рован NaInP<sub>2</sub>O<sub>7</sub> и изучена его структура. Получен ряд твердых растворов на основе  $M^{I}In_{x}M^{III}_{1-x}P_{2}O_{7}$  ( $M^{I}$  — Li, Na, K;  $M^{III}$  — Fe, Cr, Mn), установлен их состав и границы гомогенности. Исследована ионная проводимость твердых растворов Na<sup>I</sup>In<sub>x</sub>Mn<sup>III</sup><sub>1-x</sub>P<sub>2</sub>O<sub>7</sub>.

SUMMARY. The double diphosphate of sodium and indium NaInP<sub>2</sub>O<sub>7</sub> was obtained by using the method of spontaneous crystallization from the melt of system Na<sub>2</sub>O  $-P_2O_5$ -In<sub>2</sub>O<sub>3</sub>. The crystal structure of NaInP<sub>2</sub>O<sub>7</sub> was investigated. The series of solid solutions on the base of M<sup>1</sup>In<sub>x</sub>M<sup>111</sup><sub>1-x</sub>P<sub>2</sub>O<sub>7</sub> (M<sup>1</sup> — Li, Na, K; M<sup>111</sup> — Fe, Cr, Mn) were obtained, their chemical compositions and homogeneous region were determined. Ionic conductivity for solid solutions with general formula Na<sup>1</sup>In<sub>x</sub>Mn<sup>111</sup><sub>1-x</sub>P<sub>2</sub>O<sub>7</sub> was investigated.

1. Gabelica-Robert M., Tarte P. // Solid State Chemistry Proc. 2 Eur. Conf. Veldhoven. -Amsterdam,

1983. -P. 475-478.

Київський національний університет ім. Тараса Шевченка

- 2. *Генкина Е.А. //* Журн. структур. химии . -1990. -**31**, № 6. -С. 92—96.
- 3. *Нагорний П.Г. //* Доп. АН УРСР. Сер. Б. -1988. -№ 5. -С. 142—146.
- Слободяник М.С., Нагорний П.Г., Корнієнко З.І., Бойко Р.С. // Доп. НАН України. Сер. Б. -2002. -№ 1. -С. 48—51.
- 5. Sheldrick G.M. SHELXS-93. A system of computer programs for X-ray structure determination. Univ. Gettinden. -1993.
- 6. Alkemper J., Paulus H., Fuess H. // Z. fuer Kristall. -1994. -209. -P. 616.
- Leclaire A., Benmoussa A., Borel M.M. et al. // J. Solid State Chem. -1988. -77. -P. 299—305.
- 8. Wang Y.P., Lii K.H., Wang S.L. // Acta Crystall. -1989. -45. -P. 1417, 1418.
- 9. Bohaty L., Liebertz J., Froehlich R. // Z. fuer Kristall. -1982. -161. -P. 53—59.
- Moya-Pizarro T., Salmon R., Fournes L. et al. // J. Solid State Chem. -1984. -53. -P. 387—397.
- Leclaire A., Borel M.M., Grandin A., Raveau B. // Ibid. -1988. -76. -P. 131—135.

Надійшла 07.12.2004

### УДК 548.736.4

# С.Я. Пукас, В.В. Куприсюк, А.Л. Мельник, Н.З. Семусьо, Р.Є. Гладишевський СПОЛУКИ RAl<sub>0.15</sub>Ge<sub>1.85</sub> (R = Tb, Dy, Ho) IЗ РОМБІЧНОЮ СТРУКТУРОЮ ТИПУ ZrSi<sub>2</sub>

Синтезовано нові тернарні сполуки RAl<sub>0.15</sub>Ge<sub>1.85</sub> з R — Тb, Dy і Ho. Методами рентгеноструктурного аналізу полікристалічних зразків встановлено, що ці сполуки кристалізуються в ромбічному структурному типі ZrSi<sub>2</sub> (символ Пірсона oS12, просторова група *Cmcm*, a=0.41402 (3), b=1.6312 (1), c=0.39657 (4) нм для R — Tb). Сплави такого ж складу з R — Er, Tm і Lu відповідають твердим розчинам Al у бінарних дигерманідах із структурою типу ZrSi<sub>2</sub>.

У кожній з подвійних систем R—Ge (R рідкісноземельний метал ітрієвої підгрупи) утворюється декілька сполук RGe2-r у залежності від ступеня дефектності по германію [1]. Їхні структури належать до різних, але близькоспоріднених типів. Окремі сполуки характеризуються незначними областями гомогенності; при певних складах і температурах вакансії впорядковуються, що приводить до реалізації надструктур і поліморфних переходів. Дефектні дигерманіди рідкісноземельних металів привертають увагу дослідників у зв'язку з цікавими електричними та магнітними властивостями [2]. Для їх синтезу все частіше застосовується взаємодія компонентів під флюсом алюмінію, галію або індію. Однак на сьогодні відсутні систематичні дослідження впливу Al, Ga та In на структуру сполук RGe<sub>2-x</sub>. Атоми цих елементів можуть частково заміщати атоми германію або включатися у пустоти структур з утворенням твердих розчинів; не виключена також можливість формування тернарних сполук. Метою цієї роботи було встановлення фазового складу сплавів RAl<sub>0.15</sub>Ge<sub>1.85</sub>, де R — Tb, Dy, Ho, Er, Tm, Yb і Lu, та кристалічної структури сполук, що в них утворюються.

Серед сполук RGe<sub>2-x</sub> (табл. 1) значенням x=0характеризується дигерманід Tm, однак в його структурі типу ZrSi<sub>2</sub> (символ Пірсона *oS*12, просторова група *Стст* [10]) виявлені вакансії в положенні атомів R. Дефектна структура типу ZrSi<sub>2</sub>, але з вакансіями в положеннях менших за розміром атомів, утворюється в системі Lu—Ge,

© С.Я. Пукас, В.В. Куприсюк, А.Л. Мельник, Н.З. Семусьо, Р.Є. Гладишевський, 2006

Таблиця 1

Структурні типи, способи утворення (L — безпосередньо з розплаву, P — за перитектичною реакцією, T — поліморфним перетворенням) і температури утворення (°С) бінарних сполук RGe<sub>2-x</sub> (R — рідкісноземельний метал ітрієвої підгрупи)

| x    | Струк-<br>турний<br>тип                                             | Tb [1,3]                                      | Dy [1,4]                                       | Ho [1,5]                                        | Er [1,6]                                      | Tm [1,7]                                              | Yb [1,8]                                      | Lu [1,9]                                       |
|------|---------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------|-------------------------------------------------|-----------------------------------------------|-------------------------------------------------------|-----------------------------------------------|------------------------------------------------|
| ~0   | ErGe <sub>2.16</sub>                                                |                                               |                                                |                                                 | ErGe <sub>2.16</sub><br>(?,–900)              |                                                       |                                               |                                                |
|      | ZrSi <sub>2</sub>                                                   |                                               |                                                |                                                 |                                               | $Tm_{0.9}Ge_2$<br>(P, 885)                            |                                               | LuGe <sub>1.8</sub><br>( <i>P</i> , 1065)      |
| ~0.1 | TbGe <sub>2</sub><br>(PrGe <sub>1.91</sub> )<br>TmGe <sub>1.9</sub> | TbGe <sub>2</sub><br>( <i>P</i> , 940)        | DyGe <sub>1.90</sub><br>(?,)                   |                                                 |                                               | TmGe <sub>1.9</sub>                                   |                                               |                                                |
| ~0.2 | DyGe <sub>1.85</sub>                                                |                                               | DyGe <sub>1.85</sub><br>( <i>P</i> , 967)      |                                                 | ErGe <sub>1.83</sub><br>( <i>T</i> , 907)     | (P, 1022)<br>TmGe <sub>1.83</sub><br>(P, 1040-950)    |                                               |                                                |
|      | YGe <sub>1.82</sub>                                                 |                                               |                                                | HoGe <sub>1.85</sub><br>( <i>P</i> , 1000)      |                                               |                                                       |                                               |                                                |
| ~0.3 | Y <sub>3</sub> Ge <sub>5</sub>                                      | $Tb_{3}Ge_{5}$<br>( <i>T</i> , 890)           | $Dy_3Ge_5$<br>( <i>P</i> , 935)                | Ho <sub>3</sub> Ge <sub>5</sub><br>( $T$ , 940) |                                               |                                                       |                                               |                                                |
| ~0.5 | AlB <sub>2</sub>                                                    | TbGe <sub>1.5</sub><br>( <i>P</i> , 1420–860) | DyGe <sub>1.5</sub><br>( <i>P</i> , 1403–1300) | HoGe <sub>1.5</sub><br>( $P$ , 1400–925)        | ErGe <sub>1.5</sub><br>( <i>P</i> , 1405–943) |                                                       | YbGe <sub>1.5</sub><br>( <i>L</i> , 1080–935) | LuGe <sub>1.5</sub><br>( <i>P</i> , 1330–1030) |
|      | Tm <sub>2</sub> Ge <sub>3</sub>                                     |                                               |                                                |                                                 |                                               | Tm <sub>2</sub> Ge <sub>3</sub><br>( <i>P</i> , 1272) | ,                                             |                                                |

тоді як у системі Er—Ge відома сполука з структурою включення додаткових атомів Ge (власний тип ErGe<sub>2.16</sub> oS12.64, Стст [11]). Слід зауважити, що ця сполука існує лише при високій температурі (>900 °C) [11, 12]. Згідно з літературними даними, стехіометричним складом RGe<sub>2</sub> описується лише сполука TbGe2 (структура власного типу, oS24, Cmmm [13]). Проте, ймовірно, що і у цьому випадку має місце дефектність по Ge, і, аналогічно системі Dy-Ge, реалізується тип PrGe<sub>1 91</sub> (oS23.28, Cmmm [14]). При збільшенні значення x у системах із Dy, Ho, Er і Tm утворюються дефектні дигерманіди зі структурою типу DyGe185 (oS22.80, Cmc21 [15]) або YGe1.82 (oS22.58, Cmcm [16]). Сполука ErGe<sub>1.83</sub> при температурі 907 °C зазнає поліморфного перетворення (повідомляється про дві високотемпературні модифікації) і розкладається за перитектичною реакцією при 1037 °С. Не виключено, що одна з цих високотемпературних модифікацій відповідає сполуці ErGe<sub>2.16</sub>. Сполука TmGe<sub>1.83</sub> існує лише при високій температурі, тоді як при нижчій температурі та дещо меншому значенні х утворюється сполука TmGe<sub>1.9</sub>. Її структуру (власний тип, оР20, Ртта [17]) можна отримати зрощенням фрагментів типів ZrSi<sub>2</sub> та DyGe<sub>1.85</sub>. Ще більшою дефектністю по Ge характеризуються сполуки RGe<sub>1 67</sub> (R<sub>3</sub>Ge<sub>5</sub>, структура типу Y<sub>3</sub>Ge<sub>5</sub>, oF64, Fdd2 [18]). Сполуки Tb<sub>3</sub>Ge<sub>5</sub> (890 °C) і Ho<sub>3</sub>Ge<sub>5</sub> (940 °C) зазнають поліморфного перетворення з реалізацією дефектної структури типу  $\alpha$ -ThSi<sub>2</sub> (tI12, I4<sub>1</sub>/amd [19]) і розкладаються за перитектичними реакціями при 1380 і 1210 °С відповідно. В системах Dy-Ge та Но-Ge відомі також сполуки Dy11Ge18 і Ho14Ge23 із структурами власних типів (oF232, Fdd2 i oS148, C2221 відповідно [20]), в яких вакансії по відношенню до типу α-ThSi<sub>2</sub> впорядковані. Структура типу AlB<sub>2</sub> (hP3, P6/mmm [21]) притаманна сполукам із максимальним значенням x і реалізується лише при високих температурах. При низьких температурах проходить впорядкування вакансій з утворенням (модульованих) надструктур гексагональної, ромбічної або моноклінної симетрії. Так, у системі Yb-Ge низькотемпературна модифікація описується складом YbGe<sub>1.43</sub> або Yb<sub>3</sub>Ge<sub>4.3</sub> (структура типу Th<sub>3</sub>Pd<sub>5</sub>, hP8, P-62m [22]). У структурі сполуки TmGe<sub>15</sub> (Tm<sub>2</sub>Ge<sub>3</sub>) спостерігається впорядкування вакансій, що відповідає власному типу (mS20, C2/c [23]). Можна відзначити, що при поступовому переході від Ть до Lu в окремих рядах ізоструктурних сполук простежується тенденція до збільшення

Таблиця 2

Результати уточнення індивідуальних фаз сплаву Tb<sub>32</sub>Al<sub>8</sub>Ge<sub>60</sub> (метод порошку, дифрактометр ДРОН-3, проміння CuK<sub>α</sub>)

| Параметри                                                                                                                                    | TbAl <sub>0.15</sub> Ge <sub>1.85</sub>  | Tb <sub>3</sub> Ge <sub>5</sub>         | Tb <sub>2</sub> AlGe <sub>3</sub>      |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------|----------------------------------------|--|
|                                                                                                                                              | Cmcm                                     | Fdd2                                    | Pnma                                   |  |
| Параметри комірки, нм<br>а<br>b<br>c                                                                                                         | 0.41402 (3)<br>1.6312 (1)<br>0.39657 (4) | 0.5753 (3)<br>1.7284 (5)<br>1.3744 (2)  | 0.6787 (3)<br>0.4198 (2)<br>1.7690 (6) |  |
| Фактор достовірності R <sub>p</sub> (R <sub>wp</sub> )                                                                                       | 0.37037 (4)                              | 0.0273 (0.0357)                         | 1.7050 (0)                             |  |
| $R_{p} = \sum_{w_{p}} \frac{ y_{cnoct} - y_{posp}  / \sum  y_{cnoct} }{\sqrt{\sum w(y_{cnoct} - y_{posp})^{2} / \sum (y_{cnoct})^{2}}}$      |                                          |                                         |                                        |  |
| Фактор добротності S<br>S = $\sqrt{\sum w(y_{cnoct} - y_{posp})^2 / (n - p + c)}$                                                            |                                          | 1.43                                    |                                        |  |
| Нульове значення 2 $\theta$ (°)<br>Параметри ширини піків <i>U</i> , <i>V</i> , <i>W</i><br>$H = \sqrt{U \tan^2 \theta + V \tan \theta + W}$ | 0.131                                    | -0.151 (5)<br>(9), -0.015 (9), 0.05     | 59 (1)                                 |  |
| Параметр змішування $\eta$<br>$\eta L + (1 - \eta)G$                                                                                         |                                          | 0.49 (2)                                |                                        |  |
| Параметр асиметрії піків С <sub>М</sub><br>Фактор шкали SF                                                                                   | 0.298 (3).10 <sup>-3</sup>               | -0.10 (2)<br>0.282 (5)·10 <sup>-5</sup> | 0.102 (4).10 <sup>-4</sup>             |  |
| Параметр текстури G [напрям]<br>$P = (\sqrt{G^2 \cos^2 \alpha + (1/G) \sin^3 \alpha})^{-3}$                                                  | 0.949 (3) [010]                          | 0.68 (2) [011]                          | 0.90 (3) [001]                         |  |
| Фактор достовірності $R_{\rm B}$<br>$R_{B} = \sum  I_{\rm cnoct} - I_{\rm posp}  / \sum  I_{\rm cnoct} $                                     | 0.073                                    | 0.134                                   | 0.107                                  |  |
| Об'єм комірки, нм <sup>3</sup>                                                                                                               | 0.26782 (4)                              | 1.3665 (8)                              | 0.5040 (4)                             |  |
| Густина, г·см <sup>-3</sup><br>Вміст, %                                                                                                      | 7.393<br>72 (3)                          | 8.162<br>19 (2)                         | 7.413<br>9 (3)                         |  |

ступеня дефектності по германію.

Зразки для дослідження готували сплавлянням шихти з компактних металів (чистота рідкісноземельних металів >99.82 %, A1 — 99.985 %, Ge — 99.999 %) в електродуговій печі в атмосфері аргону під тиском ~50 кПа. Сплави гомогенізували у вакуумованих кварцевих ампулах при 600 °С впродовж 350 год і гартували в холодній воді. Рентгенограми полікристалічних зразків одержували в камерах РКД-57.3 (проміння CrK) і на дифрактометрі ДРОН-2.0 (FeK<sub>a</sub>). Масив дифракційних даних для зразка складу Tb<sub>32</sub>Al<sub>8</sub>Ge<sub>60</sub> був отриманий на автоматичному дифрактометрі ДРОН-3 (Си $K_{\alpha}$ ) у діапазоні кутів 20  $\leq 2\theta \leq$  100° з кроком 0.02°. Розрахунки та індексування порошкограм проводили з використанням програми POWDER CELL-2.4 [24]. Параметри елементарних комірок уточнювали за допомогою програми LATCON [25], а структурне уточнення здійснювали методом Рітвельда, програма DBWS-9807 [26].

У роботах [27, 28], в яких наведені результати дослідження взаємодії компонентів у потрійній системі ТЬ—АІ—Ge при 400 °С, ми повідомляли про існування на ізоконцентраті 33.3 % ат. Ть при невеликому вмісті Al (5 % ат.) тернарної сполуки TbAl<sub>0.15</sub>Ge<sub>1.85</sub>. На основі дифрактометричного дослідження полікристалічного зразка складу Tb<sub>32</sub>Al<sub>8</sub>Ge<sub>60</sub>, відпаленого при 600 °С, можна стверджувати, що структура сполуки TbAl<sub>0.15</sub>Ge<sub>1.85</sub> належить до ромбічного типу ZrSi<sub>2</sub> (oS12, Cmcm, a=0.41168 (5), b=1.6320 (1), c=0.39527 (3) нм) (табл. 2). Досліджений зразок виявився трифазним — крім основної фази, він містив 8 % мол. фази Tb<sub>3</sub>Ge<sub>5</sub> зі структурою типу Y<sub>3</sub>Ge<sub>5</sub> і 5 % мол. Tb<sub>2</sub>AlGe<sub>3</sub> (структура типу Y<sub>2</sub>AlGe<sub>3</sub>). Для опису

дифракційного профілю використано функцію псевдо-Войта, незалежних уточнюваних параметрів було 28. Отримані результати узгоджуються з ізотермічним перерізом діаграми стану системи Tb—Al—Ge при 400 °C, згідно з яким сполука TbAl<sub>0.15</sub>Ge<sub>1.85</sub> вступає у двофазні рівноваги з Ge, бінарними сполуками TbGe2 (власний структурний тип) [13] і TbGe<sub>1 67</sub> (Tb<sub>3</sub>Ge<sub>5</sub>) [20], а також тернарними сполуками Tb<sub>2</sub>AlGe<sub>3</sub> [29] і Tb<sub>2</sub>Al<sub>16</sub>Ge<sub>54</sub> (структура типу La<sub>2</sub>AlGe<sub>6</sub>) [30]. Уточнений склад зразка — Tb<sub>34</sub>Al<sub>5</sub>Ge<sub>61</sub>; координати та параметри теплового коливання атомів у структурі TbAl<sub>0.15</sub>Ge<sub>1.85</sub> наведені в табл. З. Як видно, вакансії в структурі відсутні, а атоми АІ утворюють статистичну суміш з атомами Ge в одному з двох положень атомів меншого розміру.

Існування тернарної сполуки  $TbAl_{0.15}Ge_{1.85}$  і бінарних дефектних дигерманідів Ег, Тт та Lu із структурою типу  $ZrSi_2$  (див. табл. 1) вказувало на можливість утворення ізоструктурних тернарних (або бінарних) сполук з Dy, Ho та Yb. 3 метою

#### Таблиця З

Координати та ізотропні параметри теплового коливання атомів у структурі сполуки TbAl<sub>0.15</sub>Ge<sub>1.85</sub> (структурний тип ZrSi<sub>2</sub>, символ Пірсона *oS*12, просторова група *Стст, a*=0.41402 (3), *b*=1.6312 (1), *c*=0.39657 (4) нм, Z=4, ПСТ 4(*c*))

| Атом                                                      | x           | У                                      | z                 | $B_{i30}$ . $\cdot 10^{-2}$ , нм <sup>2</sup> |
|-----------------------------------------------------------|-------------|----------------------------------------|-------------------|-----------------------------------------------|
| Tb<br>Ge<br>Ge <sub>0.87 (2)</sub> Al <sub>0.13 (2)</sub> | 0<br>0<br>0 | 0.3970 (3)<br>0.0489 (4)<br>0.7513 (5) | 1/4<br>1/4<br>1/4 | 0.59 (8)<br>0.60 (1)<br>0.60 (1)              |
| Примітка.                                                 | ПСТ         | — прави.                               | пьна сі           | истема точок.                                 |

#### Таблиця 4

Параметри елементарних комірок тернарних сполук або твердих розчинів із структурою типу ZrSi<sub>2</sub>, знайдених у сплавах RAl<sub>0.15</sub>Ge<sub>1.85</sub>

| R  | а           | b          | С           |
|----|-------------|------------|-------------|
| R  |             | HM         |             |
| Tb | 0.41402 (3) | 1.6312 (1) | 0.39657 (4) |
| Dy | 0.40854 (5) | 1.6206 (2) | 0.39345 (4) |
| Но | 0.40767 (5) | 1.6119 (1) | 0.39307 (4) |
| Er | 0.40600 (5) | 1.6008 (1) | 0.39165 (5) |
| Tm | 0.40482 (5) | 1.5890 (1) | 0.39036 (3) |
| Lu | 0.40172 (5) | 1.5712 (1) | 0.38820 (4) |



Рис. 1. Залежність параметрів елементарних комірок бінарних сполук (заповнені кружки), тернарних сполук або твердих розчинів Al на основі бінарних сполук (незаповнені кружки) із структурою типу ZrSi<sub>2</sub> (у випадку бінарного германіду ербію — тип ErGe<sub>2.16</sub>) від порядкового номера R.

перевірки цього припущення нами було досліджено методами рентгеноструктурного аналізу полікристалічні зразки  $RAl_{0.15}Ge_{1.85}$ , де R - Dy, Но, Er, Tm, Yb i Lu. Основною фазою в усіх сплавах, за винятком сплаву з Yb, була сполука, кристалічна структура якої належить до типу ZrSi<sub>2</sub>. Склади RAl<sub>0.15</sub>Ge<sub>1.85</sub> з R — Dy і Но відповідають тернарним сполукам, тоді як R — Er, Tm i Lu — твердим розчинам Al у бінарних дигерманідах. Уточнені параметри елементарних комірок для цих сполук наведені в табл. 4. Об'єми елементарних комірок для твердих розчинів більші від об'ємів елементарних комірок відповідних бінарних сполук (рис. 1). Сплав YbAl $_{0.15}$ Ge $_{1.85}$ є твердим розчином Al у бінарній сполуці YbGe2-x із дефектною структурою типу AlB<sub>2</sub> [31]. Слід зауважити, що бінарний дигерманід Ег може також розчиняти Ga. Параметри елементарної комірки твердого розчину ErGa<sub>0.15</sub>Ge<sub>1.85</sub> такі: a= =0.4044 (1), b=1.5931 (4), c=0.3902 (1) нм [32].

Усі структурні типи, в яких кристалізуються

сполуки RGe<sub>2-х</sub>, близькоспоріднені. Характерною особливістю цих типів є присутність шарів тригональних призм, з'єднаних за рахунок спільних граней (фрагменти типу AlB<sub>2</sub>). Тригональні призми побудовані виключно атомами R, а атоми Ge розміщуються в центрах призм. Гексагональний структурний тип AlB<sub>2</sub> та тетрагональний  $\alpha$ -ThSi<sub>2</sub> повністю викладені із таких шарів. У структурах типу  $\alpha$ -ThSi<sub>2</sub> осі призм у сусідніх шарах взаємноперпендикулярні. Ромбічний тип Y<sub>3</sub>Ge<sub>5</sub> можна вивести із типу  $\alpha$ -ThSi<sub>2</sub> відніманням 1/6 частини атомів меншого розміру та впорядкуванням утворених вакансій.

У ромбічних структурах типів TbGe<sub>2</sub> та PrGe<sub>1.91</sub> блоки із трьох шарів тригональних призм (взаємне розміщення сусідніх шарів аналогічне типу  $\alpha$ -ThSi<sub>2</sub>) розділені двома шарами кубічного типу CaF<sub>2</sub> (рис. 2). Тип PrGe<sub>1.91</sub> відрізняється від типу TbGe<sub>2</sub> зміщенням більшості атомів Ge з ідеальних положень, і утворенням невпорядкованих вакансій по Ge в середньому шарі тришарового блоку тригональних призм. Із фрагментів типів AlB<sub>2</sub> та CaF<sub>2</sub> у такому ж співвідношенні (3:2) побудовані ромбічні структури типів DyGe<sub>1.85</sub> і YGe<sub>1.82</sub>. Однак шари тригональних призм у цьому випадку зрощені, як у типі AlB<sub>2</sub> (осі всіх призм паралельні). Ці два струк-



Рис. 2. Проекції кристалічних структур типів  $\text{TbGe}_2$ (просторова група *Cmmm*),  $\text{DyGe}_{1.85}$  (*Cmc2*<sub>1</sub>) та  $\text{ZrSi}_2$ (*Cmcm*) вздовж напряму [1 0 0]; великі кулі — атоми Tb, Dy та Zr, малі — атоми Ge та Si.

турні типи відрізняються зміщеннями атомів, що центрують призми в середньому шарі тришарового блоку тригональних призм.

Фрагменти типів AlB<sub>2</sub> та CaF<sub>2</sub> є також структурними деталями ромбічних типів ZrSi<sub>2</sub> та ErGe<sub>2.16</sub> (див. рис. 2). Співвідношення фрагментів у цьому випадку становить 1:2. Структура ErGe<sub>2.16</sub> є варіантом включення додаткових атомів меншого розміру в типі ZrSi<sub>2</sub>, які розміщуються у фрагментах типу CaF<sub>2</sub>. Саме в цих фрагментах у структурі TbAl<sub>0.15</sub>Ge<sub>1.85</sub> знаходиться статистична суміш атомів Al і Ge.

Таким чином, ряд ізоструктурних сполук типу  $ZrSi_2$  для германідів рідкісноземельних металів простягається від Tb до Tm і Lu, однак сполуки стабілізуються невеликими кількостями Al (~5 % ат. при 600 °C). Цей тип реалізується також і в подвійних системах з Er, Tm або Lu, але за умови присутності структурних дефектів.

РЕЗЮМЕ. Синтезированы новые тройные соединения  $RAl_{0.15}Ge_{1.85}$  (R — Tb, Dy и Ho). Методами рентгеноструктурного анализа поликристаллических образцов установлено, что эти соединения кристаллизуются в ромбическом структурном типе  $ZrSi_2$  (символ Пирсона oS12, пространственная группа *Стст, а*= =0.41402 (3), b=1.6312 (1), c=0.39657 (4) нм для R — Tb). Сплавы такого же состава, где R — Er, Tm и Lu, соответствуют твердым растворам Al в двойных дигерманидах со структурой типа  $ZrSi_2$ .

SUMMARY. The new ternary compounds  $RAl_{0.15}Ge_{1.85}$ , R = Tb, Dy, Ho, have been synthesized. It was established by powder X-ray diffraction that they crystallize with the orthorhombic  $ZrSi_2$  structure type (Pearson symbol *oS12*, space group *Cmcm*, *a*=0.41402 (3), *b*=1.6312 (1), *c*=0.39657 (4) nm for R = Tb). Alloys of the same composition with R = Er, Tm and Lu also crystallize with  $ZrSi_2$ -type structures, however, for these elements the homogeneity ranges include the corresponding binary rare-earth digermanides.

- 1. Okamoto H. Desk Handbook: Phase Diagrams for Binary Alloys. -ASM International, 2000.
- Netzer F.P. // J. Phys. Condens. Mater. -1995. -7. -P. 991—1022.
- Еременко В.Н., Мелешевич К.А., Буянов Ю.И., Марценюк П.С. // Укр. хим. журн. -1988. -54, № 10. -С. 1019—1023.
- Еременко В.Н., Баталин В.Г., Буянов Ю.И., Обуиенко И.М. // Доп. АН УРСР. Сер. Б. -1977. -№ 6. -С. 516—521.
- 5. Еременко В.Н., Обушенко И.М., Буянов Ю.И. // Там же. Сер. А. -1980. -№ 7. -С. 87—91.
- 6. Еременко В.Н., Обушенко И.М. // Изв. вузов. Цвет. металлургия. -1981. -№ 3. -С. 59—62.
- 7. Еременко В.Н., Мелешевич К.А., Буянов Ю.И.,

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2006. Т. 72, № 5

*Марценюк П.С.* // Порошковая металлургия. -1989. -№ 7. -С. 41—46.

- Еременко В.Н., Мелешевич К.А., Буянов Ю.И. // Доп. АН УРСР. Сер. А. -1983. -№ 3. -С. 83—88.
- 9. Еременко В.Н., Мелешевич К.А., Буянов Ю.И., Петюх В.М. // Там же. Сер. А. -1987. -№ 5. -С. 76—80.
- Schachner H., Nowotny H., Kudielka H. // Monat. Chem. -1954. -85. -S. 1140–1153.
- 11. Venturini G., Ijjaali I., Malaman B. // J. Alloys Compd. -1999. -288. -P. 183—187.
- 12. Пукас С., Гладишевський Р., Гладишевський Є. // Вісн. Львів. ун-ту. Сер. хім. -2004. -45. -С. 84—90.
- 13. Schobinger-Papamantellos P., de Mooij D.B., Buschow K.H.J. // J. Less-Common Met. -1988. -144. -P. 265—274.
- Savysyuk I.A., Gladyshevskii E.I., Gladyshevskii R.E. // VII Inter. Conf. Crystal Chem. Intermet. Comp., September 22–25, 1999. -Lviv: Coll. Abstr. -P. B17.
- Мокрая И.Р., Печарский В.К., Шпырка З.М. и др. // Докл. АН УССР. Сер. Б. -1989. -№ 2. -С. 48—50.
- Ijjaali I., Venturini G., Malaman B. // J. Alloys Compd. -1999. -284. -P. 237—242.
- 17. Venturini G. // Ibid. -2000. -308. -P. 200-204.
- Брусков В.А., Бодак О.И., Печарский В.К и др. // Кристаллография. -1983. -28. -С. 260—263.
- Brauer G., Mitius A. // Z. Anorg. Allg. Chem. -1942.
  -249. -S. 325—339.
- 20. Venturini G., Ijjaali I., Malaman B. // J. Alloys Compd. -1999. -285. -P. 194-203.
- 21. Felten E.J. // J. Amer. Chem. Soc. -1956. -78. -P. 5977, 5978.

Львівський національний університет ім. Івана Франка

- 22. Thompson J.R. // Acta Crystallogr. -1963. -16. -P. 320, 321.
- 23. Venturini G., Ijjaali I., Malaman B. // J. Alloys Compd. -1999. -284. -P. 262—269.
- 24. Kraus W., Nolze G. PowderCell for Windows. -Berlin, Germany: Federal Institute for Materials Research and Testing, 1999.
- 25. Schwarzenbach D. LATCON: Refine Lattice Parameters. -Lausanne, Switzerland: University of Lausanne, 1966.
- 26. Young R.A., Larson A.C., Paiva-Santos C.O. Rietveld Analysis of X-Ray and Neutron Powder Diffraction Patterns. -Atlanta, GA: School of Physics. Georgia Institute of Technology, 1998.
- Наконечна Н., Мельник А., Сависюк І., Гладишевський Р. // 8 Наук. конф. "Львів. хім. читання", травень 24–25, 2001. -Львів: Зб. наук. праць. -С. Н1.
- Kuprysiuk W., Babiuk W., Bodak O. et al. // VIII Kraj. Sem. Prof. St. Bretsznajdera, wrzesnia 19–20, 2002. -Plock, Polska: Mater. -S. 312–316.
- Mel'nyk I., Kuprysyuk V., Gladyshevskii R., Pikus S. // VIII Inter. Conf. Crystal Chem. Intermet. Comp., September 25–28, 2002. -Lviv: Coll. Abstr. -P. 97.
- Zhao J.T., Cenzual K., Parthe E. // Acta Crystallogr. -1991. -C47. -P. 1777—1781.
- 31. Гладышевский Е.И. // Журн. структур. химии. -1964. -5, № 4. -С. 568—575.
- Пукас С., Мельник А., Куприсюк В., Гладишевський Р. // 9 Наук. конф. "Львів. хім. читання", травень 21–23, 2003. -Львів: Зб. наук. праць. -С. НЗ6.

Надійшла 15.12.2004

### УДК 621.315.592:54-185

# А.Г. Белоус, А.И. Товстолыткин, О.И. Вьюнов, Ю.Д. Ступин, Л.Л. Коваленко ВЛИЯНИЕ МЕТОДА ПОЛУЧЕНИЯ НА СВОЙСТВА ПЛЕНОК La<sub>0.775</sub>Sr<sub>0.225</sub>MnO<sub>3</sub>

Проведен сравнительный анализ электрофизических свойств пленок состава La<sub>0.775</sub>Sr<sub>0.225</sub>MnO<sub>3</sub>, полученных методами трафаретной печати и магнетронного напыления. Определены температурные режимы, при которых пленки, полученные методом трафаретной печати, обладают оптимальными электрофизическими свойствами. Было показано, что по некоторым техническим параметрам полученные пленки не уступают пленкам, нане-сенным по методу магнетронного напыления.

Перовскитоподобные манганиты R<sub>1-x</sub>M<sub>x</sub>MnO<sub>3</sub> (где R и M — редкоземельный и щелочно-земельный элементы соответственно), обладающие эффектом гигантского магнитосопротивления, широко исследуются благодаря уникальному сочетанию структурных, электрических и магнитных свойств [1]. Перспективными для практического применения являются манганиты La<sub>1-x</sub>Sr<sub>x</sub>MnO<sub>3</sub> с x=0.2—0.3, в которых этот эффект наблюдается в области комнатных температур [2, 3]. Магнитные и электрические свойства данных материалов чувствительны к режимам синтеза, микроструктурным особенностям (размер зерна, пористость и др.), а также к тому, в каком виде находится материал — объемном или пленочном [4, 5]. По сравнению с объемными образцами в пленках ман-

<sup>©</sup> А.Г. Белоус, А.И. Товстолыткин, О.И. Вьюнов, Ю.Д. Ступин, Л.Л. Коваленко, 2006