УДК 546.742+544.2

С.С. Лісняк, І.Й. Перкатюк, С.Л. Кріцак, Б.Б. Панчак КРИСТАЛОХІМІЧНІ ПАРАМЕТРИ ФЕРИТІВ–ГРАНАТІВ

Досліджено кристалохімічні параметри — міжатомні відстані та період елементарної комірки гранатів. Із застосуванням методу кристалоквазіхімії розглядається можливість прогнозування нових сполук типу гранату і їх фізико-хімічних властивостей. Встановлюються межі, у яких змінюються міжатомні відстані, приводиться рівняння для теоретичного визначення параметра елементарної комірки гранатів.

Синтезу та дослідженню феритівгранатів у монокристалах та плівках приділяється значна увага. Але порівняно з шпінельними феритами ферити-гранати вивчені в значно меншій мірі, особливо це стосується кристалохімії гранатів і прогнозування нових перспективних гранатів та їх властивостей. Метою даної роботи є дослідження кристалохімічних параметрів — міжатомних відстаней та періоду елементарної комірки гранатів. На підставі цих даних із застосуванням методу кристалоквазіхімії виникає можливість прогнозування нових сполук типу гранату та їх фізико-хімічних властивостей.

Проведено аналіз кристалохімічних параметрів 50 зразків гранатів різного хімічного складу [2, 7, 8, 10] (табл. 1). Як відомо, кристалічна решітка гранату складається з трьох підрешіток: тетраедричної (А), октаедричної (В) та додекаедричної (С); відповідно відстані катіон—аніон: α -тетраедрична, β -октаедрична, γ додекаедрична. У зв'язку з тим, що, порівняно з шпінеллю, тетраедричні відстані відрізняються від інших на 2.5 % [5], величини α , β , γ мають середні значення. Ці відстані визначалися з робіт [1, 2].

Нами було запропоноване рівняння для визначення параметра елементарної комірки аналогічно спрощеному рівнянню Пуа для шпінелей [1]; для гранатів, на відміну від шпінелей, введено третій член, який враховує додекаедричну відстань. Третій член визначено на основі експериментально відомих значень параметра елементарної комірки гранатів. Запропоноване нами рівнянняння для обчислення параметру елемен-

Рис. 1. Залежність міжатомних відстаней від параметру елементарної комірки в тетраедричних (*a*), октаедричних (*б*) та додекаедричних (*в*) позиціях гранатів.

Рис. 2. Залежність співвідношення міжатомних відстаней $\gamma (\alpha \ (a), \beta / \alpha \ (b)$ і $\gamma / \beta \ (c)$ від параметру елементарної комірки гранатів.

© С.С. Лісняк, І.Й. Перкатюк, С.Л. Кріцак, Б.Б. Панчак, 2006

Таблиця 1 Міжатомні відстані та їх співвідношення, параметр елементарної комірки для гранатів різного хімічного складу

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Сполука	a, Å	{γ}	[β]	(α)	γ/α	β/α	γ/β
$\begin{split} & n_{23} n_{$	$\{Mg_2\}[A]_2](Si_2)O_{12}$	11 41	2 19	1 903	1 638	1 34	1 16	1 15
$\begin{split} & 1 \\$	$\{Fe_2^{2+}\}[\Delta_2](Si_2)O_{12}$	11.41	2.17	1.903	1.638	1.34	1.16	1.15
	$\{Mn_2^{2+}\}\{\Delta_1n_2(Si_2)O_{12}\}$	11.457	2.217	1.903	1.638	1.55	1.10	1.17
$\begin{split} & $	$\{Y_2\}[A]_2](A]_2](O_{12})$	11.017	2.217	1.903	1.050	1.41	1.10	1.21
$\begin{split} & [Cas][Cr_2[Sis]O_{12} & 1.2.65 & 2.494 & 1.987 & 1.638 & 1.52 & 1.21 & 1.26 \\ & [Cas][Fe_2^{3+}[Fe_2]O_{12} & 12.251 & 2.494 & 1.987 & 1.638 & 1.52 & 1.21 & 1.26 \\ & [Las][Fe_2^{3+}[Fe_2]O_{12} & 12.306 & 2.331 & 2.02 & 1.858 & 1.28 & 1.09 & 1.15 \\ & [Las][Fe_2^{3+}[Fe_3]O_{12} & 12.306 & 2.371 & 2.02 & 1.858 & 1.28 & 1.09 & 1.17 \\ & [Y_3][Fe_2](Fe_3]O_{12} & 12.376 & 2.371 & 2.02 & 1.858 & 1.28 & 1.09 & 1.17 \\ & [Y_3][Fe_2]^{5+}[Y_6^{3+}]O_{12} & 12.399 & 2.412 & 2.016 & 1.564 & 1.62 & 1.35 & 1.1 \\ & [NaCa_2][Fe_2^{3+}](Fe_3]O_{12} & 12.442 & 2.453 & 2.02 & 1.858 & 1.31 & 1.09 & 1.2 \\ & [Y_3][In_3Fe_{1.5}](Fe_3)O_{12} & 12.442 & 2.453 & 2.02 & 1.858 & 1.31 & 1.09 & 1.2 \\ & [Y_3][In_3Fe_{1.5}](Fe_3)O_{12} & 12.442 & 2.453 & 2.02 & 1.858 & 1.31 & 1.09 & 1.2 \\ & [Y_3][In_3Fe_{1.5}](Fe_3)O_{12} & 12.448 & 2.494 & 2.024 & 1.785 & 1.4 & 1.13 & 1.21 \\ & [Gd_3][Ga_3](Ga_3]O_{12} & 12.528 & 2.411 & 2.06 & 1.858 & 1.28 & 1.11 & 1.15 \\ & [Gd_3][Ga_3](Ga_3]O_{12} & 12.528 & 2.411 & 2.06 & 1.858 & 1.28 & 1.11 & 1.15 \\ & [Gd_3][Ga_3](Ga_3]O_{12} & 12.528 & 2.411 & 2.04 & 1.877 & 1.28 & 1.09 & 1.18 \\ & [Bi^{3+}Ca_2][Fe_2^{3+}[Y_{5^{5+}}]O_{12} & 12.322 & 2.371 & 2.06 & 1.858 & 1.28 & 1.11 & 1.17 \\ & [Y_3][Fe_2](Fe_4]O_{12} & 12.322 & 2.371 & 2.02 & 1.864 & 1.27 & 1.08 & 1.17 \\ & [Y_3][Fe_2](Fe_6]O_{12} & 12.322 & 2.371 & 2.02 & 1.864 & 1.27 & 1.08 & 1.17 \\ & [Y_3][Fe_2](Fe_6]O_{12} & 12.215 & 2.371 & 2.02 & 1.864 & 1.27 & 1.08 & 1.17 \\ & [Y_3][Fe_2](Fe_6]O_{12} & 12.317 & 2.361 & 2.004 & 1.858 & 1.28 & 1.1 & 1.18 \\ & [Fr_3][Fe_2](Fe_6]O_{12} & 12.317 & 2.361 & 2.004 & 1.858 & 1.28 & 1.11 & 1.17 \\ & [M_3]^{7}[Fe_2](Fe_2Ga)O_{12} & 12.305 & 2.34 & 2.02 & 1.785 & 1.4 & 1.13 & 1.17 \\ & [M_3]^{7}[Fe_2](Fe_6]O_{12} & 12.304 & 2.35 & 2.02 & 1.846 & 1.27 & 1.08 & 1.18 \\ & [Fr_3][Fe_2](Fe_6]O_{12} & 12.304 & 2.35 & 2.02 & 1.848 & 1.28 & 1.11 & 1.6 \\ & [M_3][Fe_2](Fe_6]O_{12} & 12.469 & 2.441 & 2.02 & 1.785 & 1.4 & 1.13 & 1.17 \\ & [M_3][Fe_2](Fe_6]O_{12} & 12.469 & 2.441 & 2.02 & 1.785 & 1.4 & 1.13 & 1.14 \\ & [M_3][Fe_2](Fe_6]O_$	$\{C_{32}\}[A_{12}](S_{12})O_{12}$	11.077	2.371	1.903	1.638	1.55	1.05	1.25
$\begin{split} & [Ca_3][e_2]^{(Ca_1)}[e_2$	$\{Ca_{2}\}[Cr_{2}](Si_{2})O_{12}$	12 163	2.494	1.903	1.638	1.52	1.10	1.51
	$\{C_{22}\}_{E=2}^{3+1}(S_{12})O_{12}$	12.103	2.494	2.02	1.638	1.52	1.21	1.20
	$\{U_{12}\}_{U_{22}}^{(1)} = (513)_{U_{22}}^{(2)} = (513)_{U_{22}}^{($	12.251	2.474	2.02	1.058	1.52	1.23	1.25
	$\{Mn_2^{2+}\}$ $[Nb_2^{2+}7n_2^{2+}]$ $(Fe_3^{3+}Ge_2^{4+})$ $(D12)$	12.300	2.301	2.02	1.809	1.23	1.05	1.13
$\begin{split} & [13]_{12} [12]_{12} [2]_{13} [2]_{12} [2]_{13} [2]_{12} [2]_{13} [2]_{12} [2]_{13} [2]_{12} [2]_{13} [2]_{12} [2]_$	$\{\mathbf{Y}_2\}$ [Fe2] (Fe2) O 12	12.342	2.30)	2.070	1.858	1.20	1.15	1.11
$\begin{split} & [12] (12] (13) (13) (13) (13) (13) (12) (12) (12) (12) (13) (13) (13) (13) (13) (13) (13) (13$	$\{Y_{2}C_{3}\}$ [Fe1 % Ge0 15] (Ge0 % Fe2 15) (O12	12.370	2.371	2.02	1.837	1.20	1.0	1.17
$ [[Va_2]][Fe_2^{-1}][Fe_2^{-1}][Ve_2^{-1}V^{0-1}]_{012} = 12.462 = 2.453 = 2.02 = 1.821 = 1.35 = 1.10 = 1.2 \\ [[Va_2]][Fe_2^{-1}][Fe_2^{-1}][Ve_2^{-1}V^{0-1}]_{012} = 12.482 = 2.432 = 2.02 = 1.888 = 1.31 = 1.09 = 1.2 \\ [[Va_1][Fi][Ge_2][Ge_3]_{012} = 12.482 = 2.432 = 2.02 = 1.888 = 1.31 = 1.09 = 1.2 \\ [[Va_1][Fe_1][Fe_2][Fe_2]_{012} = 12.488 = 2.494 = 2.024 = 1.785 = 1.4 = 1.13 = 1.23 \\ [[Gd_3][Ga_2](Ga_3]_{012} = 12.488 = 2.494 = 2.024 = 1.785 = 1.4 = 1.13 = 1.11 = 1.24 \\ [[Na_Ca_2][Ma_2](V_3^{-1}V_3^{-1})_{012} = 12.528 = 2.411 = 2.04 = 1.877 = 1.28 = 1.09 = 1.18 \\ [[Na_Ca_2][Ma_2](V_3^{-1}V_3^{-1})_{012} = 12.527 = 2.536 = 2.106 = 1.748 = 1.45 = 1.2 = 1.2 \\ [[Va_3][Fe_2](Fe_2A]_{012} = 12.232 = 2.371 = 2.02 = 1.864 = 1.27 = 1.08 = 1.17 \\ [[Va_3][Fe_2](Fe_2A]_{012} = 12.232 = 2.371 = 2.004 = 1.858 = 1.28 = 1.1 = 1.18 \\ [[Va_3][Fe_2](Fe_2A]_{012} = 12.225 = 2.371 = 2.004 = 1.858 = 1.28 = 1.1 = 1.18 \\ [[Va_3][Fe_2](Fe_2A]_{012} = 12.225 = 2.371 = 2.004 = 1.854 = 1.28 = 1.1 = 1.18 \\ [[Va_3][Fe_2](Fe_2A]_{012} = 12.2409 = 2.384 = 2.02 = 1.864 = 1.28 = 1.08 = 1.18 \\ [[Va_3][Fe_2](Fe_2A]_{012} = 12.2409 = 2.384 = 2.02 = 1.864 = 1.28 = 1.08 = 1.18 \\ [[Fa_3][Fe_2](Fe_2A]_{012} = 12.305 = 2.34 = 2.02 = 1.824 = 1.28 = 1.1 = 1.16 \\ [[Mn_3][Fe_2](Fe_2A]_{012} = 12.304 = 2.35 = 2.02 = 1.834 = 1.28 = 1.1 = 1.16 \\ [[Mn_3][Fe_2](Ge_3O]_{012} = 12.479 = 2.494 = 2.02 = 1.785 = 1.4 = 1.13 = 1.23 \\ [[Gd_3][Mn_2^{-1}][Ge_2Ga]_{012} = 12.479 = 2.494 = 2.02 = 1.785 = 1.4 = 1.13 = 1.23 \\ [[Gd_3][Mn_2^{-1}][Ge_2Ga]_{012} = 12.479 = 2.494 = 2.02 = 1.785 = 1.37 = 1.24 = 1.1 \\ [[Ca_3][Fe_2](Ge_3O]_{012} = 12.485 = 2.494 = 2.02 = 1.785 = 1.37 = 1.24 = 1.1 \\ [[Ca_3][Fe_2](Ge_3O]_{012} = 12.485 = 2.494 = 2.02 = 1.785 = 1.37 = 1.24 = 1.1 \\ [[Ca_3][Fe_2](Ge_3O]_{012} = 12.485 = 2.494 = 2.02 = 1.785 = 1.35 = 1.24 = 1.09 \\ [[Ba_3][Sn_2](Fe_5NO_{012} = 12.485 = 2.392 = 2.037 = 1.858 = 1.31 = 1.11 = 1.36 \\ [Ca_3][Sn_2](Fe_5NO_{012} = 12.485 = 2.392 = 2.037 = 1.858 = 1.31 = 1.11 = 1.17 \\ [[Va_3][Se_3](Fe_5NO_{12} = 12.485 = 2.392 = 2.037 = 1.85$	$\{N_{2}Ca_{2}\}[M_{2}](P_{2}^{5+})O_{12}$	12.377	2.536	2.014	1.657	1.51	1.1	1.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\{\mathbf{Y}_{2}, \mathbf{Y}_{2}, Y$	12.44	2.550	2.100	1.504	1.02	1.55	1.2
	$\{\mathbf{Sm}_2\}$ $[\mathbf{Fe}_2]$ (\mathbf{Fe}_2) (\mathbf{Fe}_2) (\mathbf{Fe}_2)	12.402	2.433	2.02	1.858	1.33	1.11	1.21
$ \begin{array}{c} 1.3 [10.03] (1.5) (1.5) (1.2) (1.5) (1.2) (1.5$	$\{\mathbf{Y}_{2}\}$ [In $_{2}$ Eq. $_{3}$] (Fe2) (\mathbf{Y}_{2})	12.402	2.432	2.02	1.858	1.31	1.09	1.2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\{C_{13}\}$ [TiNi](Ge2)(12)	12.403	2.371	2.00	1.000	1.20	1.11	1.15
	$\{Gd_2\}Ga_2O_{12}$	12.400	2.474	2.024	1.705	1.4	1.15	1.25
$ \begin{bmatrix} (x_1 C_2)_1 (y_2, y_3)_{2}^{2} (y_1)_{2}^{2} (y_2)_{2}^{2} (y_2)_{2}^{2} (y_2)_{2}^{2} (y_3)_{2}^{2} (y_3)_{1}^{2} (y_3)_{1$	$\{Bi^{3+}Ca_{2}\}[Fe_{2}^{3+}](Fe_{2}^{3+}V^{5+})O_{12}$	12.520	2.411	2.04	1.871	1.20	1.09	1.10
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\{N_{2}C_{22}\}[N_{22}C_{22}](1C_{2}^{5+})O_{12}$	12.337	2.490	2.02	1.021	1.57	1.11	1.24
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\{\mathbf{Y}_{2}\}$ [Fe2] (Fe2A]) O 12	12.725	2.330	2.100	1.740	1.45	1.2	1.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\{\mathbf{Y}_2\}$ [Fee](FeeGa)(O ₁₂	12.322	2.371	2.02	1.864	1.5	1.11	1.17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\{Y_2\}[\Gamma C_2](\Gamma C_2 C_2)O_{12}$	12.377	2.377	2.02	1.858	1.27	1.00	1.17
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\{Y_2\}$ [Ee2](FeAl2)O12	12.225	2.371	2.004	1.000	1.20	1.1	1.10
	$\{Gd_2\}$ [Fe2](Al2)O12	12.213	2.371	2.02	1.751	1.33	1.15	1.17
	$\{D_{v_2}\}$ [Fe2] (Fe2Ga) O12	12.202	2.311	2.02	1.751	1.30	1.13	1.19
	$\{F_{r_2}\}$ [FeCr](Fe2)(012)	12.40	2.361	2.02	1.858	1.20	1.00	1.10
	$\{\operatorname{Er}_2\}$ [Fee] (FeeA])O ₁₂	12.317	2.301	2.004	1.822	1.27	1.00	1.10
	$\{Mn^{2+}Y_2\}$ [Fe2](Fe2Ge ⁴⁺)O ₁₂	12.303	2.35	2.02	1.834	1.28	1.11	1.17
	$\{Mn_2\}$ [Fe2](Ge2)O12	12.304	2.30	2.02	1.034	1.20	1.1	1.10
	$\{C_{a_3}\}$ [Fe2] (Ge3) O12	12.479	2.494	2.02	1.785	1.4	1.13	1.23
$ \begin{cases} CaGd_2 \} [Mn_2] (Ge_3)O_{12} & 12.917 & 2.439 & 2.22 & 1.785 & 1.37 & 1.24 & 1.1 \\ \{CaGd_2\} [Mn_2] (Ge_3)O_{12} & 12.485 & 2.494 & 2.02 & 1.785 & 1.4 & 1.13 & 1.23 \\ \{CaY_2\} [Mn_2] (Ge_3)O_{12} & 12.485 & 2.494 & 2.02 & 1.785 & 1.4 & 1.13 & 1.23 \\ \{CaY_2\} [Mn_2] (Ge_3)O_{12} & 12.869 & 2.412 & 2.22 & 1.785 & 1.35 & 1.24 & 1.09 \\ \{Ba_3\} [Sn_2] (Fe_2Sn)O_{12} & 13.399 & 2.839 & 2.086 & 1.878 & 1.51 & 1.11 & 1.36 \\ \{Ca_3\} [Sn_2] (Fe_2Sn)O_{12} & 12.798 & 2.494 & 2.086 & 1.878 & 1.33 & 1.11 & 1.2 \\ \{Ca_2Y\} [Sn_2] (Fe_3)O_{12} & 12.696 & 2.453 & 2.086 & 1.858 & 1.32 & 1.12 & 1.18 \\ \{Ca_0.5Y_{2.5}\} [Fe_{1.5}Sn_{0.5}] (Fe_3)O_{12} & 12.459 & 2.392 & 2.037 & 1.858 & 1.32 & 1.12 & 1.18 \\ \{Ca_{1.5}Y_{1.5}\} [Sn_{1.5}Fe_{0.5}] (Fe_3)O_{12} & 12.619 & 2.433 & 2.07 & 1.858 & 1.31 & 1.11 & 1.18 \\ \{YCa_2\} [Zr_2] (Fe_3)O_{12} & 12.734 & 2.453 & 2.1 & 1.858 & 1.32 & 1.13 & 1.17 \\ \{Y_{2.4}Ca_{0.6}] [Zr_{0.6}Fe_{1.4}] (Fe_3)O_{12} & 12.626 & 2.428 & 2.076 & 1.858 & 1.31 & 1.12 & 1.17 \\ \{Y_{1.6}Ca_{1.4}\} [Sn_{1.4}Fe_{0.6}] (Fe_3)O_{12} & 12.599 & 2.428 & 2.066 & 1.858 & 1.31 & 1.11 & 1.18 \\ \{Y_3\} [In_{0.5}Fe_{1.5}] (Fe_3)O_{12} & 12.54 & 2.371 & 2.081 & 1.858 & 1.28 & 1.12 & 1.14 \\ \{Y_3\} [Se_{0.8}Fe_{1.2}] (Fe_3)O_{12} & 12.706 & 2.453 & 2.1 & 1.84 & 1.33 & 1.14 & 1.17 \end{cases}$	$\{Gd_2\}[Mn_2^{2+}](Ge_2Ga)O_{12}$	12.916	2.411	2.02	1.816	1 33	1.13	1.29
$ \begin{cases} Ca_3 \} [Fe_2](Ge_3)O_{12} & 12.111 & 2.153 & 2.122 & 11.05 & 1.051 & 1.121 & 1.11 \\ \{Ca_3\} [Fe_2](Ge_3)O_{12} & 12.485 & 2.494 & 2.02 & 1.785 & 1.4 & 1.13 & 1.23 \\ \{CaY_2\} [Mn_2](Ge_3)O_{12} & 12.869 & 2.412 & 2.22 & 1.785 & 1.35 & 1.24 & 1.09 \\ \{Ba_3\} [Sn_2](Fe_2Sn)O_{12} & 13.399 & 2.839 & 2.086 & 1.878 & 1.51 & 1.11 & 1.36 \\ \{Ca_3\} [Fe_2](Fe_2Sn)O_{12} & 12.798 & 2.494 & 2.086 & 1.878 & 1.33 & 1.11 & 1.2 \\ \{Ca_2Y\} [Sn_2](Fe_3)O_{12} & 12.696 & 2.453 & 2.086 & 1.858 & 1.32 & 1.12 & 1.18 \\ \{Ca_0.5Y_{2.5}\} [Fe_{1.5}Sn_{0.5}](Fe_3)O_{12} & 12.696 & 2.453 & 2.086 & 1.858 & 1.32 & 1.12 & 1.18 \\ \{Ca_1.5Y_{1.5}\} [Sn_{1.5}Fe_{0.5}](Fe_3)O_{12} & 12.619 & 2.433 & 2.07 & 1.858 & 1.31 & 1.11 & 1.18 \\ \{YCa_2\} [Zr_2](Fe_3)O_{12} & 12.734 & 2.453 & 2.1 & 1.858 & 1.32 & 1.13 & 1.17 \\ \{Y_{2.4}Ca_{0.6}] [Zr_{0.6}Fe_{1.4}](Fe_3)O_{12} & 12.626 & 2.428 & 2.076 & 1.858 & 1.31 & 1.12 & 1.17 \\ \{Y_{1.6}Ca_{1.4}\} [Sn_{1.4}Fe_{0.6}](Fe_3)O_{12} & 12.599 & 2.428 & 2.066 & 1.858 & 1.31 & 1.12 & 1.17 \\ \{Y_{3.1}Ge_{0.5}Fe_{1.5}](Fe_{3})O_{12} & 12.54 & 2.371 & 2.081 & 1.858 & 1.28 & 1.12 & 1.14 \\ \{Y_3\} [Se_{0.8}Fe_{1.2}](Fe_{3}O_{12} & 12.503 & 2.371 & 2.067 & 1.858 & 1.28 & 1.11 & 1.15 \\ \{YCa_2\} [Zr_2](Fe_{2.5}Al_{0.5})O_{12} & 12.706 & 2.453 & 2.1 & 1.84 & 1.33 & 1.14 & 1.17 \\ \end{cases}$	${CaGd_2}[Mn_2](Ge_3)O_{12}$	12.917	2.439	2.22	1 785	1 37	1 24	11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\{C_{a_3}\}$ [Fee] (Ge3) O12	12.485	2.494	2.02	1.785	1.4	1.13	1.23
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\{CaY_2\}[Mn_2](Ge_3)O_{12}$	12.869	2.412	2.22	1.785	1.35	1.24	1.09
$ \begin{cases} Ca_3 \{ Sn_2 (Fe_2Sn)O_{12} \\ 12.798 \\ 2.494 \\ 2.086 \\ 1.878 \\ 1.33 \\ 1.33 \\ 1.11 \\ 1.2 \\ \begin{cases} Ca_2Y \} \{ Sn_2 (Fe_3)O_{12} \\ 1.2 \\ 1.12 \\ 1.18 \\ \{ Ca_{0.5}Y_{2.5} \} \{ Fe_{1.5}Sn_{0.5} (Fe_3)O_{12} \\ 12.459 \\ 2.392 \\ 2.037 \\ 1.858 \\ 1.32 \\ 1.12 \\ 1.11 \\ 1.17 \\ \{ Ca_{1.5}Y_{1.5} \} \{ Sn_{1.5}Fe_{0.5} (Fe_3)O_{12} \\ 12.734 \\ 2.453 \\ 2.1 \\ 1.858 \\ 1.32 \\ 1.11 \\ 1.11 \\ 1.18 \\ \{ YCa_2 \} [Zr_2 (Fe_3)O_{12} \\ 12.734 \\ 2.453 \\ 2.1 \\ 1.858 \\ 1.32 \\ 1.13 \\ 1.11 \\ 1.17 \\ \{ Y_{1.6}Ca_{1.4} \} [Zr_{1.4}Fe_{0.6} (Fe_3)O_{12} \\ 12.626 \\ 2.428 \\ 2.076 \\ 1.858 \\ 1.31 \\ 1.11 \\ 1.17 \\ \{ Y_{1.6}Ca_{1.4} \} [Sn_{1.4}Fe_{0.6} (Fe_3)O_{12} \\ 12.599 \\ 2.428 \\ 2.066 \\ 1.858 \\ 1.31 \\ 1.11 \\ 1.11 \\ 1.18 \\ \{ Y_3 \} [In_{0.5}Fe_{1.5} (Fe_3)O_{12} \\ 12.599 \\ 2.428 \\ 2.066 \\ 1.858 \\ 1.28 \\ 1.28 \\ 1.12 \\ 1.14 \\ \{ Y_3 \} [Se_{0.8}Fe_{1.2} (Fe_3)O_{12} \\ 12.503 \\ 2.371 \\ 2.067 \\ 1.858 \\ 1.28 \\ 1.28 \\ 1.11 \\ 1.15 \\ \{ YCa_2 \} [Zr_2] (Fe_{2.5}Al_{0.5})O_{12} \\ 12.706 \\ 2.453 \\ 2.1 \\ 1.84 \\ 1.33 \\ 1.14 \\ 1.17 \\ \end{cases}$	$\{Ba_3\}[Sn_2](Fe_2Sn)O_{12}$	13.399	2.839	2.086	1.878	1.51	1.11	1.36
$ \{Ca_{2}Y\}_{[Sn_{2}](Fe_{3})O_{12}} $ $ \{Ca_{2}Y\}_{[Sn_{2}](Fe_{3})O_{12}} $ $ \{2.696 $ $ 2.453 $ $ 2.086 $ $ 1.858 $ $ 1.32 $ $ 1.12 $ $ 1.18 $ $ \{Ca_{0.5}Y_{2.5}\}_{[Fe_{1.5}Sn_{0.5}](Fe_{3})O_{12}} $ $ 12.696 $ $ 2.453 $ $ 2.086 $ $ 1.858 $ $ 1.32 $ $ 1.12 $ $ 1.18 $ $ \{Ca_{1.5}Y_{1.5}\}_{[Sn_{1.5}Fe_{0.5}](Fe_{3})O_{12}} $ $ 12.619 $ $ 2.433 $ $ 2.07 $ $ 1.858 $ $ 1.31 $ $ 1.11 $ $ 1.18 $ $ \{YCa_{2}\}_{[Zr_{2}](Fe_{3})O_{12}} $ $ 12.734 $ $ 2.453 $ $ 2.1 $ $ 1.858 $ $ 1.32 $ $ 1.13 $ $ 1.11 $ $ 1.18 $ $ \{YCa_{2}\}_{[Zr_{2}](Fe_{3})O_{12}} $ $ 12.734 $ $ 2.453 $ $ 2.1 $ $ 1.858 $ $ 1.32 $ $ 1.13 $ $ 1.17 $ $ \{Y_{1.6}Ca_{1.4}\}_{[Zr_{1.4}Fe_{0.6}](Fe_{3})O_{12} $ $ 12.626 $ $ 2.428 $ $ 2.076 $ $ 1.858 $ $ 1.31 $ $ 1.12 $ $ 1.17 $ $ \{Y_{1.6}Ca_{1.4}\}_{[Sn_{1.4}Fe_{0.6}](Fe_{3})O_{12} $ $ 12.599 $ $ 2.428 $ $ 2.066 $ $ 1.858 $ $ 1.31 $ $ 1.11 $ $ 1.18 $ $ \{Y_{3}\}_{[In_{0.5}Fe_{1.5}](Fe_{3})O_{12} $ $ 12.503 $ $ 2.371 $ $ 2.067 $ $ 1.858 $ $ 1.28 $ $ 1.11 $ $ 1.15 $ $ \{YCa_{2}\}_{[Zr_{2}](Fe_{2.5}Al_{0.5})O_{12} $ $ 12.706 $ $ 2.453 $ $ 2.1 $ $ 1.84 $ $ 1.33 $ $ 1.14 $ $ 1.17 $	$\{Ca_3\}[Sn_2](Fe_2Sn)O_{12}$	12.798	2.494	2.086	1.878	1.33	1.11	1.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\{Ca_{2}Y\}[Sn_{2}](Fe_{3})O_{12}$	12,696	2.453	2.086	1.858	1.32	1.12	1.18
$ \begin{cases} Ca_{1.5}Y_{1.5} [Sn_{1.5}Fe_{0.5}](Fe_3)O_{12} & 12.619 & 2.433 & 2.07 & 1.858 & 1.31 & 1.11 & 1.18 \\ \{YCa_2\}[Zr_2](Fe_3)O_{12} & 12.734 & 2.453 & 2.1 & 1.858 & 1.32 & 1.13 & 1.17 \\ \{Y_{2.4}Ca_{0.6}][Zr_{0.6}Fe_{1.4}](Fe_3)O_{12} & 12.485 & 2.396 & 2.044 & 1.858 & 1.29 & 1.1 & 1.17 \\ \{Y_{1.6}Ca_{1.4}][Zr_{1.4}Fe_{0.6}](Fe_3)O_{12} & 12.626 & 2.428 & 2.076 & 1.858 & 1.31 & 1.12 & 1.17 \\ \{Y_{1.6}Ca_{1.4}][Sn_{1.4}Fe_{0.6}](Fe_3)O_{12} & 12.599 & 2.428 & 2.066 & 1.858 & 1.31 & 1.11 & 1.18 \\ \{Y_3\}[In_{0.5}Fe_{1.5}](Fe_3)O_{12} & 12.54 & 2.371 & 2.081 & 1.858 & 1.28 & 1.12 & 1.14 \\ \{Y_3\}[Se_{0.8}Fe_{1.2}](Fe_3)O_{12} & 12.503 & 2.371 & 2.067 & 1.858 & 1.28 & 1.11 & 1.15 \\ \{YCa_2\}[Zr_2](Fe_{2.5}Al_{0.5})O_{12} & 12.706 & 2.453 & 2.1 & 1.84 & 1.33 & 1.14 & 1.17 \end{cases} $	$\{Ca_0 \le Y_2 \le \}$ [Fe ₁ $\le Sn_0 \le]$ (Fe ₃)O ₁₂	12.459	2.392	2.037	1.858	1.29	1.1	1.17
$ \begin{cases} YCa_2 \} [Zr_2] (Fe_3)O_{12} & 12.734 & 2.453 & 2.1 & 1.858 & 1.32 & 1.13 & 1.17 \\ \{Y_{2.4}Ca_{0.6}\} [Zr_{0.6}Fe_{1.4}] (Fe_3)O_{12} & 12.485 & 2.396 & 2.044 & 1.858 & 1.29 & 1.1 & 1.17 \\ \{Y_{1.6}Ca_{1.4}\} [Zr_{1.4}Fe_{0.6}] (Fe_3)O_{12} & 12.626 & 2.428 & 2.076 & 1.858 & 1.31 & 1.12 & 1.17 \\ \{Y_{1.6}Ca_{1.4}\} [Sn_{1.4}Fe_{0.6}] (Fe_3)O_{12} & 12.599 & 2.428 & 2.066 & 1.858 & 1.31 & 1.11 & 1.18 \\ \{Y_3\} [In_{0.5}Fe_{1.5}] (Fe_3)O_{12} & 12.503 & 2.371 & 2.081 & 1.858 & 1.28 & 1.12 & 1.14 \\ \{Y_3\} [Se_{0.8}Fe_{1.2}] (Fe_3)O_{12} & 12.503 & 2.371 & 2.067 & 1.858 & 1.28 & 1.11 & 1.15 \\ \{YCa_2\} [Zr_2] (Fe_{2.5}Al_{0.5})O_{12} & 12.706 & 2.453 & 2.1 & 1.84 & 1.33 & 1.14 & 1.17 \end{cases} $	$\{Ca_{1}, 5Y_{1}, 5\}$ $[Sn_{1}, 5Fe_{0}, 5]$ $(Fe_{3})O_{12}$	12.619	2.433	2.07	1.858	1.31	1.11	1.18
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	${YCa_2}[Zr_2](Fe_3)O_{12}$	12.734	2.453	2.1	1.858	1.32	1.13	1.17
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\{Y_{2,4}Ca_{0,6}\}$ [Zr _{0,6} Fe _{1,4}](Fe ₃)O ₁₂	12.485	2.396	2.044	1.858	1.29	1.1	1.17
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\{Y_{1,6}Ca_{1,4}\}$ [Zr _{1,4} Fe _{0.6}](Fe ₃)O ₁₂	12.626	2.428	2.076	1.858	1.31	1.12	1.17
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\{Y_{1,6}Ca_{1,4}\}[Sn_{1,4}Fe_{0,6}](Fe_{3})O_{12}$	12.599	2.428	2.066	1.858	1.31	1.11	1.18
$ \{Y_3\}[Se_{0.8}Fe_{1.2}](Fe_3)O_{12} \\ \{YCa_2\}[Zr2](Fe_{2.5}Al_{0.5})O_{12} \\ 12.706 \\ 2.453 \\ 2.1 \\ 1.84 \\ 1.33 \\ 1.14 \\ 1.17 \\ 1.17 \\ 1.17 \\ 1.17 \\ 1.17 \\ 1.17 \\ 1.17 \\ 1.17 \\ 1.17 \\ 1.17 \\ 1.17 \\ 1.17 \\ 1.11 \\ 1.17 \\ 1.17 \\ 1.11 \\ 1.17 \\ 1.11 \\ 1.17 \\ 1.11 \\ 1.17 \\ 1.11 \\ 1.17 \\ 1.11$	${Y_3}[In_{0.5}Fe_{1.5}](Fe_3)O_{12}$	12.54	2.371	2.081	1.858	1.28	1.12	1.14
$\{YCa_2\}[Zr_2](Fe_{2.5}Al_{0.5})O_{12}$ 12.706 2.453 2.1 1.84 1.33 1.14 1.17	$\{Y_3\}[Se_{0.8}Fe_{1.2}](Fe_3)O_{12}$	12.503	2.371	2.067	1.858	1.28	1.11	1.15
	{YCa ₂ }[Zr ₂](Fe _{2.5} Al _{0.5})O ₁₂	12.706	2.453	2.1	1.84	1.33	1.14	1.17

Продовження таблиці 1

Сполука	a, Å	{γ}	[β]	(α)	γ/α	β/α	γ/β
$ \{YCa_2\}[Zr_2](Fe_{2.5}Ga_{0.5})O_{12} \\ \{Mn_{0.5}Y_{2.5}\}[Fe_2](Fe_{2.5}Ge_{0.5})O_{12} \\ \{Mn_{0.5}Y_{2.5}\}[Fe](Fe_{2.5}Ge_{0.5})O_{12} \\ \{Gd_2Ca\}[SnFe](Fe_3)O_{12} \\ \label{eq:gamma} \} = 0.5$	12.738	2.453	2.1	1.861	1.32	1.13	1.17
	12.341	2.361	2.02	1.846	1.28	1.09	1.17
	12.32	2.361	2.005	1.858	1.27	1.08	1.18
	12.584	2.439	2.053	1.858	1.31	1.1	1.19

Таблиця 2

Межі, в яких змінюються міжатомні відстані (Å) для гранатів

Від- стань	Змінюється в межах	Найбільш імовірні значення	Відсоток гранатів з найбільш імовірним значенням
α	1.564–1.878	$\begin{array}{c} 1.832 \pm 0.046 \\ 2.044 \pm 0.056 \\ 2.430 \pm 0.070 \end{array}$	80
β	1.903–2.220		84
γ	2.190–2.839		80

тарної комірки гранатів має вигляд:

 $a(\text{\AA}) = 1.5396\alpha + 2.6667\beta + 1.7429\gamma$.

Різниця між розрахованим параметром і експериментально визначеним не перевищує ± 0.01 Å.

В табл. 2 приведені дані по міжатомних відстанях; видно, що більшість значень α, β, γ знаходяться в досить вузьких межах (рис. 1).

Розглянемо співвідношення між тетра-, октата додекаедричними відстанями (рис. 2). В більшості випадків β більше за α на 12 %, а γ більше за β на 19 %. Розрахунки показують, що співвідношення $\gamma/\alpha = 1.34 \pm 0.07$. Параметр елементарної комірки змінюється в межах 11.410—13.400 Å; найбільш імовірним є $a(Å)=12.45 \pm 0.29$. При збільшенні додекаедричної відстані періоду елементарної комірки тетра- та октаедричні відстані мають максимальне значення при $\gamma=2.43$ Å.

Наведені дані по міжатомних відстанях надають можливість прогнозувати як нові хімічні сполуки типу гранатів, так і їх тверді розчини. Найбільш достовірний прогноз здійснюється на основі максимальних імовірностей міжатомних відстаней та їх співвідношення. При цьому слід враховувати розподіл катіонів по підрешітках. На підставі цих даних є можливість розрахувати величину магнітного моменту в залежності від хімічного складу та розподілу катіонів у решітці гранату. Що стосується прогнозу електричних, оптичних та хімічних властивостей, пропонуємо використовувати кристалоквазіхімічну модель [3].

Аналогічно благородній шпінелі антиструктура гранату визначається напівблагородним мінералом пиропом (Ругоре) [4]:

$$\begin{split} \{Mg_3^{\ 2^+}\}_C[Al_2^{\ 3^+}]_B(Si_3^{\ 4^+})_A(O_{12}^{\ 2^-})_O \rightarrow \\ \rightarrow \ \{V_3^{\ II}\}_C[V_2^{\ III}]_B(V_3^{\ IV})_A(V_{12}^{\ *^*})_0 \,. \end{split}$$

Фігурні, квадратні і круглі дужки (С,В,А) визначають відповідно додека-, окта- і тетраедричну позиції. Кисень знаходиться в круглих дужках в позиції кисню. Буква V означає катіонні та кисневу (аніонну) вакансії. Позначення II, III та IV визначають величину негативного заряду катіонних вакансій відповідно –2, –3, –4. Крапки визначають позитивний заряд аніонної вакансії (+2).

Резонанс антиструктури з кристалохімічною формулою гранату приводить до кристалоквазіхімічної формули. Наприклад, для залізо-ітрієвого гранату (ЗІГ) $\{Y_3^{3+}\}_C[Fe_2^{3+}]_B(Fe_3^{3+})_A(O_{12})_0$. Кристалоквазіхімічна формула ЗІГ запишеться: $\{Y_3^*\}_C[Fe_2^x]_B(Fe_3')_A(O_{12}^x)_0$. Хрест визначає нульовий ефективний заряд. Кристалоквазіхімічна формула дає нову інформацію про властивості даного гранату. Наприклад, ми бачимо, що електропровідність буде здійснюватися за рахунок непрямого обміну (через кисень) електронами між тетраедричною та додекаедричною позиціями. Що стосується хімічних властивостей, то вони в значній мірі визначаються наявністю акцепторних додекаедричних центрів та донорних тетраедричних центрів. Для нестехіометричних гранатів антиструктура дозволяє визначити природу дефектів, прогнозувати властивості та механізм процесів з їх участю.

РЕЗЮМЕ. В результате анализа абсолютного большинства соединений типа граната установлены границы, в пределах которых изменяются междуатомные расстояния катион-анион для тетра-, окта- и додекаэдрических позиций. Выведено уравнение, которое позволяет теоретически установить параметр элементарной ячейки граната по междуатомным расстояниям. Установлены соотношения междуатомных расстояний и параметров ячейки. Приведенные кристаллохимические данные позволяют прогнозировать синтез новых соединений типа граната. Использована кристаллоквазихимическая модель для прогнозирования физико-химических свойств гранатов (реакционная и каталитическая способность, механизмы реакций, электрические и оптические свойства).

SUMMARY. Because of analysis of absolute majority of compound as a pomegranate the boundaries, within the limits of which change the interatomic distances cation-anion for tetra-, octa- and dodecahedral positions, are set. Equalization which allows in theory to set the parameter of elementary cell of pomegranate on interatomic distances is shown out. Correlations of interatomic distances and parameters of cell are set. The resulted crystallochemical information allows forecasting the synthesis of new connections as a pomegranate. A crystalloquasichemical model is used for prognostication of physical and chemical properties of pomegranates (reac-

Прикарпатський університет імені Василя Стефаника, Івано-Франківськ

tionary and catalytic ability, mechanisms of reactions, electric and optical properties).

- 1. Лисняк С.С. // Докл. АН СССР. -1991. -**320**, № 6. -С. 1405—1407.
- 2. Смит Я., Вейн Х. Ферриты. -М: Мир, 1962.
- 3. Лисняк С.С. // Дис. ... докт. хим. наук. -Львов, 1993.
- 4. *Magnesium* Aluminium Silicate (Pyrope). -ASTM. -P. 15—742.
- 5. Лисняк С.С. // Изв. РАН. Неорган. материалы. -1992. -28, № 9. -С. 1913—1917.
- 6. Лисняк С.С., Маткивский Н.П., Перкатюк И.Й. // Укр. хим. журн. -2003. -69, № 8. -С. 88—94.
- 7. Крупичка С. Физика ферритов и родственных им магнитных окислов. -М.: Мир, 1976. -Т. 1, 2.
- Летюк Л.М., Журавлев Г.И. Химия и технология ферритов. -Л.: Химия, 1983.
- 9. Лакс Б., Баттон К. Сверхвысокочастотные ферриты и ферримагнетики. -М.: Мир, 1965.
- 10. Бетехтин А.Г. Курс минералогии. -М.: Госгеолтехиздат, 1961.

Надійшла 18.10.2004

УДК 546.732+541.49'122

Ю.Н. Ганнова, Д.М. Паладе

ПЕРЕНОСЧИКИ МОЛЕКУЛЯРНОГО КИСЛОРОДА — КОМПЛЕКСЫ КОБАЛЬТА (II) С ДИПЕПТИДАМИ АЛАНИЛОВОГО РЯДА

pH-Метрически изучен процесс комплексообразования в системах кобальт (II)—дипептид (аланилаланин, аланилнорвалин, аланилнорлейцин, аланилвалин, аланиллейцин)—кислород при 25 °С и ионной силе 0.1 (KNO₃). Предложена схема равновесий, составлена математическая модель процесса и рассчитаны индивидуальные константы равновесия.

В предыдущих работах [1, 2] были изучены процессы поглощения молекулярного кислорода комплексами кобальта с дипептидами глицилового ряда: глицилглицином, глицилвалином, глицилнорвалином, глицилнорлейцином, глицилаланином, глициллейцином. Данная работа посвящена изучению оксигенации комплексов кобальта (II) с дипептидами аланилового ряда — аланилаланином (Alaala), аланилвалином (Alaval), аланилнорвалином (Alan-val)), аланиллейцином (Alaleu), аланилнорлейцином (Alan-leu).

В работе были использованы: гексагидрат нитрата кобальта, квалификации х.ч., дипептиды (аланилаланин, аланилнорвалин, аланилнонорлейцин, аланилвалин, аланиллейцин) фирмы Reanal, Как было установлено [1, 2], в присутствии кислорода, в воздушной среде, комплексы $CoDpDpH^{-} u Co(Dp)_2^{2^{-}} обратимо поглощают моле$ кулярный кислород с образованием оксигенирован $ных комплексов (CoDpDpH)_2O_2^{2^{-}} и (CoDp_2)_2O_2^{4^{-}}. Образование оксигенированного комплекса$

^{0.1} н. раствор гидроксида калия, свободный от карбонатов. Комплексообразование и оксигенация изучались pH-метрически на милливольтметре pH-121 при темпертуре 25 ± 0.1 °C и ионной силе 0.1 (KNO₃). Расчет значений констант равновесия проводили на ПЭВМ типа Intel Pentium 386 по методу Нелдера и Мида [3] по программе, описанной в работе [4]. Доверительные интервалы значений констант определяли согласно [5].

[©] Ю.Н. Ганнова, Д.М. Паладе, 2006