛОВ В БИОТЕ БАССЕЙНА ДНЕПРА МЕТОДОМ ГАЗОВОЙ ХРОМАТОГРАФИИ/МАСС-СПЕКТРОМЕТРИИ

Определены концентрации хлорорганических пестицидов (ДДЕ, ДДД и ДДТ) и полихлорированных бифенилов в образцах биоты бассейна Днепра методом газовой хроматографии/масс-спектрометрии.

Хлорорганические пестициды (ХОП) и полихлорированные бифенилы (ПХБ) являются загрязняющими веществами антропогенного происхождения. Их отличительные свойства — высокая токсичность и устойчивость к разложению под действием физико-химических и биологических природных факторов — обусловливают интерес к определению этих соединений в объектах окружающей среды и продуктах питания. ХОП и ПХБ представляют угрозу для водных экосистем, в которых они способны накапливаться в донных отложениях и тканях гидробионтов. В организм человека ХОП и ПХБ попадают, в основном, с питьевой водой и продуктами питания.

За последние 15 лет проведен систематический мониторинг этих соединений в природных и питьевых водах Днепра [1—4]. Для более полной оценки угрозы для человека и водных экосистем, которую представляют ХОП и ПХБ, было проведено данное исследование и получены надежные результаты о содержании этих соединений.

Цель работы — идентификация и определение концентраций ХОП и ПХБ в биоте бассейна Днепра. В качестве объекта исследования выбрана биота бассейна (сентябрь—октябрь 2003 г.).

В навески биоты (10 г) вводили внутренний стандарт — 2,3,3',4,4',5-гексахлорбифенил (Ultra Scientific RPC-055S) в объеме 100 мкл раствора в ацетоне с концентрацией 2 мг/дм³ и экстрагировали методом ускоренной жидкофазной экстракции (УЖЭ). Экстракты очищали от балластных соединений минерализацией концентрированной серной кислотой и/или олеумом и/или 5 %-м раствором КМпО₄. При необходимости проводили дополнительную очистку методом обращеннофазной ВЭЖХ в аналитическом масштабе. Полученные пробы концентрировали до 0.1 см³ и ана-

© М.М. Скринник, М.В. Милюкин, 2007

лизировали на газовом хроматографе с масс-селективным детектором. В качестве калибровочных растворов использовали смесь ХОП (Supelco N 4 -8858) в концентрациях 1.0 и 0.1 мг/дм³ и смесь ПХБ, состоящую из 3,4,4',5-тегра- (RPC-096S), 2,3, 3',4,4'-пента- (RPC-098S), 2,3,3',4,4',5-гекса- (RPC-164S) и 2,3,3',4,4',5,5'-гептахлорбифенила (RPC-137S) (номера по каталогу Ultra Scientific) в концентрациях 1.0 и 0.02 мг/дм³ каждого соединения в смеси. Для идентификации ПХБ использовали смесь Aroclor 1221, 1242, 1254 (Supelco N 48862) с общей концентрацией ПХБ 6 мг/дм³.

Для УЖЭ органических соединений из указанных образцов использовали систему, состоящую из насоса (Waters 515) (1), колонок из нержавеющей стали размером 21.2×70 (2) и 6.0×40 мм (3), водяной или глицериновой бани (4), сосуда с холодной водой объемом 2 дм³ (5), соединительных трубок (внутренний диаметр — 0.8 мм) с фитингами (6) и колбы с коническим дном для сбора экстракта (7) (рис. 1).

Рис. 1. Схематическое изображение системы для УЖЭ.

В колонку 2 помещали образец, приготовленный для экстракции, и плотно его упаковывали. Мертвый объем наполняли избыточным количеством безводного CuSO₄. Колонку герметично закрывали. Колонку 3 плотно наполняли безводным CuSO₄. Насос 1, колонки 2 и 3 и колбу 7 соединяли трубками 6. Колонку 2 помещали в водяную или глицериновую баню 4 при необходимой температуре, а колонку 3 — в сосуд с холодной водой. Растворитель подавали ^{1*10⁻³}, усл. ед. при помощи насоса. Пробы тестовых образцов биоты экстрагировали при 80 °С и скорости подачи растворителя 10 см³/мин с трехкратной сменой растворителя на последующий растворитель (или смесь растворителей) — диэтиловый эфир, метиленхлорид, бензол : метанол в соотношении 9:1.

Для идентификации и определения ХОП и ПХБ в пробах биоты использовали газовый хроматограф Hewlett-Packard 5890 Series II с масс-селективным детектором 5972 MSD. Колонка — Supelco SE-30, внутренний диаметр — 0.25 мм, длина — 30 м, степень покрытия — 0.25 мкм; газ-носитель — Не, 1 см³/мин при температурной коррекции расхода газа-носителя; температурный режим — изократический период при 60 °С — 1 мин, градиент температуры $60 \rightarrow 300$ °C со скоростью 6 °С/мин и 20 мин — изократический период при 300 °C; объем вводимой пробы — 1 мкл без деления потока, через 1 мин — деление потока 1:50; параметры детектора — режим SIM при детектировании ионов с m/z181, 183, 219, 235, 237, 246, 248, 318 (ХОП) и 256, 258, 260, 290, 292, 294, 324, 326, 328, 358, 360, 362, 392, 394, 396, 426, 428, 430 (ПХБ) при ионизации электронным ударом (70 эВ). ХОП и ПХБ идентифицировали по временам

удерживания и по характеристическим ионам с использованием электронной библиотеки массспектров Wiley 275, а для ПХБ — также по соответствию соотношений интенсивностей ионов М⁺, [M+2]⁺, [M+4]⁺ полученных масс-спектров [2, 3] теоретически рассчитанным соотношениям [5]. Концентрации целевых соединений определяли по соотношениям интенсивностей характеристических ионов этих соединений на хроматограммах калибровочных растворов к их интенсивностям на хроматограммах испытуемых растворов. Рассчитывали концентрации ХОП и ПХБ как средние значения, полученные по нескольким ионам.

Во всех исследованных пробах биоты идентифицированы ХОП и ПХБ, определены их концентрации и изомерно-специфический состав ПХБ.

На рис. 2 представлены реконструированные хроматограммы (экстракты из полного ионного

Рис. 2. Реконструированные хроматограммы (экстракты из TIC, режим SIM) образца из биоты по характеристическим ионам со следующими *m/z*: 246 (*a*), 248 (*б*) и 318 (*в*) для ДДЕ (пик 1); 235 (*г*) и 237 (*д*) – для *о,р*'-ДДД (пик 2); *р,р*'-ДДД (пик 3) и ДДТ (пик 4).

Рис. 3. Масс-спектры соединений из реальных смесей: ДДЕ (*a*), *o*,*p*'-ДДД (*b*), *p*,*p*'-ДДД (*b*), и ДДТ (*c*) из хроматограмм образцов биоты (режим SIM) и масс-спектры этих же соединений из библиотеки Wiley 275 соответственно *a*', *b*', *b*' и *c*'. Степень соответствия: ДДЕ — 27, *o*,*p*'-ДДД — 87, *p*,*p*'-ДДД — 60 и ДДТ — 90 %.

тока (TIC), режим SIM) образцов биоты по характеристическим для ДДЕ ионам с *m/z* 246 (*a*), 248 (*б*) и 318 (*в*) и по характеристическим для ДДД и ДДТ ионам с *m/z* 235 (*г*) и 237 (*д*).

На рис. 3 показаны масс-спектры соединений ДДЕ, *о,р*'-ДДД, *р,р*'-ДДД и ДДТ из хроматограмм образцов биоты и результаты библиотечного поиска по библиотеке Wiley 275.

На рис. 4 представлены реконструированные хроматограммы (экстракты из TIC, режим SIM) образцов биоты по характеристическим для ПХБ ионам $M^{+\bullet}$, $[M+2]^{+\bullet}$, $[M+4]^{+\bullet}$.

На рис. 5 представлены масс-спектры ПХБ из хроматограмм образцов биоты и результаты библиотечного поиска по библиотеке Wiley 275.

ХОП и ПХБ идентифицированы в образцах биоты по временам удерживания их пиков на масс-хроматограммах (реконструированных хро-

Рис. 4. Реконструированные хроматограммы (экстракты из TIC, режим SIM) образцов биоты по характеристическим ионам $M^{+\bullet}$, $[M+2]^{+\bullet}$, $[M+4]^{+\bullet}$ для изомеров ПХБ с m/z: трихлорбифенилов — 256 (1a), 258 (1б), 260 (1b); тетрахлорбифенилов — 290 (2a), 292 (2б), 294 (2b); пентахлорбифенилов — 324 (3a), 326 (3б), 328 (3b); гексахлорбифенилов — 358 (4a), 360 (4б), 362 (4b); гептахлорбифенилов — 392 (5a), 394 (5б), 396 (5b); октахлорбифенилов — 426 (6a), 428 (6б), 430 (6b). 1–6 — временные окна, в которых идентифицированы соответственно три-, тетра-, пента-, гекса-, гепта-, и октахлорбифенилы в калибровочных смесях ПХБ.

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2007. Т. 73, № 10

матограммах) по характеристическим ионам, а также по массспектрам в режиме SIM. Для всех соединений, кроме октахлорбифенилов, получены совпадающие с высокой вероятностью (74–95%) результаты поиска по библиотеке масс-спектров Wiley 275. Соотношения ионов $M^{+\bullet}: [M+2]^{+\bullet}:$ $[M+4]^{+\bullet}$ масс-спектров ПХБ из хроматограмм реальных проб соответствуют теоретически рассчитанным [5] для всех гомологов, включая октахлорбифенилы.

Концентрации ХОП и ПХБ в образцах биоты бассейна Днепра (табл. 1), определены без пересчета на сухой вес. Концентрация ДДД рассчитана как сумма *о,p*'-ДДД и *p,p*'-ДДД, ДДЕ и ДДТ — соответственно как *p,p*'-ДДЕ и *p,p*'-ДДТ.

Установлен изомерно-специфический состав ПХБ биоты бассейна Днепра. Данные о концентрациях ПХБ с разным количеством атомов хлора в молекуле представлены в табл. 2.

Определение изомерно-специфического состава дает дополнительную информацию о токсичности ПХБ. Наиболее токсичными для млекопитающих являются тетра-, пента- и гексахлорбифенилы [6].

Из представленного материала по установлению изомерноспецифического состава ПХБ видно, что в наибольших концентрациях во всех пробах биоты содержатся ПХБ с числом атомов

Рис. 5. Масс-спектры изомеров ПХБ из хроматограмм биоты (режим SIM): a — три-, δ — тетра-, ϵ — пента-, ϵ гекса-, ∂ — гепта-, e — октахлорбифенилы и масс-спектры этих же соединений из библиотеки Wiley 275 соответственно $a', \delta', \epsilon', \epsilon'$ и d'. Степень соответствия: три- — 74, тетра- — 93, пента- — 93, гекса- — 91 и гепта- — 95 %. Для октахлорбифенилов соответствующие спектры в библиотеке Wiley 275 не найдены.

Проба	Концентрация ХОП и ПХБ, нг/г				
	ДДЕ	ДДД	ДДТ	ПХБ	
1	528	736	228	2300	
2	145	171	176	1520	
3	64	59	57	961	
4	134	421	349	5482	
5	50	71	51	355	
6	65	87	84	434	
7	203	245	201	4812	
8	296	289	204	3752	
9	200	240	118	2336	
10	445	461	358	1373	
11	1595	2410	1160	13486	
12	93	68	56	1443	
13	0	0	0	0	
14	196	213	178	1304	
15	1260	1489	274	6109	
16	238	73	0	960	

Таблица 1 Концентрация ХОП и ПХБ в образцах биоты

хлора Cl_n=5—6. Для проб 11 и 15 построены диаграммы концентраций ПХБ с Cl_n=4—7 (рис. 6).

Тетра- и гептахлорбифенилы находятся в меньших концентрациях, чем пента- и гексахлорбифенилы (около 6 и 8 % от общей суммы ПХБ соответственно). Низкие концентрации три- и октахлорбифенилов по сравнению с остальными ПХБ идентифицированы только в пробах с высокими концентрациями ПХБ. Концентрации этих соединений не устанавливали. Данные по определению изомерно-специфического состава ПХБ, представленные в работе [7], также свидетельствуют о преобладании в биоте пента- и гексахлорбифенилов.

сейна Днепра являются Киевское, Каневское и Кременчугское водохранилища. В образцах биоты из притоков Днепра концентрации ХОП и ПХБ ниже, чем в Днепре. Такая ситуация, по-видимому, объясняется большой промышленной нагрузкой на водоемы в Киеве и его окрестностях. Кроме этого, образцы биоты из притоков в большинстве случаев имели меньший возраст и ХОП и ПХБ еще не накопились

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2007. Т. 73, № 10

Таблица 2 Изомерно-специфический состав ПХБ в биоте

Проба	Концентрация изомеров ПХБ, нг/г				
	Тетрахлор-	Пентахлор-	Гексахлор-	Гептахлор-	
1	135	948	1012	205	
2	121	618	657	124	
3	38	465	405	53	
4	412	2601	2998	471	
5	46	160	149	0	
6	52	184	198	0	
7	202	1683	2152	775	
8	166	1387	1813	386	
9*	234	1011	987	104	
10	186	797	343	47	
11**	914	5389	6072	1111	
12	69	601	647	126	
13	0	0	0	0	
14	111	538	564	91	
15*	348	2409	2898	454	
16	38	465	404	53	

* В пробе идентифицированы: трихлор- и ** окта-

из проб показали, что использовавшимся мето-

дом УЖЭ извлечено 85-115 % целевых соеди-

нений по сравнению с классическим методом эк-

стракции в аппарате Сокслета. Нижний предел

обнаружения суммы ПХБ составил 100 нг/г; пес-

нию концентраций ХОП и ПХБ можно сделать

вывод, что самыми загрязненными участками бас-

Из представленного материала по определе-

тицидов — 10 нг/г мокрого веса биоты.

Исследования степени извлечения аналитов

хлорбифенилы.

в их тканях. В работе [7] концентрации ХОП и ПХБ в тканях биоты из бассейна Днепра определены в диапазоне 11.9—45.4 и 10.7—76.7 нг/г соответственно. Наибольшие концентрации этих соединений найдены в Каховском водохранилище. В работах [8, 9] обобщены данные о концентрациях ХОП и ПХБ в биоте из различных пресных водоемов мира. Высокие концентрации ПХБ зафиксированы в промышленно развитых странах — Германии, Швейцарии, Финляндии, США (2100, 575, 6850, 124000 нг/г мокрого веса соответственно). Наименьшие концентрации содержатся в биоте из водоемов Антарктики, Южной Африки, Исландии (менее 1 нг/г мокрого веса). Аналогичная картина наблюдается по распределению ХОП. Наибольшие концентрации ДДЕ обнаружены в США, Германии, Польше (2900, 230, 360 нг/г мокрого веса соответственно). Полученные данные о концентрациях ХОП и ПХБ в биоте бассейна Днепра свидетельствуют о повышенной степени угрозы для человека и водных экосистем. Экологическое состояние Днепра требует систематического мониторинга ХОП и ПХБ, а также мер, направленных на удаление этих соединений из пищевых цепей гидробионтов.

РЕЗЮМЕ. Визначені концентрації хлорорганічних пестицидів (ДДЕ, ДДД і ДДТ) та поліхлорованих бі-

ЗАО "Трудовой коллектив Киевского предприятия по производству бактерийных препаратов "Биофарма", Киев Институт коллоидной химии и химии воды им. А.В. Думанского НАН Украины, Киев

фенілів у зразках біоти басейну Дніпра методом газової хроматографії/мас-спектрометрії.

SUMMARY. Concentrations of organochlorine pesticides (DDE, DDD and DDT) and polychlorinated biphenyls in the samples of biota from Dnieper river basin determined by means of gas chromatography/mass-spectrometry.

- Goncharuk V.V., Milyukin M.V. // NATO ASI Ser.
 Environment. -64. -Dordrecht, The Netherlands: Kluwer Academ. Publ., 1999. -P. 35–56.
- 2. *Милюкин М.В.* // Укр. хим. журн. -2003. -69, № 7. -С. 43—51.
- Milyukin M.V. // NATO Science. Ser. IV. Earth and Environmental Sciences. -24. -Dordrecht, The Netherlands: Kluwer Academ. Publ., 2003. -P. 103—120.
- 4. *Милюкин М.В.* // Укр. хим. журн. -2005. -71, № 10. -С. 93—104.
- 5. Зенкевич И.Г., Иоффе Б.В. Интерпретация массспектров органических соединений. -Л.: Химия, 1986.
- 6. Van den Berg M., Birnbaum L., Bosveld A.T.C. // Environmental Health Perspectives. -1998. -106, № 12. -P. 775–792.
- Lockhart W.L., Muir D.C.G., Wilkinson P. et al. // Water Quality Res. J. of Canada. -1998. -33, № 4. -P. 489—509.
- Buckland S.J., Jones P.D., Ellis H.K., Salter R.T. // Report Ministry for the Environment. -Wellington, 1998. -P. 40—48.
- 9. Scobie S., Buckland S.J., Ellis H.K., Salter R.T. // Ibid. -Wellington, 1999. -P. 35-40.

Поступила 04.05.2006

УДК 543.544414.7:543.068.52:543.422:546.48

Є.Є. Костенко

ВИЗНАЧЕННЯ Cd (II) ЗА ДОПОМОГОЮ МЕТИЛТИМОЛОВОГО СИНЬОГО МЕТОДОМ ТВЕРДОФАЗНОЇ СПЕКТРОФОТОМЕТРІЇ

Досліджено взаємодію Cd (II) з метилтимоловим синім у фазі полімерного аніонообмінника. Встановлено оптимальні умови реакції і склад утворюваного на поверхні комплексу, запропоновано схему взаємодії на межі розділу фаз. Розроблено методику твердофазного спектрофотометричного визначення Cd (II) з межею виявлення 0.22 мкг/см³.

Висока токсичність йонів кадмію (II) та його сполук, ГДК яких становить 0.01—1.0 мг/кг для різних харчових продуктів [1], зумовлює необхідність розробки високочутливих, селективних та експресних методів їх визначення в цих об'єктах.

© Є.Є. Костенко, 2007

Основними недоліками стандартних методів визначення мікрокількостей кадмію (II) в харчових продуктах є невисока чутливість, а також низька вибірковість (фотометричний) і складна пробопідготовка (атомно-абсорбційний, полярографі-