УДК 546.185.712:543.226

Н.М. Антрапцева, Н.В. Ткачова

ТВЕРДОФАЗНІ ТЕРМІЧНІ ПЕРЕТВОРЕННЯ Mn₂P₂O₇·5H₂O

Встановлено послідовність фізико-хімічних і структурних перетворень, що супроводжують термоліз Мn₂P₂O₇·5H₂O. Конкретизовано склад, інтервали утворення та термічної стабільності продуктів його часткового і повного зневоднення. Ідентифіковано кінцевий продукт термолізу — безводний дифосфат складу Mn₂P₂O₇ (моноклінна сингонія, пр. гр. *C2/m*, *Z*=2). Показано, що його утворення реалізується за двома напрямками. Перший — передбачає термічну дегідратацію вихідного дифосфату (до 70 %). Згідно з другим напрямком, до 30 % Mn₂P₂O₇ утворюється внаслідок твердофазної взаємодії продуктів часткового зневоднення.

Продукти повного та часткового зневоднення гідратованого манган (II) дифосфату широко застосовують як основу для створення сучасних неорганічних матеріалів — активних каталізаторів, пігментів, стекол, емалей, термочутливих фарб, люмінесцентних матеріалів ін. [1—4].

Для керування цим процесом і одержання матеріалів високої якості необхідне знання послідовності термічних перетворень, що супроводжують зневоднення кристалогідрату, складу та температурних інтервалів утворення проміжних фаз і кінцевого продукту.

Окремі питання термічної поведінки Mn₂P₂O₇·5H₂O розглядалися під час дослідження термічної дегідратації подвійних дифосфатів мангану (II) і лужних металів [5]. Зокрема, встановлено температури теплових ефектів на кривій диференціально-термічного аналізу, що відповідають дегідратації кристалогідрату, і температурний інтервал видалення основної маси води (523-573 К). В складі продуктів часткового зневоднення, одержаних при 573 К, відмічено наявність полімерних фосфатів, в тому числі тетрафосфату. Повністю зневоднений дифосфат ідентифіковано як α-Мп₂Р₂О₇.

Однак результати наведеного в [5] якісного хроматографічного аналізу не можна визнати надійними, оскільки в роботах, присвячених дослідженню термічної дегідратації гідратованих середніх дифосфатів двовалентних металів (магнію, кобальту, нікелю, цинку), утворення конденсованих фосфатів, вищих за трифосфат, не встановлено [1, 2, 6, 8]. Ідентифікація безводного $Mn_2P_2O_7$ також потребує уточнення тому, що суперечить даним [3, 7]. Відповідно до [3], безводний манган (II) дифосфат — єдиний з ряду ізоструктурних дифосфатів (Mg, Mn, Co, Ni, Zn) має одну форму. В роботі [7] наведено відомості також про одну форму $Mn_2P_2O_7$, але високотемпературну — β - $Mn_2P_2O_7$. Цілеспрямовані дослідження термічних перетворень $Mn_2P_2O_7$ ·5H₂O в літературі відсутні.

Мета даної роботи — встановити послідовність термічних перетворень, що супроводжують термоліз $Mn_2P_2O_75H_2O$, склад та температурні інтервали утворення і термічної стабільності продуктів його часткового та повного зневоднення.

 $Mn_2P_2O_7$:5H₂O синтезували осадженням Mn^{2+} з водного розчину сульфату дифосфат-йоном, використовуючи в якості осаджувача водний розчин калій дифосфату [9]. Термоліз досліджували в інтервалі температур 298—1273 К в умовах динамічного (дериватограф Q-1500D, тиглі керамічні, еталон — свіжепрокалений Al₂O₃, наважка зразка — 300 мг, швидкість нагрівання 5, 10 град./хв) і квазіїзотермічного (конічний тримач проб, наважка зразка — 200 мг, швидкість нагрівання 3 град./хв) режимів нагрівання.

Продукти термообробки, отримані при температурах, що відповідають тепловим ефектам на кривих ДТА, аналізували, використовуючи комплекс методів аналізу: хімічний, рентгенофазовий (ДРОН-4М, з'єднаний з обчислювальним комплексом на базі ЕОМ типу ІВМ РС/АТ 486, FeK_{α} , внутрішній стандарт NaCl), ІЧ-спектроскопію (Nexus-470; таблетування фіксованої наважки зразку в матрицю KBr). Аніонний склад продуктів часткового і повного зневоднення встановлювали за допомогою кількісної хроматографії на папері [2].

Як показали результати диференціально-тер-

[©] Н.М. Антрапцева, Н.В. Ткачова, 2007

Рис. 1. Результати комплексного дослідження термолізу $Mn_2P_2O_7$; $5H_2O$: a — криві термічного аналізу в умовах динамічного (1) і квазіїзотермічного (2) режимів; δ — температурна залежність вмісту ди- (1) і монофосфатів (2) у складі продуктів термолізу; -о- — місце відбирання проб зразку для аналізу.

мічного аналізу, дифосфат складу $Mn_2P_2O_7$:5H₂O стійкий при нагріванні на повітрі зі швидкістю 5 град./хв до 328 К (рис. 1). Подальше підвищення температури до 603 К супроводжується втратою маси зразка, яка відбувається в три основні стадії. На термогравіметричній (ТГ) кривій вони реєструються трьома чіткими ступенями, що відповідають видаленню 1.44, 2.52 і 0.82 моль H₂O відповідно.

На кривій ДТА перша (328—383 К) і друга (383—463 К) стадії дегідратації реєструються ендотермічними ефектами з максимумами швидкості процесу при 373 і 433 К. На кривій ТГ вони розділяються доволі чітким перегином та зміною кута її нахилу. Продукт часткового зневоднення Mn₂P₂O₇·5H₂O, що утворюється після видалення 3.96 моль H₂O (при 463 K), стійкий при нагріванні до 503 К. Процеси, що відбуваються за його подальшого нагрівання, фіксуються достатньо складними змінами в ході термічних кривих (особливо ТГ). Нагріванню до 573 К відповідає доволі положиста ділянка, в межах якої відбувається видалення 0.29 моль H₂O. При нагріванні зразка до 603 К вона переходить у чіткий ступінь втрати маси (0.46 моль), який на кривій ДТА описується ендотермічним ефектом з максимумом процесу при 588 К. Термообробка продуктів зневоднення в інтервалі 603—818 К супроводжується видаленням останніх 0.22 моль кристалогідратної води. На кривій ДТА в цьому температурному інтервалі помітних змін не реєструється.

В умовах квазірівноважної термогравіметрії характер зневоднення Mn₂P₂O₇·5H₂O у цілому зберігається. Дві перші стадії видалення води фіксуються в інтервалах температур 343 —370 і 370—450 К двома добре розділеними чіткими стадіями втрати маси. Третя стадія відбувається без стабілізації температури і завершується при 670 К. Інтерпретація ходу кривих на кожній з них, відповідно до класифікації процесів у квазіїзотермічних умовах [10], свідчить про утворення на першій стадії сполуки змінного гідратного складу. Найбільш складною є друга стадія дегідратації, яка фіксується двома різними за характером ділянками ТГ-кривої. Перша з них відповідає видаленню в інтер-

вол. перша з них відповідає видаленню в птервалі 370—400 К 1.36 моль H_2O і за процесом аналогічна попередньому. Видалення наступної порції води (1.12 моль при 400—450 К) ускладнюється процесами деструкції і поліконденсації.

Комплексним аналізом продуктів термолізу Mn₂P₂O₇·5H₂O, отриманих на кожній стадії його дегідратації, встановлено, що під час видалення 1.44 моль H₂O (перша стадія дегідратації) кристалічна структура вихідного кристалогідрату в цілому зберігається. На рентгенограмі зразку фіксуються дифракційні відображення, набір яких характерний для Mn₂P₂O₇·5H₂O, але значення міжплощинних відстаней дещо зменшуються (рис. 2), вказуючи на утворення дифосфату меншої гідратності. За даними хімічного аналізу, його склад відповідає дифосфату Mn₂P₂O₇·3.56H₂O. В одержаному для нього ІЧ-спектрі поглинання в області, характеристичній для коливань дифосфатного аніона, лишаються практично незмінними. Змін зазнають смуги коливань молекул води: зменшується їх інтенсивність, зростає ширина сумарної огинаючої смуг в області v (ОН), значення хвильових чисел їх максимумів зміщується у високочастотну область спектра, зникає плече на смузі δ (H₂O) (табл. 1).

Встановлені термічні перетворення свідчать про перебудову Н-зв'язків у структурі дифосфату і збереження основного структурного мотиву його кристалічної решітки. Видалення з Mn₂P₂O₇· ·5H₂O 1.44 моль кристалізаційної води на першій стадії відбувається за молекулярним механізмом:

$$Mn_2P_2O_7{\cdot}5H_2O \xrightarrow[-1.44 \text{ Mojb} H_2O]{} Mn_2P_2O_7{\cdot}3.56H_2O \ .$$

Більш складні термічні та структурні перетворення реєструються при нагріванні $Mn_2P_2O_7 \cdot 5H_2O$ до температур, що відповідають видаленню 3.96 моль H_2O (друга стадія дегідратації). Аналіз одержаного при 463 К продукту часткового зневоднення характеризує його як складну гетерофазну суміш декількох твердих фаз. Однією з них є дифосфат меншої гідратності складу $Mn_2P_2O_7 \cdot 2H_2O$, однозначно ідентифікований за відомими рентгенометричними даними [11]. В ІЧ-спектрі про його утворення свідчить зменшення майже вдвічі інтенсивності та істотне уширення смуги валентних коливань v(OH), що відбувається на фоні збереження поглинань дифосфатного аніона (табл. 1). $Mn_2P_2O_7 \cdot 2H_2O$ складає основну части-

Рис. 2. Рентгенограми $Mn_2P_2O_7$ ·5H₂O (1) і продуктів його термолізу, одержаних при 383 (2), 463 (3), 573 (4), 603 (5) і 818 К (6).

ну продуктів зневоднення. Його кристалічна структура формується внаслідок перебудови структури вихідного дифосфату, що фіксується на рентгенограмах змінами як у наборі дифракційних відображень, так і в їх інтенсивності (рис. 2). Загальна дифузність рентгенівського спектру зразка, одержаного нагріванням до 463 К, та зменшення числа дифракційних відображень — ознака наявності рентгеноаморфної фази. Цією фазою, за результатами кількісної хроматографії на папері (табл. 2), є другий компонент продуктів зневоднення — монофосфат (8.7 % мас. у перерахунку на P_2O_5), що присутній у значно меншій кількості, ніж кристалічний дифосфат (38.2 % мас.). Він утворюється внаслідок термічної деструкції дифосфатного аніона, яка, відповідно до [12], може бути пов'язана з гідролітичним руйнуванням зв'язків Р-О-Р за схемою:

$$P_2 O_7^{4-} \xrightarrow{+HOH} 2HPO_4^{2-}.$$
 (1)

В ІЧ-спектрі ці перетворення реєструються змінами коливань аніонної підрешітки: максимуми смуг $v_{as}(PO_3) - 1084 \text{ см}^{-1}, v_{as}(POP) - 999 \text{ см}^{-1}$ і v_s (POP) — 715 см⁻¹ зміщуються у високочастотну область спектра (табл. 1), що характеризує зменшення кута РОР дифосфатного аніона, пов'язане з пониженням симетрії йона $P_2O_7^{4-}$ [7]. Крім того, в області спектра, характеристичній для коливань δ (P–OH), з'являється нова смуга поглинання з максимумом 1200 см⁻¹.

Такі зміни у складі продуктів термолізу свідчать про те, що поряд з молекулярним реалізується дисоціативний механізм видалення води, який приводить до внутрішньомолекулярного гідролізу солі — явища широко відомого для монофосфатів [13]. Першою стадією цього процесу є протолітична дисоціація координаційно зв'язаної води і перенесення протона по лінії найбільш міцного Н-зв'язку до аніону. Результатом цього процесу є утворення кислих і основних груп типу P-OH і M-OH, які за подальшого підвищення температури здатні до процесів поліконденсації з утворенням полімерних фосфатів та оксидів [2, 8]. На користь реалізації цього механізму видалення води свідчить поглинання з максимумом 1200 см⁻¹ (табл. 1), яке, відповідно до [7], співвідноситься з деформаційними коливаннями зв'язків б (Р-OH) йонів H₂P₂O₇²⁻.

Руйнування структури кристалічного дифосфату, початок якого відзначений на другій стадії термолізу (383—463 К), продовжується при подальшому підвищенні температури. Тверда фаза,

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2007. Т. 73, № 10

Таблиця 1

Хвильові числа максимумів смуг поглинання (см $^{-1}$) в ІЧ-спектрах $Mn_2P_2O_7$, 5H₂O і продуктах його термолізу

	Mı	Mn ₂ P ₂ O ₇	Віднесення			
298 K	383 K	463 K	573 K	603 K	818–1273 K	поглинання
3569	3587	3583			_	ν(H ₂ O)
_			3450	3450	_	. 2
3362	3373	3356			—	
3220	3221	3207				
3118	3117	_	_	_	—	
1658	1657	1656	_	_		δ(H ₂ O)
1644	1641	1638 пл.	1628	1639	_	. 2
1640 пл.		_	_	—	—	
—		1200				δ(P-OH)
1134	1134	1135	1140	1153	1146 пл.	v_{as} (PO ₃)
1082	1084	1089	1090	1086	1095	us 5
1041	1040	1040	1039 пл.		_	$v_{s}(PO_{3})$
1030 пл.		_	_			5 5
998	999	1007	_	—	—	v_{as} (POP)
930	932	932	943	978	982	45
907	908	907	918 пл.	964		
716	715	722	739	716		v_{s} (POP)
614	614 пл.	614 пл.		617 пл.	604 пл.	δ(PO)
570	573 пл.	580 пл.	_			
548	549	549	559	571	573	
_		_	540 пл.	530	528	
481	481	483	482	503 пл.	—	
—	_	—	467 пл.		—	M-0?
—	—	—	436	422	424	

Таблиця 2 Аніонний склад продуктів термолізу Мп₂P₂O₇·5H₂O

	Втрати маси,	Р ₂ О ₅ , % мас.	Вміст фосфатів, % мас.* у вигляді		
1, К	моль Н ₂ О		моно-	ди-	трифос- фату
298	_	37.62	1.5	36.1	_
383	1.44	40.79	2.3	38.5	
463	3.96	46.92	8.7	38.2	_
573	4.32	47.94	11.5	32.1	4.3
603	4.78	49.32	3.9	44.1	1.3
818	5.0	50.00	1.2	48.8	_
1273	5.0	50.01	1.4	48.6	

* У перерахунку на P_2O_5 .

одержана при 573 К, практично повністю рентгеноаморфна і фіксується на рентгенограмах невеликою кількістю малоінтенсивних дифракційних відображень (рис. 2). Аморфізація продуктів термолізу відображується і в їх ІЧ-спектрах: смуги поглинання у всьому діапазоні спектра уширюються і стають розмитими, зменшується їх загальна кількість. Дублетні смуги $v_{as}(PO_3)$ і $v_{as}(POP)$ з частотами 1135, 1089 см⁻¹ і 932, 907 см⁻¹, відповідно, перетворюються у синглетні з максимумами 1090 і 943 см⁻¹; смуги $v_{as}(POP) - 1007 \text{ см}^{-1}, \delta(PO) -$ 614, 580 см⁻¹ зникають; смуга поглинання v.(POP) зміщується у високочастотну область спектра (табл. 1). Зміни, що спостерігаються в ІЧ-спектрі в області коливань Р₂О₇-групи, характеризують подальше зменшення куга РОР і зниження симетрії дифосфатного аніона.

Аніонний склад продуктів термолізу при 573 К відрізняється найбільшою складністю (табл. 2): поряд з моно- (11.5 % мас.) і дифосфатним аніоном (32.1 % мас.) в її складі наявний фосфат з більшим ступенем поліконденсації — трифосфат (4.3 % мас.). Порівняльний аналіз кількісних співвідношень фосфатних аніонів у продуктах термолізу, одержаних при 463 та 573 К (вміст дифосфату зменшується на 6.1 % мас., монофосфату — збільшується на 2.8 % мас., з'являється трифосфат — 4.3 % мас.), свідчить про те,

що в цьому температурному інтервалі переважають процеси аніонної конденсації. Ступінь термічної деструкції дифосфатного аніона складає 16 %, що адекватно участі монофосфатів у процесах конденсації (рис. 1, δ).

Присутність монофосфату у кількостях менших, ніж це випливає із схеми (1), характеризує його участь у процесах аніонної конденсації як з моно-, так і з дифосфатним аніоном:

$$2HPO_4^{2-} \longrightarrow P_2O_7^{4-} + H_2O,$$

$$4HPO_4^{2-} + H_2P_2O_7^{2-} \longrightarrow 2P_3O_{10}^{5-} + 3H_2O.$$

Видалення чергової порції кристалогідратної води (0.46 моль у температурному інтервалі 573—603 К) супроводжується спрощенням аніонного складу проміжних продуктів термолізу внаслідок твердофазної взаємодії трифосфату і оксиду, що відбувається за схемою:

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2007. Т. 73, № 10

$$2Mn_{5/2}P_3O_{10} + MnO \longrightarrow 3Mn_2P_2O_7$$
.

Результатом цих перетворень є утворення кінцевого продукту термолізу — кристалічного безводного манган (II) дифосфату. Формування його структури фіксується на рентгеногра-

мах рядом найбільш інтенсивних дифракційних відображень ($d_{\rm експ}$ 3.08, 2.95, 2.85 Å), що відповідають відомим для $Mn_2P_2O_7$ [14]. Загальна спектральна картина також зазнає суттєвих змін: вузька синглетна смуга поглинання v_s(POP) — 739 см⁻¹ перетворюється на слабку широку смугу з максимумом 716 см⁻¹; смуга поглинання, характеристична для деформаційних коливань зв'язків Р–О кінцевих PO₃-груп (559 см⁻¹), розщеплюється на дві чіткі смуги (571 і 530 см⁻¹) і плече 617 см⁻¹ (табл. 1).

Остаточна кількість кристалогідратної води (0.22 моль) видаляється в доволі широкому температурному інтервалі — 603-818 К (рис. 1). На рентгенограмах повністю зневодненого кристалічного дифосфату складу $Mn_2P_2O_7$, отриманого при 818 К, фіксується зростання кількості дифракційних відображень (у порівнянні з дифосфатом, одержаним при 603 К), інтенсивність яких зростає при подальшому нагріванні до 1273 К. Встановлені змі-

ни свідчать про удосконалення кристалічної структури $Mn_2P_2O_7$ під час нагрівання від 603 до 818 К і його термічну стабільність в інтервалі температур 603—1273 К.

В ІЧ-спектрі $Mn_2P_2O_7$ смуги поглинання в області коливань молекул води відсутні, реєструються лише три інтенсивні смуги, що відповідають коливанням дифосфатного аніона: дві з них синглетні з максимумами $v_{as}(PO_3) - 1095 \text{ см}^{-1}$ та $v_{as}(POP) - 982 \text{ см}^{-1}$, одна — дублетна $\delta(PO) - 573$ та 528 см⁻¹. Ці смуги, відповідно до [7], характерні для кристалічного безводного $Mn_2P_2O_7$. Відсутність в ІЧ-спектрі $Mn_2P_2O_7$ смуги $v_s(POP)$ в області 720 ± 20 см⁻¹ свідчить про центросиметричну конфігурацію йону $P_2O_7^{-4-1}$ (кут місткового зв'язку Р–О–Р становить практично 180°).

Кристалізується $Mn_2P_2O_7$ в моноклінній сингонії (просторова група C2/m, Z=2). Розраховані для нього параметри елементарної комірки становлять, нм: a = 0.6635 (3), b = 0.8590 (4), c = 0.4545

(3); $\beta = 102.72$ (9) град; $V = 0.2527 \text{ нм}^3$ і добре узгоджуються з відомими для $\text{Mn}_2\text{P}_2\text{O}_7$ [14].

Загальну схему термічних перетворень, що супроводжують утворення Mn₂P₂O₇, з деякими припущеннями можна подати у такий спосіб:

Таким чином, утворення $Mn_2P_2O_7$ під час зневоднення $Mn_2P_2O_7$; $5H_2O$ реалізується за двома напрямками. Перший — утворення до 70 % $Mn_2P_2O_7$ в результаті термічної дегідратації гідратованого дифосфату, другий — до 30 % за рахунок твердофазної взаємодії продуктів часткового зневоднення.

РЕЗЮМЕ. Установлена последовательность физико-химических и структурных превращений, сопровождающих термолиз $Mn_2P_2O_7$ - $5H_2O$. Конкретизирован состав, интервалы образования и термической стабильности продуктов его частичного и полного обезвоживания. Идентифицирован конечный продукт термолиза – безводный дифосфат состава $Mn_2P_2O_7$ (моноклинная сингония, пр. гр *С 2/m*, *Z*=2). Показано, что его образование реализуется по двум направлениям. Первое – предусматривает термическую дегидратацию исходного дифосфата (до 70 %). Согласно второму направлению, до 30 % $Mn_2P_2O_7$ образуется за счет твердофазного взаимодействия промежуточных продуктов термолиза. SUMMARY. The sequence of physical and chemical and the structural transfomations, which accompany the thermolysis $Mn_2P_2O_7$; $5H_2O$, is established. The composition, intervals of formation and thermal stability of products of its partial and full dehydration is concretized. The final product of the thermolysis is waterless diphosphate of composition $Mn_2P_2O_7$ (monoclinic symmetry, space group C2/m, Z=2). It is shown, that its formation is realized on two directions. The first — provides thermal dehydration of initial diphosphate (up to 70%). According to the second direction, up to 30% of $Mn_2P_2O_7$ is formed for the account solidphase interactions of intermediate products of the thermolysis.

- 1. Каназава Т. Неорганические фосфатные материалы: Пер. с англ. -Киев: Наук. думка, 1998.
- 2. *Щегров Л.Н.* Фосфаты двухвалентных металлов. -Киев: Наук. думка, 1987.
- 3. Констант З.А., Диндуне А.П. Фосфаты двухвалентных металлов. -Рига: Зинатне, 1987.
- 4. *Чудинова Н.Н., Мурашова Е.В., Захарова Б.С. //* Журн. неорган. химии. -1998. -**43**, № 6. -С. 885—889.
- 5. Голощапов М.В., Мартыненко Б.В. // Неорган. материалы. -1976. -12, № 3. -С. 485—490.

Національний аграрний університет, Київ

- Лепилина Р.Г., Смирнова Н.М. Термограммы неорганических фосфатных соединений: Справочник. -Л.: Наука, 1984.
- 7. Мельникова Р.Я., Печковский В.В., Дзюба Е.Д., Малашонок И.Е. Атлас инфракрасных спектров фосфатов. Конденсированные фосфаты. -М.: Наука, 1985.
- 8. *Лавров А.В., Быканова Т.А.* // Неорган. материалы. -1979. -15, № 9. -С. 1653—1657.
- 9. Antraptseva N.M., Tkachova N.V. // Proc. The 4th Int. Conf. for Conveying and Handling of Particulate Solids. -Vol. 1. -Budapest (Hungary). -2003. -P. 2.29—2.34.
- 10. Логвиненко В.А., Паулик Ф., Паулик И. Квазиравновесная термогравиметрия в современной неорганической химии. -Новосибирск: Наука, 1989.
- 11. *Powder* Diffraction Fill. JCPDS. -Swarthmere, USA: Int. Centre for Diffraction Data, 1986. -k.k. 71-0760.
- 12. Продан Е.А., Павлюченко М.М., Продан С.А. Закономерности термических реакций. -М.: Наука и техника, 1976.
- 13. *Щегров Л.Н.* // Журн. неорган. химии. -1986. -**31**, № 11. -С. 2794—2801.
- 14. *Powder* Diffraction Fill. JCPDS. -Swarthmere, USA: Int. Centre for Diffraction Data, 1986. -k. 77-1244.

Надійшла 21.12.2006

УДК 544.726:661.686

А.А. Эннан, В.И. Байденко

МЕХАНИЗМ СОРБЦИИ ТЕТРАФТОРИДА КРЕМНИЯ АНИОНИТАМИ

Установлена взаимосвязь эффективности сорбции SiF₄ и природы связи воды с волокнистым ионитом. Показано, что сорбция газа возможна в условиях формирования полислоев молекул воды, энергия связи которых с ионитом соизмерима с энергией конденсации влаги, когда в ионите содержится "свободная" — обычная вода. Кремневая кислота в зависимости от физической формы ионита либо распределяется равномерно в его фазе, либо полимеризуется на поверхности до состояния геля, препятствующего свободному массопереносу продуктов гидролиза SiF₄ к ионогенным центрам. Состав продуктов сорбции, поглотительная емкость анионитов зависят от их физико-химических свойств.

Обмен ионов в системе ионит—раствор электролита, как известно [1], многостадийный процесс, скорость которого лимитируется стадиями их взаимодиффузии в прилегающем слое раствора и внутри зерен ионита. Более сложным процессом является сорбция ионитами газов, протекающая на границах раздела трех фаз (Г—Ж—Т) в специфических условиях, например, эксплуатации установок санитарной очистки воздуха и средств индивидуальной защиты органов дыхания (СИЗОД), при которых изменяются концентрации улавливаемых компонентов в газовой

© А.А. Эннан, В.И. Байденко, 2007

и жидкой фазах, соотношение фаз Г—Ж, реализуются разнообразные химические реакции [2, 3]. Тем не менее при исследованиях механизма сорбции кислых и основных газов, как правило, практикуется упрощенный подход к решению поставленной задачи. Процесс сорбции трактуется как двухстадийный — растворение газа во влаге ионита с образованием ионов и собственно ионный обмен.

Судя по данным [2, 3], вода во всех случаях является не только реакционной средой, где осуществляются массообменные процессы, но и активным, участвующим в реакциях реагентом. Более