УДК 528.21/22

С.В. Щербина, Ю.В. Лесовой

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ТЕЛЕМЕТРИЧЕСКОЙ СИСТЕМЫ СБОРА И ОБРАБОТКИ МИКРОСЕЙСМИЧЕСКИХ ДАННЫХ В РЕЖИМЕ ON-LINE

В работе представлены результаты тестирования программного обеспечения телеметрической микросейсмической системы для определения прироста сейсмической бальности в пунктах наблюдений в режиме on-line. Данное программное обеспечение работает со станциями производства Института Геофизики НАН Украины. В качестве датчиков использованы модифицированные сейсмографы ВЕГИК и СМ-3. Данные передаются по протоколу TCP/IP через WiFi устройства.

Ключевые слова: телеметрическая микросейсмическая система; программное обеспечение; микросейсморайонирование; прирост сейсмической бальности.

Постановка задачи

Целью создания системы on-line сбора и обработки микросейсмической информации является оперативное получение данных о колебаниях почвы на исследуемой площадке и возможность обработки их на некотором расстоянии от станции.

Актуальность создания такой системы связана с большим числом недостатков стандартной методики камеральной обработки микросейсмических данных [1]. Это несовершенство приводит к большому проценту брака зарегистрированных данных, потому что при проведении микросейсмических исследований в полевых условиях всегда присутствует множество факторов, которые оказывают негативное влияние на качество обработки. Из этого следует, что первичную обработку необходимо проводить, по возможности, на месте в оперативном режиме получения микросейсмической информации.

Телесейсмический микросейсмический комплекс: аппаратура и программы

Техническая часть созданной телеметрической системы следующая: двухканальные станции сбора информации UK-15 и UK-16; каждый канал состоит из трех компонент; сейсмические датчики – модифицированные ВЭГИКи и СМ-3. В этих модифицированных датчиках перемотаны катушки, была изменена их конструкция, а также были встроены усилители сигнала с небольшой обратной связью на выходе для обеспечения сверхкритического затухания.

Зарегистрированный сигнал на станции превращается в поток данных и через сетевой интерфейс подается на устройство WiFi связи, а через него по радиоканалу поступает на центральный сервер (в данном случае это ноутбук) (рис. 1). По радиоканалу данные передаются и принимаются по протоколу ТСР/ІР.

Для обработки полученной микросейсмической информации используется программное обеспечение "Oscilloscope", которое позволяет не только просматривать волновые формы микросейсм, но и в оперативном режиме проводить их обработку, например, по методике, предложенной в [3].

Полученный со станций поток данных через WiFi попадает на центральный сервер, где принимается программой для параллельной обработки микросейсмических данных.

При работе с этим программным обеспечением мы можем задавать следующие парамет-

- длительность записи с каждой станции выбираем длину записи для лучшей наглядной визуализации;

Рис. 1. Внешний вид телеметрической системы: А – центральный сервер для сбора и обработки микросейсмической информации; В – станция; С – устройство WiFi связи

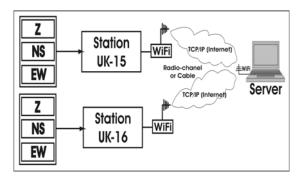


Рис. 2. Блок-схема станции, датчиков и сервера

- селекция записи по уровню LTA/STA этот алгоритм позволяет отбросить такие участки записи, которые по уровню превышают определенный порог LTA/STA, таким образом, это один из способов [1] избавления от нестационарной помехи;

- эффект осреднения (накопления) в программном обеспечении мы задаем длительность записи t, программа накапливает определенное количество реализаций n и по окончании цикла усредняет накопленные данные, на выходе имеем более стационарную реализацию, такое осреднение наряду с LTA/STA функцией является еще одним способом подавления помех;
- удаление тренда, если он существует это необходимо делать для удаления постоянного смещения и наклона;
- применение спектральных окон так как сигнал всегда ограничен, то возникают искажения спектра, для того чтобы их убрать, используется оконная функция [4], из бесконечно длинного сигнала вырезается часть, т.е. делается свертка прямоугольного окна с бесконечно длинным участком сигнала, в основном применяется окно Хеннинга.

Далее строится амплитудный спектр, который достаточно "изрезан", состоит из большого числа гармоник и является достаточно сложным.

Операция накопления и осреднения также может быть применена и к спектру. Проведя эту операцию по отношению к спектру сигнала, получаем кумулятивные (накопительные) спектры. Кроме того, можно улучшить ситуацию путем сглаживания спектра с помощью аппроксимирующего полинома.

Аналогичные процедуры мы проводим и для второй станции и в результате имеем два спектра, которые аппроксимированы полиномом определенной степени.

Далее производится процедура фильтрации [4]. Из всего спектра вырезается участок в пределах заданного диапазона частот 0,1–1,0 Гц или 1,0–10,0 Гц. В результате имеется две части полинома в одном общем частотном диапазоне. Зачастую используется диапазон 0,1–1,0 Гц. Результатом обработки является прирост бальности для исследуемого участка, определенный по следующим формулам [2, 3]:

$$I_{pes}=I_0+\Delta I;$$
 $\Delta I=2lgS_1/S_2.$

В итоге получаем прирост бальности ΔI . В идеальном случае ΔI будет равняться нулю, когда спектры совпадут ($S_1 = S_2$). Опыт показывает, что даже датчики, которые стоят в одном и том же месте, дают небольшой разброс в оценке прироста бальности ($\pm 0,1$). Но это приращение находится в пределах нормы из-за целочисельности шкалы бальности. Точность определения прироста балла, как правило, не превышает $\pm 0,5$.

Приведем краткое описание процесса обра-

ботки в программном обеспечении "Oscilloscope" и тестирования аппаратной части созданной телеметрической системы.

Ниже приведены два варианта тестирования аппаратуры: определения приращения бальности с использованием одного датчика и одной станции, а также с использованием двух датчиков, подключенных к двум станциям.

<u>Первый вариант</u> определения приращения бальности был проведен для одного датчика с одной станцией.

Основное окно программного обеспечения "Oscilloscope", с которого начинается работа со станциями в режиме on-line, имеет следующий вид (рис. 3).

В верхней части окна отображаются режимы работы со станцией, это стандартная обработка волновых форм микросейсм "No Mathematics" или расширенный вариант с возможностью задания дополнительных параметров "Mathematics".

Рис. 3. Интерфейс главного окна программного обеспечения "Oscilloscope"

В рабочем поле окна программы "Oscilloscope" находится список станций. Нижняя часть окна содержит ряд кнопок для непосредственной работы со списком станций. Элемент списка, напротив которого стоит метка "Connected", активный, т.е. в данный момент имеется связь со станцией и она наблюдается на экране монитора.

Рассмотрим режимы работы со станцией:

- 1). Первый режим "NO Mathematics". После соединения посредством сети с выбранной станцией открывается окно просмотра волновых форм программы "Oscilloscope", приведенное на рис. 4.
- В верхней части окна имеется панель инструментов для выбора каналов, которые отражаются в рабочей области. Также размещены "радиокнопки" для выбора режима "Viewer" или "Spectroscope". Кроме того, имеется окно "sec", в котором можно задавать длину волновой формы в секундах, и кнопка "stop-

play" для остановки и запуска просмотра волновых форм в режиме реального времени.

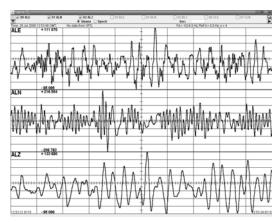
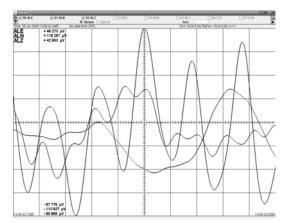



Рис. 4. Окно просмотра волновых форм

Щелкнув правой кнопкой мыши в окне просмотра волновых форм, можно вызвать контекстное меню, с помощью которого можно изменять цветовую гамму рабочей области программы "Oscilloscope" или можно свести все открытые на данный момент трассы в одно окно, что придает большей наглядности при просмотре микросейсмической информации (рис. 5).

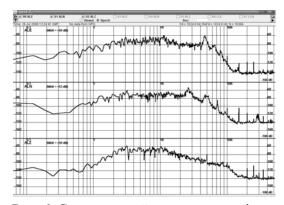


Рис. 5. Окно просмотра волновых форм, где все трассы сведены в одно окно

С помощью левой кнопки мыши, после остановки просмотра волновых форм в режиме реального времени, можно выделить интересующую часть волновой формы, и после этого выделенный участок фиксируется неподвижно, временная развертка прекращается. Рассмотрим теперь режим работы "Spectroscope" в программе "Oscilloscope". После выбора "радиокнопки" "Spectroscope" на экране появляются амплитудные спектры выбранных каналов в логарифмическом масштабе по осям X и Y (рис. 6).

В этом режиме программа "Oscilloscope" может вычислять два типа спектров – кумулятивный и некумулятивный. Некумулятивный спектр вычисляется по одной реализации

микросейсмического процесса, длина которого указывается в окне "Sec".

Рис. 6. Спектральный вид волновых форм (по оси "X" – логарифм частоты, по "Y" – уровень сигнала в db)

Кумулятивный спектр вычисляется по нескольким реализациям. В ходе такого вычисления исключается нестационарная часть процесса, и он представлен более гладкой кривой (рис. 7).

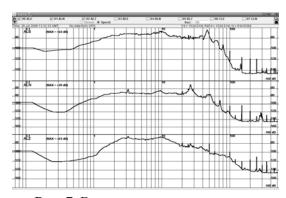
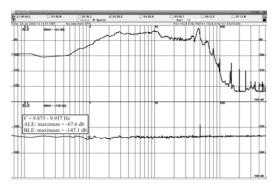


Рис. 7. Вид кумулятивного спектра


Последний пункт в контекстном меню, вызываемом нажатием правой клавиши мыши "Save Spectrum", позволяет сохранить спектры для выбранных каналов в файл для последующей обработки с помощью других программ.

С помощью программного обеспечения "Oscilloscope" в режиме "Spectroscope" можно оценить динамический диапазон цифрового регистратора. На рис. 8 представлены кумулятивные спектры каналов Е групп А и В. К каналу Е группы А цифрового регистратора подключен датчик, а канал Е группы В не имеет подключенного датчика.

На нижнем графике свободного канала Е группы В мы видим уровень собственных шумов цифрового регистратора, он находится в пределах –(146–148) db, что соответствует паспортным данным для используемой микросхемы АШП.

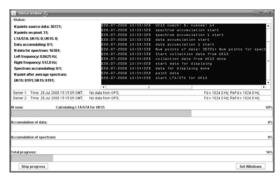
2). Второй режим "Mathematics". Эта часть программного обеспечения, в которой проводится математическая обработка, она предна-

значена для расчета приращения бальности. Интерфейс окна параллельной обработки представлен на рис. 9.

Рис. 8. Кумулятивные спектры для оценки динамического диапазона цифрового регистратора

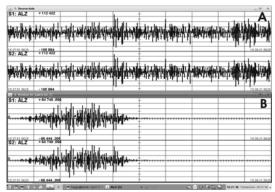
				Configuration of Server 2:		
Serv	er UKIS * Group * Channel ALE ALE				AN ALZ	
		Zoom & St	eccession			
	Zoom(18	ource data		Succession Trans - Average - Vector w		
Mathem	utic for Server 1:		Mathem	atic for Server 2:		
	LTASTA			LIASTA		
[] 0a	LIS LIASS STAZS	Show	□ 0o	US LIACES STACES	Show	
□ De	Regression	Show	□ Do	Regression	Show	
Clos	Transc	[] point	Chie	Transi	Classes	
[] (be	Trans Ciferential IV	[] Show	Dipe	Transformation [w]	[] Show	
	Average			Average		
[] Da	Number of trace/1	□ Show	□ D+	Number of trace(1	Show	
	Vector:			Vector:		
□0e		Show	□ the		Show	
	Regression			Regression		
[] Do		Show	□ Do		Show	
	Window			Window:		
[] Do	Windows	Show	□ the	Windows (Lecture) =	Show	
_ the	Spectrum		Do-	Spectrum		
	Accumulation Number of spectrum(1)	Show		Accumulation Number of spectrum(1)		
	_ Average Humber of points:\(\) Floor:\(\)			_ Average Number of point(1 Floor(0		
	□ Interpolation Power(10) □ Show			☐ Interpolation Power:10 ☐ Show	Show	
	Scale Show phaza			Scale Show phaza		
	Take .			ran .		
□o*		□ Show	C) De	Lowel Hancita	□ Show	
	Deconvolutions			Deconvolution		
□ 0+		Show	□ De	[Show	
	Vedec			Vector:		
[] Do		Show	□ Do		Show	
		EMission E				
□ De			Show d	isplace Show (I	☐ Show	
	Save Load Settings of Mathematic	Cor	eta.	Reset programm/Connect & Apply Mathematic:		

Рис. 9. Окно математической обработки программы "Oscilloscope"


В верхней части окна из списка выбираются станции и через параметр "Zoom" задается длительность волновых форм в секундах. Эта длительность одинакова для каждой из станций и об этом свидетельствует одно общее окно "Zoom&Succession". Кроме задания длительности можно изменить и последовательность обработки в окне "Succession". Можно менять местами последовательность таких действий "Transformation" (интегрирование или дифференцирование исходного сигнала) -> "Average" (накопление п-числа реализаций, длина которых определена параметром в окно "Zoom" и усреднение) → "Vector" (процедура предназначена для вычисления вектора, если выбрано более одного канала для каждой станции).

Процедура LTA/STA предназначена для выбора тех реализаций микросейсмического процесса, в которых отсутствуют большие по амплитуде помехи, превышающие порог "L". Порог "L" – отношение LTA к STA [1].

В окне "Status window" отображается информация о ходе выполнения конкретной процедуры и общего процесса обработки (рис. 10).


Важными процедурами являются регрессия

и наложение спектрального окна на исходную волновую форму. Все эти процедуры проводятся до вычисления спектра.

Рис. 10. Окно текущего процесса процедуры LTA/STA

Процедура регрессии предназначена, как известно, для удаления постоянной составляющей и наклона в исходной волновой форме. В результате применения процедур регрессии и наложения окна Хеннинга получаем модифицированную волновую форму, которая вместе с исходной представлены на рисунке 11.

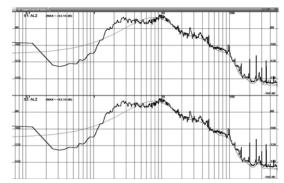


Рис. 11. Результат проведения процедур регрессии и наложения окна Хеннинга (А – до наложения окна, В – после применения окна)

Блок вычисления спектральной характеристики грунтов является достаточно сложным вследствие большого числа дополнительных параметров. Первая из процедур – аккумуляция спектров с указанием их числа. Далее проводится усреднение спектра по определенному числу точек. Интерполяция полиномом преследует две цели. Во-первых, сгладить достаточно изрезанный исходный спектр, а во-вторых, получить функциональную зависимость амплитуды спектра от частоты. Это объясняется тем, что приращение бальности есть отношение двух спектров. Результаты вычисления спектральной характеристики грунтов представлены на рис. 12, где тонкая линия - это интерполирующий полином.

При процедуре фильтрации задаются час-

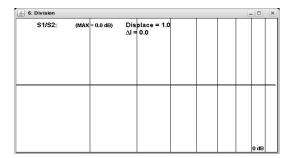

тоты среза полосового фильтра, левые и правые границы. Фильтр применяется к полиному, если указана интерполяция спектра.

Рис. 12. Результаты вычисления спектральной характеристики грунтов

Блок процедуры деконволюции предназначен для учета влияний передаточной функции прибора на исходный сигнал.

Процедура вычисления приращения бальности является тривиальной [2, 3]. Результат ее применения к одному и тому же датчику (канал ALZ), подключенному к одной и той же станции, приводит к физически разумному результату — приращение бальности равно нулю (рис. 13).

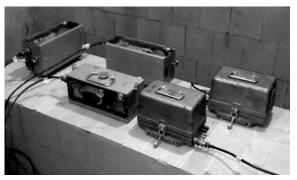


Рис. 13. Результат вычисления приращения бальности

<u>Второй вариант</u> определения приращения бальности проведен с использованием двух датчиков, подключенных к двум станциям.

Далее представлена процедура измерения приращения бальности для двух станций и для двух разных типов датчиков. Станциям, которые использовались в данном эксперименте, присвоены названия UK-15 и UK-16. Используемые датчики — модифицированный ВЭГИК и модифицированный СМ-3 (см. выше) были установлены на одном постаменте, что можно увидеть на рис. 14.

Для проведения математической обработки "Mathematics" в программе "Oscilloscope" выбираем только Z-канал каждой из станций. В окне установок проводим все необходимые настройки "Zoom", "Succession", "LTA/STA", а также задаем функцию кумуляции спектров. Кумулятивные спектры приведены на рис. 15.

Рис. 14. Сейсмические датчики установленные на постаменте

После аппроксимации полиномом и фильтрации в диапазоне частот 1–10 Гц спектральные характеристики принимают следующий вид (рис. 16).

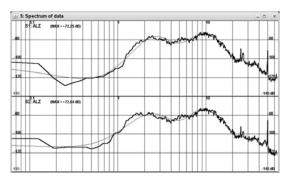
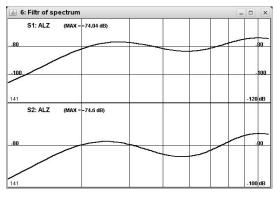
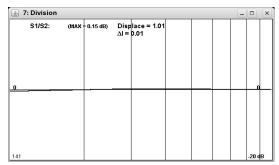



Рисунок 15. Результаты вычисления спектральной характеристики грунтов по двум станциям и датчикам

Рис. 16. Вид спектров после апроксимации и фильтрации в частотном диапазоне 1–10 Гц


Результаты определение приращения бальности по двум датчикам представлены на рис. 17.

Выводы

Программное обеспечение было апробировано в полевых условиях и показало свою стабильность и эффективность работы. Кроме того, программа написана на cross-платформенном языке программирования "Java". Преимуществом этого является то, что данное программное обеспечение может работать в различных опе-

рационных системах.

Созданная телеметрическая система может использоваться как на маленьких площадках, так и на больших территориях благодаря тому, что устройство WiFi связи легко заменить сетью Internet, и тогда станции могут быть установлены на любом расстоянии друг от друга.

Рис. 17. Приращение бальности с использованием двух станций и двух датчиков

В результате проведенного тестирования программного обеспечения и on-line расчета приращения бальности получены следующие результаты:

- приращение бальности на одном и том же датчике и одной станции равно нулю;
- приращение бальности с использованием двух разных станций и двух датчиков рав-

няется 0,01, что представлено на рис. 17.

На основе полученных данных делаем вывод о том, что протестированная телеметрическая система, которая использовалось для проведения микросейсмических работ, и использованное программное обеспечение для определения приращения бальности отвечают необходимым требованиям, предъявляемым к системам такого типа, и могут быть использованы для определения ΔI в полевых условиях.

Литература

- 1. "Understanding & setting LTA/STA trigger algorithm parameters for the K2". Dr. Amadej Trnkoczy. Application Note #41. August 1998. Kinemetrics Inc.
- 2. Касымов С.М. Инженерно-геологическая основа детального сейсмического районирования и микрорайонирования. Ташкент: ФАН. 1979.
- 3. Дягилев Р.А., Баранов Ю.В., Верхоланцев Ф.Г. Локальный эффект усиления грунтов при сейсмическом микрорайонировании: методы оценки и их сравнение. // Вестник горного института Уральского отделения РАН "Горное эхо". 2006. 4 (26).
- 4. Канасевич Э.Р. Анализ временных последовательностей в геофизике. М: Недра, 1985. 300 с.

ПРОГРАМНЕ ЗАБЕЗПЕЧЕННЯ ТЕЛЕМЕТРИЧНОЇ СИСТЕМИ ЗБОРУ І ОБРОБКИ МІКРОСЕЙСМІЧНИХ ДАНИХ У РЕЖИМІ ON-LINE

С.В. Щербина, Ю.В. Лісовий

У роботі представлено результати тестування програмного забезпечення телеметричної мікросейсмічної системи для визначення приросту сейсмічної бальності у пунктах спостережень в режимі on-line. Дане програмне забезпечення працює із станціями виробництва Інституту Геофізики НАН України. В якості датчиків використано модифіковані сейсмографи ВЕГІК і СМ-3. Дані передаються по протоколу ТСР/ІР через WiFi пристрої.

Ключові слова: телеметрична мікросейсмічна система; програмне забезпечення; мікросейсморайонування; приріст сейсмічної бальності.

THE SOFTWARE FOR ON-LINE TELEMETRIC SYSTEM OF MICROSEISMIC DATA COLLECTION AND PROCESSING

S.V. Sherbina, Ju.V. Lisovyi

In the article the results of testing of software of telemetric microseismic system for determination of increase of seismic intensity in on-line mode are presented. Those programs works with the stations of production of Inst. of Geoph. of NAS of Ukraine. As a sensors the modified VEGIK and SM-3 seismographs was used. Information is transmitted on TCP/IP protocol through Wifi devices.

Key words: telemetric microseismic system; software; microseismic zoning; increase of seismic intensity.

Надійшла 11.10.2008.