хим. журн. -1995. -61, № 11. -С. 11—14.

- 7. Голованева И.Ф., Штеменко А.В., Котельникова А.С., Мисаилова Т.В. // Журн. неорган. химии. -1986. -31. -С. 911—916.
- 8. Шаповал А.Н., Штеменко А.В. // Вопросы химии

Украинский государственный химико-технологический университет, Днепропетровск

и хим. технол. -2005. -№ 3. -С. 32, 33.

- Османов Н.С., Мисаилова Т.В., Котельникова А.С. и др. // Журн. неорган. химии. -1988. -33. -С. 628—635.
- 10. Синякова Г.С., Панова Л.М., Арт Д.Р. // Изв. АН Латв ССР. Сер. хим. -1975. -№ 2. -С. 141, 142.

Поступила 12.10.2005

УДК 536.63'722:666.281

Н.П. Горбачук, С.Н. Кириенко, В.Р. Сидорко, И.М. Обушенко ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА Er₅Si₃ В ШИРОКОЙ ОБЛАСТИ ТЕМПЕРАТУР

Впервые методами адиабатической калориметрии и смешения исследована теплоемкость и энтальпия Er₅Si₃ в температурном интервале 53—2304 К. Рассчитаны стандартные значения и температурные зависимости основных термодинамических функций соединения, определены энтальпия и энтропия плавления.

Среди тугоплавких соединений редкоземельных металлов (РЗМ) особое место занимают силициды, с уникальными физическими и физикохимическими свойствами, создающие надежную основу для применения их в различных областях народного хозяйства — металлургии, химической и керамической отраслях промышленности, микроэлектронике и т.д. Практическая реализация возможностей этих соединений, обоснование выбора составов сплавов с набором необходимых характеристик требует знания природы физико-химического взаимодействия компонентов в широких температурных интервалах, характера их поведения в условиях эксплуатации и, особенно, при повышенных температурах. Такую информацию предоставляют диаграммы состояния и термодинамические характеристики. Систематическое исследование фазовых равновесий бинарных систем РЗМ с кремнием, начатое в 70-80 годах прошлого столетия, стимулировало исследования термодинамических свойств. Однако до настоящего времени информация о термодинамических характеристиках силицидов РЗМ, и особенно иттриевой подгруппы, в частности эрбия, ограничена данными [1] о предельной энтальпии растворения Er в жидком кремнии, составляющей –173 кДж·моль⁻¹ и полученными в работе [2] величинами стандартных энтальпий образования $\Delta_{H}^{O}(\kappa \Box w \cdot mons^{-1} \cdot ar)$: -70.7 ± 3.1 (Er₅Si₃), -84.9 ± 2.5 (ErSi), -62.6 ± 1.8 (ErSi₂). Сведения о теплоемкости, энтальпии и других характеристиках в литературе отсутствуют.

Цель настоящей работы — экспериментальное исследование теплоемкости, энтальпии и расчет термодинамических функций низшего силицида эрбия Er₅Si₃ в диапазоне температур от жидкого азота до плавления и жидкой фазы. Образец для исследований получен методом дуговой плавки в среде аргона из элементов Si (99.99 % мас.) и Er (99.80 % мас.), взятых в стехиометрическом соотношении. Гомогенизирующий отжиг проводился в течение 20 ч при температуре 1150 °С и 100 ч — при 1500 °С в среде аргона. Аттестация образца проведена методами металлографического и рентгенофазового анализов. Рентгеновская дифрактограмма порошка Er₅Si₂ (рис. 1) получена на установке ДРОН-3 с вращением образца и записью по точкам в персональную ЭВМ. Съемка проводилась в Ка-излучении меди при силе тока на рентгеновской трубке 30 мА с шагом сканирования 0.03° и периодом времени для подсчета импульсов в точке, равном 5 с.

Рис. 1. Дифрактограмма Er₅Si₃.

© Н.П. Горбачук, С.Н. Кириенко, В.Р. Сидорко, И.М. Обушенко, 2006

Для идентификации фаз использовали программу PowderCell, с помощью которой были рассчитаны теоретические дифрактограммы по кристаллографическим данным, приведенным в монографии [3] и оригинальной работе [4]. Было установлено, что выплавленный и отожженный силицид, зашихтованный как Er_5Si_3 , имеет структурный тип Mn_5Si_3 и содержит около 4 % мас. Er_5Si_4 (тип Sm_5Ge_4). Периоды решетки Er_5Si_3 составили: a=0.8307, b=0.6225 нм.

Теплоемкость образца Er₅Si₃ (табл. 1) массой 17.19 г измерена адиабатическим методом с периодическим вводом тепла на низкотемпературной образцовой теплофизической установке (УНТО) [5], аттестованной по α-Al₂O₃ (свидетельство № 147-71 по государственному реестру мер и измерительных приборов СССР, раздел "государственные образцы"). Погрешность измерений не превышала 0.4 %. Отметим, что экспериментальные данные не подвергали коррекции на наличие другой фазы, поскольку погрешность, вносимая малым количеством примесной фазы в измеренную теплоемкость, сравнима с погрешностью определения последней. Из данных табл. 1 видно, что температурная зависимость теплоемкости Er_5Si_3 имеет аномалию при 71.9 ± 0.4 К. Авторами работы [6], на основании полученных кривых зависимости намагниченности Er₅Si₃ в полях разной напряженности от температуры, сделан вывод о существовании в этом соединении, как и в других редкоземельных металлах и сплавах на их основе, конкурирующих обменных взаимодействий, приводящих к формированию неколлинеарного упорядочения магнитных моментов. Наложение внешнего магнитного поля, превышающего некоторое значение, приводит, как правило, к разрушению такой структуры и установлению ферромагнитного упорядочения (переход типа порядок—порядок). Спин-переориентационный переход такого типа, по мнению авторов [6], обусловливает существование на полевых зависимотях намагниченности $\sigma(H)$ размытых максимумов, постепенно исчезающих при некотором критическом значении напряженности магнитного поля, характеризующего энергетический барьер, разграничивающий условия устойчивости двух магнитных структур.

Зависимость удельного электросопротивления от температуры $\rho(T)$ [6] имеет резкую аномалию. Из расчета по экспериментальным данным величин $d\rho/dt(T)$ определена температура фазового перехода $T_{\rm n}$, равная 15.5 К. Выше этой температуры зависимость $\rho(T)$ нелинейная, что, по всей видимости, связано с наличием в парамагнитной области зависящего от температуры магнитного вклада в электросопротивление, обусловленного *s-f*-рассеянием носителей тока.

Изучение температурных зависимостей намагниченности и электросопротивления в Tb_5Si_3 и Gd_5Si_3 [7], являющихся изоструктурными Er_5Si_3 , показало наличие на этих кривых размытых максимумов подобно найденным для Er_5Si_3 [6]. Наличие слабого гистерезиса на зависимостях $\sigma(H)$ и их нелинейность объясняется сложной магнитной структурой этих соединений. Приведенные в [8] измерения теплоемкости и коэффициента тер-

Таблица 1 Экспериментальные значения теплоемкости (Дж·моль⁻¹·К⁻¹) Er₅Si₂

r			v1 ···) 5 5		-	
<i>Т</i> , К	C ^o p	<i>Т</i> , К	C ^o p	<i>Т</i> , К	C ^o p	<i>Т</i> , К	C ^o p
53.04 54.46 55.85 56.57 57.10 59.51 60.34 60.44 63.03 63.50 66.10 66.23	125.01 127.50 129.02 130.23 130.72 134.40 135.35 135.60 139.90 140.50 144.51 144.76	69.20 70.16 71.54 72.28 73.01 74.62 77.15 78.40 79.79 82.72 86.16 92.11	151.26 156.49 166.16 160.03 154.02 153.56 153.69 154.03 154.43 155.75 156.49 158.80	108.50 115.95 124.33 132.49 139.32 145.91 153.93 162.27 170.07 177.01 180.24 185.22	166.82 169.31 173.34 176.75 180.43 181.63 183.28 187.78 189.63 190.77 191.92 103.50	197.52 208.21 213.88 214.47 222.79 231.77 240.09 248.36 257.77 267.70 276.70 276.70	195.16 197.09 198.56 198.61 200.22 201.60 203.02 204.32 206.01 207.47 208.50 200.40
68.31	144.76 148.47	92.11 100.51	158.80 162.29	185.22 186.44	193.50 193.12	285.44 293.12	209.40 210.08

мического расширения (к.т.р.) на образцах, исследованных в [7], позволили установить наличие на кривых $C_{\rm p}(T)$ и $\alpha(T)$ двух последовательных фазовых превращений у Tb₅Si₃. Причем первый переход, являющийся, по мнению авторов [8], переходом типа порядок — порядок с перестройкой спиральной антиферромагнитной структуры в простую антиферромагнитную, реализуется при температуре, соответствующей изгибам на зависимостях намагниченности $\sigma(T)$ и удельного электросопротивления $\rho(T)$ [7]. Разупорядочение антиферромагнитной структуры происходит в точке Нееля, равной 73 ± 0.5 К, по данным по теплоемкости и $T_{n} = 76 \pm 3$ К — по данным по к.т.р. Из указанного выше следует, что аномалия на $C_n^0(T)$, обнаруженная в настоящей работе при $T=71.9 \pm 0.4$ К, вероятно, обусловлена переходом из упорядоченной магнитной структуры в разупорядоченную, а при 15.5 К [6] — переходом типа порядок-порядок.

Сглаживание экспериментальных данных C_p^o (табл. 1), соответствующих магнитноразупорядоченному состоянию (92.11—293.12 К), проводили методом скользящей аппроксимации кубическими многочленами с весовыми коэффициентами [5]. Среднее относительное отклонение экспериментальных величин от сглаженной кривой составило 0.17 %. Экстраполяцию к 0 К сглаженных величин теплоемкости проводили с использованием модельного уравнения [5]:

$$C^{0}_{p}(T) = \gamma T + D\left(\frac{\Theta_{D}}{T}\right) + \sum_{i=1}^{n-1} E_{i}\left(\frac{\Theta_{E_{i}}}{T}\right), \quad (1)$$

где γ — коэффициент электронной теплоемкости, $\left(\frac{\Theta_D}{T}\right)$ и $\sum_{i=1}^{n-1} E_i \left(\frac{\Theta_{E_i}}{T}\right)$ — теплоемкости

по Дебаю и Эйнштейну соответственно, n — количество атомов в химической формуле вещества. Параметры уравнения (1), составившие 29.5·10⁻³ Дж·моль⁻¹·K⁻² (γ), 117 К (Θ_D), 96, 95, 372 К (Θ_E), являются подгоночными, поскольку подбором их добивались минимизации отклонения рассчитанных по уравнению (1) и сглаженных значений теплоемкости (рис. 2), составившего в среднем 0.51 %.

Составляющая теплоемкости Er_5Si_3 , обусловленная магнитным превращением $C_{\rm M}(T)$, найдена как разность экспериментальных и рассчитанных по уравнению (1) величин. На

Рис. 2. Теплоемкость Er₅Si₃: "-" — расчет по уравнению (1); "+" — магнитный вклад; "о" — сглаженные значения.

основании зависимостей $C_{\rm M}(T)/T$ и $C_{\rm M}(T)$ определены магнитный вклад в энтропию и энтальпию, составившие 5.9 Дж·моль⁻¹·K⁻¹ и 331 Дж. моль⁻¹. Рассчитанные по известным термодинамическим соотношениям значения термодинамических функций при 298.15 К с учетом магнитного вклада составили: $H^{\rm o}(T) - H^{\rm o}(0 \text{ K}) = 48422$ $\pm 245 \text{ Дж·моль}^{-1}$, $C_{\rm p}^{\rm o}(T) = 210.51 \pm 0.84 \text{ Дж·моль}^{-1} \cdot \text{K}^{-1}$, $S^{\rm o}(T) = 392.9 \pm 3.2 \text{ Дж·моль}^{-1} \cdot \text{K}^{-1}$, $\Phi^{\rm o}(T) = 230.3 \pm 3.5 \text{ Дж·моль}^{-1} \cdot \text{K}^{-1}$.

Энтальпия Er_5Si_3 (табл. 2) измерена методом смешения на высокотемпературном дифференциальном калориметре и высокотемпературной калориметрической установке [9] с погрешностью, не превышающей 1.5 %. Из табл. 2 видно скачкообразное увеличение этой характеристики в интервале температур 2210—2242 К, что связано с его плавлением. Температура плавления Er_5Si_3 , опре-

Таблица 2 Экспериментальные значения энтальпии (Дж.моль⁻¹) Er₅Si₃

<i>Т</i> , К	$H^{0}(T) - H^{0}(298.15)$	<i>Т</i> , К	$H^{0}(T) - H^{0}(298.15)$	<i>Т</i> , К	$H^{0}(T) - H^{0}(298.15)$
438 463 475 498 532 536 573 610	30013 35266 38614 43186 51012 51962 59977 69519	822 842 897 918 943 985 1002 1100	119159 125162 137676 143564 150186 160317 165253 190812	1628 1735 1827 1910 2034 2117 2173 2184	330435 359775 385808 408194 442632 467146 482091 486490
619 639 668 714 781	71573 76235 83147 93772 110318	1216 1237 1324 1390 1537	220259 225919 249310 266354 304836	2210 2242 2257 2304	493997 834767 854343 879304

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2006. Т. 72, № 11

деленная нами как средняя для этого интервала, составляет 2226 ± 35 К и удовлетворительно соггласуется с приведенной в работе [4] величиной, равной 2221 К. Погрешность определения ее включает и погрешность определения температуры оптическим термометром, составляющую 0.8 % от измеренной величины.

Для аппроксимации экспериментальных значений энтальпии в интервале 438—2226 К использовали уравнение Майера–Келли:

$$H^{0}(T) - H^{0}(298.15 \text{ K}) =$$

= $AT^{2} + BT + CT^{-1} + D$, (2)

а для жидкофазного состояния — линейную зависимость:

$$H^{0}(T) - H^{0}(298.15 \text{ K}) = aT + b.$$
 (3)

Коэффициенты уравнения (2) находили методом наименьших квадратов с наложением двух граничных условий [9]: нулевого значения энтальпии при 298.15 К и стандартного значения теплоемкости, что позволило согласовать низко- и высокотемпературные величины теплоемкости исследуемого силицида. Коэффициенты уравнения (3) найдены с первым граничным условием. С учетом найденных параметров уравнения (2) и (3), аппроксимирующие энтальпию (Дж·моль⁻¹) Ег₅Si₃, принимают вид:

$$H^{0}(T) - H^{0}(298.15 \text{ K}) = 20.958 \cdot 10^{-3} \cdot T^{2} + + 209,05 \cdot T + 980753 \cdot T^{-1} - 67479 ;$$
(4)

$$H^{0}(T) - H^{0}(298.15 \text{ K}) = 434.59 \cdot T - 129573$$
. (5)

При доверительной вероятности 0.95 величины энтальпии, рассчитанные по уравнениям (4) и (5), характеризуются средним относительным доверительным интервалом, равным соответственно 0.70 и 1.73 %. Энтальпия плавления силицида, найденная как разность величин, полученных экстраполяцией уравнений (4) и (5) к температуре плавления, составляет 335.7 ± 18.1 кДжмоль⁻¹, а энтропия — 150.8 ± 8.1 Дж-моль⁻¹.К⁻¹.

На основании уравнения (4), с учетом S^{o} (298.15 К) и известных термодинамических соотношений, получены температурные зависимости теплоемкости, энтропии и приведенной энергии Гиббса (кДж. моль⁻¹. К⁻¹) для интервала 298.15—2226 К:

$$C^{o}_{p}(T) = 41.916 \cdot 10^{-3} \cdot T + 209.05 - 980753 \cdot T^{-2}; \quad (6)$$

$$S^{o}(T) = 41.916 \cdot 10^{-3} \cdot T + 209.05 \cdot \ln T +$$

$$+ 490377 \cdot T^{-2} - 816.28; \quad (7)$$

$$\Phi'(T) = 20.958 \cdot 10^{-3} \cdot T + 209.05 \cdot \ln T + 67749 \cdot T^{-1} - 490377 \cdot T^{-2} - 1025.33 .$$
(8)

Сопоставление полученных в настоящей работе величин теплоемкости Er₅Si₃ с таковыми для изоструктурных силицидов La₅Si₃ [10], Gd₅Si₃ [8, 11] и Ть₅Si₃ [8] показывает, что в парамагнитной области (120—300 К) кривые теплоемкости Gd₅Si₃ и Tb₅Si₃ [8] пересекают найденную нами зависимость $C_{p}^{0}(T)$ при 200 и 240 К соответственно. При этом в начале указанного температурного интервала теплоемкость силицидов гадолиния и тербия выше, чем у Er₅Si₃ на 7 и 9 %, а в конце интервала — ниже на 3 и 1.8 % соответственно. Величины теплоемкости, приведенные в работе [10] для La₅Si₃, ниже, чем у Er₅Si₃ во всем интервале. Причем разница уменьшается от 11 % при 100 К до 1.7 % при 298.15 К. Из данных работы [11] видно превышение C_{p}^{o} у Gd₅Si₃ по сравнению с Er₅Si₃ с уменьшением разницы от 4 до 0.7 % в интервале 100-298.15 К. Основными вкладами, определяющими изобарную теплоемкость в области низких температур для упомянутых выше силицидов, являются электронный, фононный, магнитный и вклад по Шоттки (Tb₅Si₃, Er₅Si₃), обусловленный эффектом Штарка. Отсутствие необходимых данных не позволяет произвести расчет этих вкладов. Однако, очевидно, разницу в уровнях теплоемкости в парамагнитной области La₅Si₃, Gd₅Si₃, с одной стороны, и Tb₅Si₃, Er₅Si₃ — с другой, определяют, в основном, составляющие по Шоттки. Оценка вклада по Шоттки для Er₅Si₃ как разницы величин теплоемкости, рассчитанных для этого соединения по уравнению (1) и таковых для La₅Si₃ [10] в предположении равенства регулярных частей теплоемкости (сумма фононного и электронного вкладов) показывает, что максимум этой составляющей находится при 40-50 К. Это, в свою очередь, указывает на незначительные энергетические параметры расщепления основного состояния иона Er³⁺ полем решетки силицида. Монотонный характер изменения теплоемкости Er₅Si₃, рассчитанный по уравнению (6), вплоть до температуры плавления свидетельствует об отсутствии либо незначительной величине составляющей, обусловленной образованием термических вакансий. Ввиду значительной удаленности (более 6·10³ см⁻¹) ближайшего от основного уровня энергии Er³⁺ [12] вклад в теплоемкость по Шоттки, обусловленный мультиплетной структурой термов, для Er₅Si₃ будет незначителен. Оценка его для двухуровневой системы (основ-

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2006. Т. 72, № 11

ной и первый возбужденный уровень) показывает, что его величина в исследуемой области температур значительно ниже погрешности определения изобарной теплоемкости из данных по энтальпии (4-5%). При температурах выше комнатных, когда фононная составляющая теплоемкости близка к предельному значению (3Rn), основными вкладами, определяющими разницу в величинах изобарной теплоемкости изоструктурных силицидов, являются электронный, ангармонический и в меньшей степени — вклад по Шоттки, обусловленный эффектом Штарка, влияние которого может проявляться вплоть до 1000 К. По-видимому, этим и объясняется более заметный температурный ход теплоемкости у Er₅Si₃ по сравнению с La₅Si₃ [13] и Gd₅Si₃ [11].

Следует отметить, что теплоемкость исследуемого в настоящей работе силицида при плавлении увеличивается на 43.8 %, что можно рассматривать как указание на сильное изменение ближнего порядка в этом соединении в процессе плавления. Увеличение энтальпий плавления силицидов R_5Si_3 (R = P3M) в ряду от лантана до гадолиния [14] и Er вместе с увеличением температур плавления, относительной термической стабильностью ($T_{\Pi \Pi, R} / T_{\Pi \Pi, Si}$) и уменьшением объемов элементарных ячеек за счет эффекта лантаноидного сжатия свидетельствует об увеличении прочности химической связи в этом направлении за счет увеличения доли ковалентных составляющих связей Me-Me и Me-Si в общей энергии связи.

РЕЗЮМЕ. Вперше методами адіабатичної калориметрії і змішування досліджено теплоємність та ентальпію Er_5Si_3 в температурному інтервалі 53—2304 К. Розраховано стандартні значення і температурні залеж

Институт проблем материаловедения им. И.Н. Францевича НАН Украины, Киев

ності основних термодинамічних функцій сполуки, визначено ентальпію і ентропію плавлення.

SUMMARY. In the first time by adiabatic and drop calorimetry method the heat capacity and enthalpy were investigated in temperature range 53–2304 K. The standard values and the temperature dependences of Er_5Si_3 thermodynamic functions enthalpy and entropy of melting were calculated.

- 1. Баталин Г.И., Судовцова В.С., Стреганова Н.В. // Укр. хим. журн. -1998. -51, № 7. -С. 775—777.
- 2. Meschel S.V.. Kleppa O.J. // J. Chim. Phes. -1997. -94. -P. 928—938.
- 3. Гладышевский Е.И. Кристаллохимия силицидов и германидов. -М.: Металлургия, 1971.
- 4. Лузан С.П., Буянов Ю.Г., Марценюк П.С. // Порошк. металлургия. -1977. -№ 1/2. -С. 24—30.
- 5. Болгар А.С., Крикля А.И., Суодис А.П., Блиндер А.В. // Журн. физ. химии. -1998. -72, № 4. -С. 439—443.
- 6. Сафонов В.Н., Гельд П.В., Верещагин Ю.А. Калишевич Г.Н. // Физика тв. тела. -1983. -25, № 11. -С. 3471—3473.
- 7. Сафонов В.Н., Гельд П.В., Сычев Н.Н. и др. // Там же. -1983. -25, № 9. -С. 2785, 2786.
- 8. Сафонов В.Н., Бармин С.М., Севастьянов А.А., Гельд П.В. // Там же. -1983. -27, № 9. -С. 2870—2872.
- 9. Болгар А.С., Горбачук Н.П., Блиндер А.В. // Теплофизика высоких температур. -1996. -34, № 4. -С. 541—545.
- Болгар А.С., Горбачук Н.П., Блиндер А.В., Моисеев Н.В. // Журн. физ. химии. -1996. -70, № 3. -С. 491—494.
- Болгар А.С., Горбачук Н.П., Блиндер А.В., Мелешевич К.А. // Физическое материаловедение и физико-химические основы создания новых материалов. -Киев: Ин-т пробл. материаловедения НАН Украины, 1994. -С. 130—138.
- 12. Dieke G.H., Crosswhite H.M. // J. Applied Optics. -1963. -2, № 7. -P. 675—686.
- Болгар А.С., Горбачук Н.П., Блиндер А.В. // Порошк. металлургия. -1994. -№ 3/4. -С. 48—53.
- Горбачук Н.П., Болгар А.С., Блиндер А.В. Термодинамические свойства силицидов. -Киев, 1995.

Поступила 10.10.2005